1
|
Sharma P, Giri A, Tripathi PN. Emerging Trends: Neurofilament Biomarkers in Precision Neurology. Neurochem Res 2024; 49:3208-3225. [PMID: 39347854 DOI: 10.1007/s11064-024-04244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Neurofilaments are structural proteins found in the cytoplasm of neurons, particularly in axons, providing structural support and stability to the axon. They consist of multiple subunits, including NF-H, NF-M, and NF-L, which form long filaments along the axon's length. Neurofilaments are crucial for maintaining the shape and integrity of neurons, promoting axonal transport, and regulating neuronal function. They are part of the intermediate filament (IF) family, which has approximately 70 tissue-specific genes. This diversity allows for a customizable cytoplasmic meshwork, adapting to the unique structural demands of different tissues and cell types. Neurofilament proteins show increased levels in both cerebrospinal fluid (CSF) and blood after neuroaxonal damage, indicating injury regardless of the underlying etiology. Precise measurement and long-term monitoring of damage are necessary for determining prognosis, assessing disease activity, tracking therapeutic responses, and creating treatments. These investigations contribute to our understanding of the importance of proper NF composition in fundamental neuronal processes and have implications for neurological disorders associated with NF abnormalities along with its alteration in different animal and human models. Here in this review, we have highlighted various neurological disorders such as Alzheimer's, Parkinson's, Huntington's, Dementia, and paved the way to use neurofilament as a marker in managing neurological disorders.
Collapse
Affiliation(s)
- Priti Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Aditi Giri
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
2
|
Katsarou MS, Siatouni A, Tsikrika D, Kokkiou E, Stefanatou M, Verentzioti A, Alexoudi A, Gatzonis S, Drakoulis N, Papasavva M. Association of SCN1A Polymorphisms rs3812718 and rs2298771 with Epilepsy. Genes (Basel) 2024; 15:1224. [PMID: 39336815 PMCID: PMC11431656 DOI: 10.3390/genes15091224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Epilepsy is a brain disease with both environmental and genetic inputs. Ion channel dysfunction seems to be of great significance for abnormal neuronal behavior during epileptic seizures. Within neurons, the voltage-gated sodium channels are crucial proteins contributing to the initiation and propagation of action potentials. The voltage-gated sodium channel α subunit 1 (SCN1A) gene encodes for the α subunit of a voltage-gated ion channel. The aim of the study was to investigate the relation of two common SCN1A variants, i.e., rs3812718 and rs2298771, with distinct epileptic phenotypes in a South-Eastern European population. Methods: DNA was extracted from 214 unrelated participants with focal onset, focal to bilateral tonic-clonic, or generalized onset epileptic seizures and genotyped using real-time PCR (LightSNiP assays) followed by melting curve analysis. Statistical analysis of the results was performed using IBM SPSS Statistics software (version 29.0 for Windows). Results: Genotype frequency distribution analysis indicated an association for the A-allele-containing genotypes of both rs3812718 and rs2298771 polymorphisms of SCN1A with generalized onset seizures and focal to bilateral tonic-clonic seizures versus focal onset seizures. Conclusions: Consequently, the study provides evidence that supports a potential association of the investigated SCN1A polymorphisms with distinct seizure subtype susceptibility in South-Eastern Europeans.
Collapse
Affiliation(s)
- Martha-Spyridoula Katsarou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece (N.D.)
| | - Anna Siatouni
- Epilepsy Unit, First Department of Neurosurgery, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens, 15771 Athens, Greece (S.G.)
| | - Danae Tsikrika
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece (N.D.)
| | - Elena Kokkiou
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece (N.D.)
| | - Maria Stefanatou
- Epilepsy Unit, First Department of Neurosurgery, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens, 15771 Athens, Greece (S.G.)
| | - Anastasia Verentzioti
- Epilepsy Unit, First Department of Neurosurgery, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens, 15771 Athens, Greece (S.G.)
| | - Athanasia Alexoudi
- Epilepsy Unit, First Department of Neurosurgery, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens, 15771 Athens, Greece (S.G.)
| | - Stylianos Gatzonis
- Epilepsy Unit, First Department of Neurosurgery, Evangelismos Hospital, School of Medicine, National and Kapodistrian University of Athens, 15771 Athens, Greece (S.G.)
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece (N.D.)
| | - Maria Papasavva
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece (N.D.)
