1
|
Msheik Z, El Massry M, Rovini A, Billet F, Desmoulière A. The macrophage: a key player in the pathophysiology of peripheral neuropathies. J Neuroinflammation 2022; 19:97. [PMID: 35429971 PMCID: PMC9013246 DOI: 10.1186/s12974-022-02454-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/29/2022] [Indexed: 12/22/2022] Open
Abstract
Macrophages are present in all mammalian tissues and coexist with various cell types in order to respond to different environmental cues. However, the role of these cells has been underestimated in the context of peripheral nerve damage. More importantly, macrophages display divergent characteristics, associated with their origin, and in response to the modulatory effects of their microenvironment. Interestingly, the advent of new techniques such as fate mapping and single-cell transcriptomics and their synergistic use has helped characterize in detail the origin and fate of tissue-resident macrophages in the peripheral nervous system (PNS). Furthermore, these techniques have allowed a better understanding of their functions from simple homeostatic supervisors to chief regulators in peripheral neuropathies. In this review, we summarize the latest knowledge about macrophage ontogeny, function and tissue identity, with a particular focus on PNS-associated cells, as well as their interaction with reactive oxygen species under physiological and pathological conditions. We then revisit the process of Wallerian degeneration, describing the events accompanying axon degeneration, Schwann cell activation and most importantly, macrophage recruitment to the site of injury. Finally, we review these processes in light of internal and external insults to peripheral nerves leading to peripheral neuropathies, the involvement of macrophages and the potential benefit of the targeting of specific macrophages for the alleviation of functional defects in the PNS.
Collapse
|
2
|
Zhou WBS, Meng J, Zhang J. Does Low Grade Systemic Inflammation Have a Role in Chronic Pain? Front Mol Neurosci 2021; 14:785214. [PMID: 34858140 PMCID: PMC8631544 DOI: 10.3389/fnmol.2021.785214] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
One of the major clinical manifestations of peripheral neuropathy, either resulting from trauma or diseases, is chronic pain. While it significantly impacts patients’ quality of life, the underlying mechanisms remain elusive, and treatment is not satisfactory. Systemic chronic inflammation (SCI) that we are referring to in this perspective is a state of low-grade, persistent, non-infective inflammation, being found in many physiological and pathological conditions. Distinct from acute inflammation, which is a protective process fighting against intruders, SCI might have harmful effects. It has been associated with many chronic non-communicable diseases. We hypothesize that SCI could be a predisposing and/or precipitating factor in the development of chronic pain, as well as associated comorbidities. We reviewed evidence from human clinical studies indicating the coexistence of SCI with various types of chronic pain. We also collated existing data about the sources of SCI and who could have it, showing that those individuals or patients having SCI usually have higher prevalence of chronic pain and psychological comorbidities. We thus elaborate on the need for further research in the connection between SCI and chronic pain. Several hypotheses have been proposed to explain these complex interactions.
Collapse
Affiliation(s)
- Wen Bo Sam Zhou
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - JingWen Meng
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Ji Zhang
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.,Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, Faculty of Medicine McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Nicknafs F, Ghafouri-Fard S, Omrani MD, Nazer N, Sayad A, Taheri M. Expression analysis of cytokine transcripts in inflammatory demyelinating polyradiculoneuropathy. Metab Brain Dis 2021; 36:2111-2118. [PMID: 34169408 DOI: 10.1007/s11011-021-00771-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Inflammatory demyelinating polyradiculoneuropathies are a group of peripheral nerve system disorders in which immune reactions are dysregulated. Cytokines have noticeable roles in the regulation of these responses. We compared transcript levels of nine cytokine coding genes namely IL-1B, IL-2, IL-4, IL-6, IL-8, IL-17A, IFN-G, TGF-B and TNF-A in the peripheral blood of patients with acute and chronic kinds of this condition (AIDP and CIDP) and healthy persons. Expression of IL-17A was significantly lower in female AIDP cases compared with female controls (Expression Ratio = 0.02, P value = 0.02). Expression of this cytokine was higher in female CIDP cases compared with female AIDP cases (Expression ratio = 65.69, P value = 0.02). Moreover, expression of IL-6 tended to be diminished in female AIDP cases compared with normal females (Expression Ratio = 0.06, P value = 0.05). Expression of TGF-B was lower in female AIDP cases compared with female controls (Expression Ratio = 0.06, P value = 0.01). Transcript amounts of IL-1B were lower in whole CIDP cases compared with whole controls and in female AIDP cases compared with female controls (Expression Ratios = 0.09 and 0.00; P values = 0.04 and 0.01, respectively). Expression of this gene was considerably increased in female CIDP cases compared with female AIDP cases (Expression Ratio = 764.10, P value = 0.02). Finally, expression of this gene was lower in total cases compared with total controls (Expression ratio = 0.19, P value = 0.03). Diagnostic power of IL-4 was estimated to be 0.7 in differentiating between CIDP cases and controls. IL-1B had the diagnostic power of 0.72 in distinguishing between ADP cases and controls. Finally, TNF-A had the diagnostic power of 0.71 in differentiating between AIDP cases and CIDP cases. The current results suggest the possible role of these cytokines in the pathogenesis of inflammatory demyelinating polyradiculoneuropathies.
