1
|
Basile GA, Tatti E, Bertino S, Milardi D, Genovese G, Bruno A, Muscatello MRA, Ciurleo R, Cerasa A, Quartarone A, Cacciola A. Neuroanatomical correlates of peripersonal space: bridging the gap between perception, action, emotion and social cognition. Brain Struct Funct 2024; 229:1047-1072. [PMID: 38683211 PMCID: PMC11147881 DOI: 10.1007/s00429-024-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Peripersonal space (PPS) is a construct referring to the portion of space immediately surrounding our bodies, where most of the interactions between the subject and the environment, including other individuals, take place. Decades of animal and human neuroscience research have revealed that the brain holds a separate representation of this region of space: this distinct spatial representation has evolved to ensure proper relevance to stimuli that are close to the body and prompt an appropriate behavioral response. The neural underpinnings of such construct have been thoroughly investigated by different generations of studies involving anatomical and electrophysiological investigations in animal models, and, recently, neuroimaging experiments in human subjects. Here, we provide a comprehensive anatomical overview of the anatomical circuitry underlying PPS representation in the human brain. Gathering evidence from multiple areas of research, we identified cortical and subcortical regions that are involved in specific aspects of PPS encoding.We show how these regions are part of segregated, yet integrated functional networks within the brain, which are in turn involved in higher-order integration of information. This wide-scale circuitry accounts for the relevance of PPS encoding in multiple brain functions, including not only motor planning and visuospatial attention but also emotional and social cognitive aspects. A complete characterization of these circuits may clarify the derangements of PPS representation observed in different neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| | - Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY, 10031, USA
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Bruno
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Maria Rosaria Anna Muscatello
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Cerasa
- S. Anna Institute, Crotone, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, Messina, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
2
|
Fei Y, Wu Q, Zhao S, Song K, Han J, Liu C. Diverse and asymmetric patterns of single-neuron projectome in regulating interhemispheric connectivity. Nat Commun 2024; 15:3403. [PMID: 38649683 PMCID: PMC11035633 DOI: 10.1038/s41467-024-47762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
The corpus callosum, historically considered primarily for homotopic connections, supports many heterotopic connections, indicating complex interhemispheric connectivity. Understanding this complexity is crucial yet challenging due to diverse cell-specific wiring patterns. Here, we utilized public AAV bulk tracing and single-neuron tracing data to delineate the anatomical connection patterns of mouse brains and conducted wide-field calcium imaging to assess functional connectivity across various brain states in male mice. The single-neuron data uncovered complex and dense interconnected patterns, particularly for interhemispheric-heterotopic connections. We proposed a metric "heterogeneity" to quantify the complexity of the connection patterns. Computational modeling of these patterns suggested that the heterogeneity of upstream projections impacted downstream homotopic functional connectivity. Furthermore, higher heterogeneity observed in interhemispheric-heterotopic projections would cause lower strength but higher stability in functional connectivity than their intrahemispheric counterparts. These findings were corroborated by our wide-field functional imaging data, underscoring the important role of heterotopic-projection heterogeneity in interhemispheric communication.
Collapse
Affiliation(s)
- Yao Fei
- School of Automation, Northwestern Polytechnical University, Xi'an, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qihang Wu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an, China.
- Research & Development, Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.
| | - Kun Song
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an, China.
- Research & Development, Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China.
| | - Cirong Liu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Falcó-Roget J, Cacciola A, Sambataro F, Crimi A. Functional and structural reorganization in brain tumors: a machine learning approach using desynchronized functional oscillations. Commun Biol 2024; 7:419. [PMID: 38582867 PMCID: PMC10998892 DOI: 10.1038/s42003-024-06119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Neuroimaging studies have allowed for non-invasive mapping of brain networks in brain tumors. Although tumor core and edema are easily identifiable using standard MRI acquisitions, imaging studies often neglect signals, structures, and functions within their presence. Therefore, both functional and diffusion signals, as well as their relationship with global patterns of connectivity reorganization, are poorly understood. Here, we explore the functional activity and the structure of white matter fibers considering the contribution of the whole tumor in a surgical context. First, we find intertwined alterations in the frequency domain of local and spatially distributed resting-state functional signals, potentially arising within the tumor. Second, we propose a fiber tracking pipeline capable of using anatomical information while still reconstructing bundles in tumoral and peritumoral tissue. Finally, using machine learning and healthy anatomical information, we predict structural rearrangement after surgery given the preoperative brain network. The generative model also disentangles complex patterns of connectivity reorganization for different types of tumors. Overall, we show the importance of carefully designing studies including MR signals within damaged brain tissues, as they exhibit and relate to non-trivial patterns of both structural and functional (dis-)connections or activity.