- Department of Pharmacy, School of Health Sciences, Frederick University, 1036 Nicosia, Cyprus
| |
Collapse
|
3
|
Doss DJ, Shless JS, Bick SK, Makhoul GS, Negi AS, Bibro CE, Rashingkar R, Gummadavelli A, Chang C, Gallagher MJ, Naftel RP, Reddy SB, Williams Roberson S, Morgan VL, Johnson GW, Englot DJ. The interictal suppression hypothesis is the dominant differentiator of seizure onset zones in focal epilepsy. Brain 2024; 147:3009-3017. [PMID: 38874456 PMCID: PMC11370787 DOI: 10.1093/brain/awae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Successful surgical treatment of drug-resistant epilepsy traditionally relies on the identification of seizure onset zones (SOZs). Connectome-based analyses of electrographic data from stereo electroencephalography (SEEG) may empower improved detection of SOZs. Specifically, connectome-based analyses based on the interictal suppression hypothesis posit that when the patient is not having a seizure, SOZs are inhibited by non-SOZs through high inward connectivity and low outward connectivity. However, it is not clear whether there are other motifs that can better identify potential SOZs. Thus, we sought to use unsupervised machine learning to identify network motifs that elucidate SOZs and investigate if there is another motif that outperforms the ISH. Resting-state SEEG data from 81 patients with drug-resistant epilepsy undergoing a pre-surgical evaluation at Vanderbilt University Medical Center were collected. Directed connectivity matrices were computed using the alpha band (8-13 Hz). Principal component analysis (PCA) was performed on each patient's connectivity matrix. Each patient's components were analysed qualitatively to identify common patterns across patients. A quantitative definition was then used to identify the component that most closely matched the observed pattern in each patient. A motif characteristic of the interictal suppression hypothesis (high-inward and low-outward connectivity) was present in all individuals and found to be the most robust motif for identification of SOZs in 64/81 (79%) patients. This principal component demonstrated significant differences in SOZs compared to non-SOZs. While other motifs for identifying SOZs were present in other patients, they differed for each patient, suggesting that seizure networks are patient specific, but the ISH is present in nearly all networks. We discovered that a potentially suppressive motif based on the interictal suppression hypothesis was present in all patients, and it was the most robust motif for SOZs in 79% of patients. Each patient had additional motifs that further characterized SOZs, but these motifs were not common across all patients. This work has the potential to augment clinical identification of SOZs to improve epilepsy treatment.
Collapse
Affiliation(s)
- Derek J Doss
- Department of Biomedical Engineering, Vanderbilt University Nashville, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University Nashville, Nashville, TN 37235, USA
| | - Jared S Shless
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Sarah K Bick
- Department of Biomedical Engineering, Vanderbilt University Nashville, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Ghassan S Makhoul
- Department of Biomedical Engineering, Vanderbilt University Nashville, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University Nashville, Nashville, TN 37235, USA
| | - Aarushi S Negi
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Camden E Bibro
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Rohan Rashingkar
- Department of Computer Science, Vanderbilt University Nashville, Nashville, TN 37235, USA
| | - Abhijeet Gummadavelli
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University Nashville, Nashville, TN 37235, USA
- Department of Computer Science, Vanderbilt University Nashville, Nashville, TN 37235, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Martin J Gallagher
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Robert P Naftel
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Shilpa B Reddy
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Shawniqua Williams Roberson
- Department of Biomedical Engineering, Vanderbilt University Nashville, Nashville, TN 37235, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University Nashville, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University Nashville, Nashville, TN 37235, USA
- Department of Computer Science, Vanderbilt University Nashville, Nashville, TN 37235, USA
- Department of Radiology and Biomedical Imaging, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University Nashville, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University Nashville, Nashville, TN 37235, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University Nashville, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University Nashville, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Department of Computer Science, Vanderbilt University Nashville, Nashville, TN 37235, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Department of Radiology and Biomedical Imaging, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| |
Collapse
|
4
|
Lieberman S, Rivera DA, Morton R, Hingorani A, Southard TL, Johnson L, Reukauf J, Radwanski RE, Zhao M, Nishimura N, Bracko O, Schwartz TH, Schaffer CB. Circumscribing Laser Cuts Attenuate Seizure Propagation in a Mouse Model of Focal Epilepsy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300747. [PMID: 38810146 PMCID: PMC11304327 DOI: 10.1002/advs.202300747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2024] [Indexed: 05/31/2024]
Abstract
In partial onset epilepsy, seizures arise focally in the brain and often propagate. Patients frequently become refractory to medical management, leaving neurosurgery, which can cause neurologic deficits, as a primary treatment. In the cortex, focal seizures spread through horizontal connections in layers II/III, suggesting that severing these connections can block seizures while preserving function. Focal neocortical epilepsy is induced in mice, sub-surface cuts are created surrounding the seizure focus using tightly-focused femtosecond laser pulses, and electrophysiological recordings are acquired at multiple locations for 3-12 months. Cuts reduced seizure frequency in most animals by 87%, and only 5% of remaining seizures propagated to the distant electrodes, compared to 80% in control animals. These cuts produced a modest decrease in cortical blood flow that recovered and left a ≈20-µm wide scar with minimal collateral damage. When placed over the motor cortex, cuts do not cause notable deficits in a skilled reaching task, suggesting they hold promise as a novel neurosurgical approach for intractable focal cortical epilepsy.