Collapse
Affiliation(s)
- Fwad Nicknafs
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghme Nazer
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
van Lieverloo GGA, Wieske L, Verhamme C, Vrancken AFJ, van Doorn PA, Michalak Z, Barro C, van Schaik IN, Kuhle J, Eftimov F. Serum neurofilament light chain in chronic inflammatory demyelinating polyneuropathy. J Peripher Nerv Syst 2019; 24:187-194. [PMID: 30973667 DOI: 10.1111/jns.12319] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
Abstract
Axonal damage in chronic inflammatory demyelinating polyneuropathy (CIDP) is the main predictor of poor outcome. We hypothesized that serum neurofilament light chain (sNfL) reflects disease activity by detecting ongoing neuro-axonal damage in CIDP. Three prospective cohorts of CIDP patients were studied: (a) patients starting induction treatment (IT cohort, N = 29) measured at baseline and 6 months after starting treatment; (b) patients on maintenance treatment (MT) starting intravenous immunoglobuline (IVIg) withdrawal (MT cohort, N = 24) measured at baseline and 6 months after IVIg withdrawal or at time of relapse; and (c) patients in long-term remission without treatment (N = 27). A single molecule array assay was used to measure sNfL. Age-matched healthy controls (N = 30) and age-specific reference values were used for comparison. At baseline, sNfL was higher in patients starting IT compared to healthy controls. Ten out of 29 IT (34%) patients have sNfL levels above the 95th percentile of age-specific cut-off values. In the MT and remission cohort, elevated sNfL levels were infrequent and not different from healthy controls. sNfL levels were correlated with electrophysiological markers of axonal damage. At follow-up assessment, patients with active disease (non-responders and patients who relapsed after IVIg withdrawal) had higher sNfL levels compared with patients with stable disease (responders and patients who were successfully withdrawn from IVIg treatment). sNfL levels were increased in a third of CIDP patients starting IT and reflected axonal damage. sNfL levels might be usable as biomarker of disease activity in a subset of CIDP patients.
Collapse
Affiliation(s)
- Gwen G A van Lieverloo
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Camiel Verhamme
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Alexander F J Vrancken
- Brain Centre Rudolf Magnus, Department of Neurology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Pieter A van Doorn
- Department of Neurology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Zuzanna Michalak
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Barro
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ivo N van Schaik
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Filip Eftimov
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Moritz CP, Tholance Y, Rosier C, Reynaud-Federspiel E, Svahn J, Camdessanché JP, Antoine JC. Completing the Immunological Fingerprint by Refractory Proteins: Autoantibody Screening via an Improved Immunoblotting Technique. Proteomics Clin Appl 2019; 13:e1800157. [PMID: 30768763 DOI: 10.1002/prca.201800157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/30/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Identifying autoantigens of serological autoantibodies requires expensive methods, such as protein microarrays or IP+MS. Thus, sera are commonly pre-screened for interesting immunopatterns via immunocytochemistry/immunohistochemistry. However, distinguishing immunopatterns can be difficult and intracellular antigens are less accessible. Therefore, a simple and cheap immunoblot screening able to distinguish immunopatterns and to detect refractory proteins is presented. EXPERIMENTAL DESIGN Five steps of immunoblotting-based autoantigen screening are revised: (1) choice of protein source, (2) protein extraction, (3) protein separation, (4) protein transfer, (5) antigen detection. Thereafter, 52 patients' sera with chronic inflammatory demyelinating polyneuropathy (CIDP) and 45 controls were screened. RESULTS The protein source impacts the detected antigen set. Steps 2-4 can be adapted for refractory proteins. Furthermore, longitudinal cutting of protein lanes saves ≥75% of time and material and allows for exact comparison of band patterns. As the latter are individually specific and temporarily constant, we call them "immunological fingerprints". In a proof-of-principle, a 155 kDa immunoband was detected with two anti-neurofascin-155-positive CIDP sera and two further immunobands (120/220 kDa) specific to a subgroup of 3-6 of 52 CIDP patients. CONCLUSIONS AND CLINICAL RELEVANCE Adapted immunoblotting is a cheap and simple method for accurate serum screening including refractory and intracellular antigens.