Collapse
Affiliation(s)
- Joan Falcó-Roget
- Brain and More Lab, Computer Vision, Sano Centre for Computational Medicine, Kraków, Poland.
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Fabio Sambataro
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Alessandro Crimi
- Brain and More Lab, Computer Vision, Sano Centre for Computational Medicine, Kraków, Poland.
- Faculty of Computer Science, AGH University of Krakow, Kraków, Poland.
| |
Collapse
|
4
|
Wainberg M, Forde NJ, Mansour S, Kerrebijn I, Medland SE, Hawco C, Tripathy SJ. Genetic architecture of the structural connectome. Nat Commun 2024; 15:1962. [PMID: 38438384 PMCID: PMC10912129 DOI: 10.1038/s41467-024-46023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Myelinated axons form long-range connections that enable rapid communication between distant brain regions, but how genetics governs the strength and organization of these connections remains unclear. We perform genome-wide association studies of 206 structural connectivity measures derived from diffusion magnetic resonance imaging tractography of 26,333 UK Biobank participants, each representing the density of myelinated connections within or between a pair of cortical networks, subcortical structures or cortical hemispheres. We identify 30 independent genome-wide significant variants after Bonferroni correction for the number of measures studied (126 variants at nominal genome-wide significance) implicating genes involved in myelination (SEMA3A), neurite elongation and guidance (NUAK1, STRN, DPYSL2, EPHA3, SEMA3A, HGF, SHTN1), neural cell proliferation and differentiation (GMNC, CELF4, HGF), neuronal migration (CCDC88C), cytoskeletal organization (CTTNBP2, MAPT, DAAM1, MYO16, PLEC), and brain metal transport (SLC39A8). These variants have four broad patterns of spatial association with structural connectivity: some have disproportionately strong associations with corticothalamic connectivity, interhemispheric connectivity, or both, while others are more spatially diffuse. Structural connectivity measures are highly polygenic, with a median of 9.1 percent of common variants estimated to have non-zero effects on each measure, and exhibited signatures of negative selection. Structural connectivity measures have significant genetic correlations with a variety of neuropsychiatric and cognitive traits, indicating that connectivity-altering variants tend to influence brain health and cognitive function. Heritability is enriched in regions with increased chromatin accessibility in adult oligodendrocytes (as well as microglia, inhibitory neurons and astrocytes) and multiple fetal cell types, suggesting that genetic control of structural connectivity is partially mediated by effects on myelination and early brain development. Our results indicate pervasive, pleiotropic, and spatially structured genetic control of white-matter structural connectivity via diverse neurodevelopmental pathways, and support the relevance of this genetic control to healthy brain function.