Collapse
Affiliation(s)
- Seth Lieberman
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
- College of Veterinary MedicineCornell UniversityIthacaNY14853USA
| | - Daniel A. Rivera
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Ryan Morton
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Amrit Hingorani
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | | | - Lynn Johnson
- Statistical Consulting UnitCornell UniversityIthacaNY14853USA
| | - Jennifer Reukauf
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
- College of Veterinary MedicineCornell UniversityIthacaNY14853USA
| | - Ryan E. Radwanski
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Mingrui Zhao
- Department of Neurological SurgeryWeill Cornell Medicine of Cornell UniversityNew YorkNY10065USA
- Brain and Mind Research InstituteWeill Cornell Medicine of Cornell UniversityNew YorkNY10021USA
| | - Nozomi Nishimura
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| | - Oliver Bracko
- Department of BiologyThe University of MiamiCoral GablesFL33134USA
| | - Theodore H. Schwartz
- Department of Neurological SurgeryWeill Cornell Medicine of Cornell UniversityNew YorkNY10065USA
- Brain and Mind Research InstituteWeill Cornell Medicine of Cornell UniversityNew YorkNY10021USA
| | - Chris B. Schaffer
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNY14853USA
| |
Collapse
|
5
|
Najafi P, Reimer C, Gilthorpe JD, Jacobsen KR, Ramløse M, Paul NF, Simianer H, Tetens J, Falker-Gieske C. Genomic evidence for the suitability of Göttingen Minipigs with a rare seizure phenotype as a model for human epilepsy. Neurogenetics 2024; 25:103-117. [PMID: 38383918 PMCID: PMC11076379 DOI: 10.1007/s10048-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Epilepsy is a complex genetic disorder that affects about 2% of the global population. Although the frequency and severity of epileptic seizures can be reduced by a range of pharmacological interventions, there are no disease-modifying treatments for epilepsy. The development of new and more effective drugs is hindered by a lack of suitable animal models. Available rodent models may not recapitulate all key aspects of the disease. Spontaneous epileptic convulsions were observed in few Göttingen Minipigs (GMPs), which may provide a valuable alternative animal model for the characterisation of epilepsy-type diseases and for testing new treatments. We have characterised affected GMPs at the genome level and have taken advantage of primary fibroblast cultures to validate the functional impact of fixed genetic variants on the transcriptome level. We found numerous genes connected to calcium metabolism that have not been associated with epilepsy before, such as ADORA2B, CAMK1D, ITPKB, MCOLN2, MYLK, NFATC3, PDGFD, and PHKB. Our results have identified two transcription factor genes, EGR3 and HOXB6, as potential key regulators of CACNA1H, which was previously linked to epilepsy-type disorders in humans. Our findings provide the first set of conclusive results to support the use of affected subsets of GMPs as an alternative and more reliable model system to study human epilepsy. Further neurological and pharmacological validation of the suitability of GMPs as an epilepsy model is therefore warranted.
Collapse
Affiliation(s)
- Pardis Najafi
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Christian Reimer
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Höltystr. 10, 31535, Neustadt, Germany
| | - Jonathan D Gilthorpe
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
| | - Kirsten R Jacobsen
- Ellegaard Göttingen Minipigs A/S, Sorø Landevej 302, 4261, Dalmose, Denmark
| | - Maja Ramløse
- Ellegaard Göttingen Minipigs A/S, Sorø Landevej 302, 4261, Dalmose, Denmark
| | - Nora-Fabienne Paul
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Henner Simianer
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.