Collapse
Affiliation(s)
- Christian P Moritz
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France
| | - Yannick Tholance
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Biochemistry Laboratory, Centre Hospitalier Universitaire de Saint-Étienne, 42055, Saint-Étienne, France
| | - Carole Rosier
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Neurology Department, Centre Hospitalier Universitaire de Saint-Étienne, 42055, Saint-Étienne, France
| | - Evelyne Reynaud-Federspiel
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France
| | - Juliette Svahn
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France
| | - Jean-Philippe Camdessanché
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Neurology Department, Centre Hospitalier Universitaire de Saint-Étienne, 42055, Saint-Étienne, France
| | - Jean-Christophe Antoine
- Synaptopathies and Autoantibodies, Faculty of Medicine Jacques Lisfranc, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University Jean Monnet, University of Lyon, 42270, Saint-Priest en Jarez, France.,Neurology Department, Centre Hospitalier Universitaire de Saint-Étienne, 42055, Saint-Étienne, France
| |
Collapse
|
6
|
Rosier C, Graveline N, Lacour A, Antoine JC, Camdessanché JP. Intravenous immunoglobulin for treatment of chronic inflammatory demyelinating polyneuropathy and multifocal motor neuropathy in France: are daily practices in accordance with guidelines? Eur J Neurol 2018; 26:575-580. [PMID: 30326184 DOI: 10.1111/ene.13841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/12/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Chronic inflammatory demyelinating polyneuropathy (CIDP) and multifocal motor neuropathy (MMN) are rare autoimmune diseases. Guidelines were published in 2010 for their diagnosis and treatment. In France, intravenous immunoglobulins (IVIGs) are mainly used for the first-line treatment. The burden of healthcare costs is often underlined but rarely studied. The aim of this survey was to compare to guidelines, the daily practice of French neurologists with IVIGs for CIDP and MMN treatment. METHODS This was a retrospective observational study consisting of an online questionnaire performed between March and May 2014. A total of 49 questionnaires were included, a quarter of which were from neurologists working in neuromuscular reference centers (NRCs). RESULTS A total of 182 patient case reports were studied. Patients were referred to an NRC for initial diagnosis in approximately 30% of cases in CIDP and 50% of cases in MMN. The initial management of IVIG (frequency, dose and duration) was not different between NRCs and non-NRCs. Guidelines were followed and neurologists were relatively at ease in diagnosing and treating patients. CONCLUSIONS This was the first national study to describe the implementation of the European Federation of Neurological Sciences/Peripheral Nerve Society guidelines in the daily management of IVIGs in patients with MMN and CIDP in France. Efforts are needed to improve long-term tailored treatment and home treatment to reduce economic costs.