Collapse
Affiliation(s)
- Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Natalie J Forde
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Salim Mansour
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabel Kerrebijn
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Colin Hawco
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Shreejoy J Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Li Y, Ran Y, Chen Q. Abnormal static and dynamic functional network connectivity of the whole-brain in children with generalized tonic-clonic seizures. Front Neurosci 2023; 17:1236696. [PMID: 37670842 PMCID: PMC10475552 DOI: 10.3389/fnins.2023.1236696] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Generalized tonic-clonic seizures (GTCS) are a subtype of generalized seizures exhibiting bursts of bilaterally synchronous generalized spike-wave discharges. Numerous neuroimaging studies have reported aberrant functional activity and topological organization of brain network in epilepsy patients with GTCS, but most studies have focused on adults. However, the effect of GTCS on the spatial and temporal properties of brain function in children remains unclear. The present study aimed to explore whole-brain static (sFC) and dynamic functional connectivity (dFC) in children with GTCS. Methods Twenty-three children with GTCS and 32 matched healthy controls (HCs) were recruited for the present study. Resting-state functional magnetic resonance imaging (MRI) data were collected for each subject. The group independent component analysis method was used to obtain independent components (ICs). Then, sFC and dFC methods were applied and the differences in functional connectivity (FC) were compared between the children with GTCS and the HCs. Additionally, we investigated the correlations between the dFC indicators and epilepsy duration. Results Compared to HCs, GTCS patients exhibited a significant decrease in sFC strengths among most networks. The K-means clustering method was implemented for dFC analysis, and the optimal number of clusters was estimated: two discrete connectivity configurations, State 1 (strong connection) and State 2 (weak connection). The decreased dFC mainly occurred in State 1, especially the dFC between the visual network (VIS) and somatomotor network (SMN); but the increased dFC mainly occurred in State 2 among most networks in GTCS children. In addition, GTCS children showed significantly shorter mean dwell time and lower fractional windows in stronger connected State 1, while GTCS children showed significantly longer mean dwell time in weaker connected State 2. In addition, the dFC properties, including mean dwell time and fractional windows, were significantly correlated with epilepsy duration. Conclusion Our results indicated that GTCS epilepsy not only alters the connectivity strength but also changes the temporal properties of connectivity in networks in the whole brain. These findings also emphasized the differences in sFC and dFC in children with GTCS. Combining sFC and dFC methods may provide more comprehensive understanding of the abnormal changes in brain architecture in children with GTCS.
Collapse
Affiliation(s)
- Yongxin Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yun Ran
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qian Chen
- Department of Pediatric Neurosurgery, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
6
|
Nozais V, Forkel SJ, Petit L, Talozzi L, Corbetta M, Thiebaut de Schotten M, Joliot M. Atlasing white matter and grey matter joint contributions to resting-state networks in the human brain. Commun Biol 2023; 6:726. [PMID: 37452124 PMCID: PMC10349117 DOI: 10.1038/s42003-023-05107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Over the past two decades, the study of resting-state functional magnetic resonance imaging has revealed that functional connectivity within and between networks is linked to cognitive states and pathologies. However, the white matter connections supporting this connectivity remain only partially described. We developed a method to jointly map the white and grey matter contributing to each resting-state network (RSN). Using the Human Connectome Project, we generated an atlas of 30 RSNs. The method also highlighted the overlap between networks, which revealed that most of the brain's white matter (89%) is shared between multiple RSNs, with 16% shared by at least 7 RSNs. These overlaps, especially the existence of regions shared by numerous networks, suggest that white matter lesions in these areas might strongly impact the communication within networks. We provide an atlas and an open-source software to explore the joint contribution of white and grey matter to RSNs and facilitate the study of the impact of white matter damage to these networks. In a first application of the software with clinical data, we were able to link stroke patients and impacted RSNs, showing that their symptoms aligned well with the estimated functions of the networks.
Collapse
Affiliation(s)
- Victor Nozais
- Univ. Bordeaux, CNRS, CEA, IMN, UMR 5293, GIN, F-33000, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Donders Institute for Brain Cognition Behaviour, Radboud University, Nijmegen, the Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Departments of Neurosurgery, Technical University of Munich School of Medicine, Munich, Germany
| | - Laurent Petit
- Univ. Bordeaux, CNRS, CEA, IMN, UMR 5293, GIN, F-33000, Bordeaux, France
| | - Lia Talozzi
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Maurizio Corbetta
- Department of Neuroscience, Venetian Institute of Molecular Medicine and Padova Neuroscience Center, University of Padua, Padova, PD, 32122, Italy
| | - Michel Thiebaut de Schotten
- Univ. Bordeaux, CNRS, CEA, IMN, UMR 5293, GIN, F-33000, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Marc Joliot
- Univ. Bordeaux, CNRS, CEA, IMN, UMR 5293, GIN, F-33000, Bordeaux, France.
| |
Collapse
|