Collapse
Affiliation(s)
- C Rosier
- Department of Neurology, University Hospital of Saint-Etienne, Saint-Etienne
| | - N Graveline
- Laboratoire Français du Fractionnement et des Biotechnologies Biomédicaments, Courtaboeuf
| | - A Lacour
- Department of Neurology, University Hospital of Saint-Etienne, Saint-Etienne.,Centre Référent Maladies Neuromusculaires Rares Provence Alpes Côte d'Azur Rhône-Alpes Réunion, Saint-Etienne, France
| | - J-C Antoine
- Department of Neurology, University Hospital of Saint-Etienne, Saint-Etienne.,Centre Référent Maladies Neuromusculaires Rares Provence Alpes Côte d'Azur Rhône-Alpes Réunion, Saint-Etienne, France
| | - J-P Camdessanché
- Department of Neurology, University Hospital of Saint-Etienne, Saint-Etienne.,Centre Référent Maladies Neuromusculaires Rares Provence Alpes Côte d'Azur Rhône-Alpes Réunion, Saint-Etienne, France
| |
Collapse
|
7
|
Immunohistochemistry and electrophysiological findings in swine abattoir workers with immune-mediated polyradiculoneuropathy. J Neurol Sci 2017; 385:34-38. [PMID: 29406910 DOI: 10.1016/j.jns.2017.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/23/2022]
Abstract
IMPORTANCE Workers exposed to aerosolized brain in a swine-processing plant developed immune-mediated polyradiculoneuropathy (IP) possibly triggered by an immune response. OBJECTIVE Immunohistochemistry results were correlated with electrophysiological variables to examine the immunopathogenesis of this disorder. DESIGN/SETTING Laboratory studies used normal nerve tissue that was exposed to sera from 12 IP patients; 10 exposed controls; and 10 unexposed controls. Clinical and electrophysiological data from IP patients were obtained from medical record reviews. MAIN OUTCOME MEASURES Analysis included electromyography results of IP patients and nerve conduction studies examining CMAP amplitude, distal motor latency, motor conduction velocity, F-wave latency, sensory nerve action potential amplitude, and sensory nerve conduction velocity. Case and control results were compared relative to distance from exposure. RESULTS Electrodiagnostic findings revealed prolongation of the distal and f-wave latencies suggestive of demyelination at the level of the nerve root and distal nerve terminals. Immunohistochemical results identified an antibody to the peripheral nerve, with staining at the level of the axolemma. Thus, IP may be a primary axonopathy with secondary paranodal demyelination causing the conduction changes. Staining of the distal and proximal portions of the nerve appears consistent with easier access through the blood-nerve barrier. CONCLUSIONS AND RELEVANCE IP is an immune-mediated neuropathy related to antibodies to an axon-based antigen on peripheral nerves. Secondary paranodal demyelination is likely. Further studies to identify the primary axonal antigenic target would be useful.
Collapse
|
8
|
|
9
|
Singh G. Serum Free Light Chain Assay and κ/λ Ratio: Performance in Patients With Monoclonal Gammopathy-High False Negative Rate for κ/λ Ratio. J Clin Med Res 2016; 9:46-57. [PMID: 27924175 PMCID: PMC5127215 DOI: 10.14740/jocmr2802w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 12/24/2022] Open
Abstract
Background Serum free light chain assay (SFLCA) and κ/λ ratio, and protein electrophoretic methods are used in the diagnosis and monitoring of monoclonal gammopathies. Methods Results for serum free light chains, serum and urine protein electrophoreses and immunofixation electrophoreses in 468 patients with a diagnosis of monoclonal gammopathy were compared. The results of the two methods were graded as concordant, non-concordant or discordant with the established diagnoses to assess the relative performance of the methods. Results of κ/λ ratio in samples with monoclonal protein detectable by electrophoretic methods were also analyzed. Results Protein electrophoreses results were concordant with the established diagnoses significantly more often than κ/λ ratio. The false negative rate for κ/λ ratio was higher than that for electrophoretic methods. κ/λ ratio was falsely negative in about 27% of the 1,860 samples with detectable monoclonal immunoglobulin. The false negative rate was higher in lesions with lambda chains (32%) than those with kappa chains (24%). The false negative rate for κ/λ ratio was over 55% in samples with monoclonal gammopathy of undetermined significance. Even at first encounter, the false negative rates for κ/λ ratios for monoclonal gammopathy of undetermined significance, smoldering myeloma and multiple myeloma were 66.98%, 23.08%, and 30.15%, respectively, with false negative rate for lambda chain lesions being higher. Conclusions Electrophoretic studies of serum and urine are superior to SFLCA and κ/λ ratio. Abnormal κ/λ ratio, per se, is not diagnostic of monoclonal gammopathy. A normal κ/λ ratio does not exclude monoclonal gammopathy. False negative rates for lesions with lambda chain are higher than those for lesions with kappa chains. Electrophoretic studies of urine are underutilized. Clinical usefulness and medical necessity of SFLCA and κ/λ ratio is of questionable value in routine clinical testing.
Collapse
Affiliation(s)
- Gurmukh Singh
- Department of Pathology, Division of Clinical Pathology, Medical College of Georgia at Augusta University, 1120 15th Street, BI 2008A, Augusta, GA 30912, USA.
| |
Collapse
|