| |
Collapse
|
6
|
Vacca M, Fernandes M, Veronese L, Ballesio A, Cerminara C, Galasso C, Mazzone L, Lombardo C, Mercuri NB, Liguori C. Clinical, Sociodemographic, and Psychological Factors Associated with Transition Readiness in Patients with Epilepsy. Brain Sci 2023; 14:21. [PMID: 38248236 PMCID: PMC10813513 DOI: 10.3390/brainsci14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The transition to adult care for patients with epilepsy is a complicated clinical issue associated with adverse outcomes, including non-adherence to treatment, dropout of medical care, and worse prognosis. Moreover, youngsters with epilepsy are notably prone to emotional, psychological, and social difficulties during the transition to adulthood. Transition needs depend on the type of epilepsy and the epileptic syndrome, as well as on the presence of co-morbidities. Having a structured transition program in place is essential to reduce poor health consequences. A key strategy to optimize outcomes involves the use of transition readiness and associated factors assessment to implement the recognition of vulnerability and protective aspects, knowledge, and skills of these patients and their parents. Therefore, this study aims to provide a comprehensive framework of clinical and psychosocial aspects associated with the transition from pediatric to adult medical care of patients with epilepsy. METHODS Measures examining different aspects of transition readiness and associated clinical, socio-demographic, psychological, and emotional factors were administered to 13 patients with epilepsy (Mage = 22.92, SD = 6.56) with (n = 6) or without (n = 7) rare diseases, and a respective parent (Mage = 56.63, SD = 7.36). RESULTS patients showed fewer problems in tracking health issues, appointment keeping, and pharmacological adherence as well as low mood symptoms and moderate resiliency. Moreover, they referred to a low quality of sleep. Notably, parents of patients with rare diseases reported a lower quality of sleep as compared to the other group of parents. CONCLUSIONS Increasing awareness around transition readiness is essential to promote self-management skills of patients with epilepsy and their parents. Anticipating the period of transition could be beneficial, especially to prevent problematic sleep patterns and promote independence in health care management. Parents of patients with epilepsy and rare diseases should be monitored for their mental status which can affect patients' well-being.
Collapse
Affiliation(s)
- Mariacarolina Vacca
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.V.); (A.B.); (C.L.)
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy; (M.F.); (L.V.); (C.G.); (L.M.); (N.B.M.)
| | - Lorenzo Veronese
- Department of Systems Medicine, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy; (M.F.); (L.V.); (C.G.); (L.M.); (N.B.M.)
| | - Andrea Ballesio
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.V.); (A.B.); (C.L.)
| | - Caterina Cerminara
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Hospital, Viale Oxford 81, 00133 Rome, Italy;
| | - Cinzia Galasso
- Department of Systems Medicine, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy; (M.F.); (L.V.); (C.G.); (L.M.); (N.B.M.)
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Hospital, Viale Oxford 81, 00133 Rome, Italy;
| | - Luigi Mazzone
- Department of Systems Medicine, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy; (M.F.); (L.V.); (C.G.); (L.M.); (N.B.M.)
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Hospital, Viale Oxford 81, 00133 Rome, Italy;
| | - Caterina Lombardo
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.V.); (A.B.); (C.L.)
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy; (M.F.); (L.V.); (C.G.); (L.M.); (N.B.M.)
- Epilepsy Center, Neurology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy; (M.F.); (L.V.); (C.G.); (L.M.); (N.B.M.)
- Epilepsy Center, Neurology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
7
|
Hüsser AM, Vannasing P, Tremblay J, Osterman B, Lortie A, Diadori P, Major P, Rossignol E, Roger K, Fourdain S, Provost S, Maalouf Y, Nguyen DK, Gallagher A. Brain language networks and cognitive outcomes in children with frontotemporal lobe epilepsy. Front Hum Neurosci 2023; 17:1253529. [PMID: 37964801 PMCID: PMC10641510 DOI: 10.3389/fnhum.2023.1253529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Pediatric frontal and temporal lobe epilepsies (FLE, TLE) have been associated with language impairments and structural and functional brain alterations. However, there is no clear consensus regarding the specific patterns of cerebral reorganization of language networks in these patients. The current study aims at characterizing the cerebral language networks in children with FLE or TLE, and the association between brain network characteristics and cognitive abilities. Methods Twenty (20) children with FLE or TLE aged between 6 and 18 years and 29 age- and sex-matched healthy controls underwent a neuropsychological evaluation and a simultaneous functional near-infrared spectroscopy and electroencephalography (fNIRS-EEG) recording at rest and during a receptive language task. EEG was used to identify potential subclinical seizures in patients. We removed these time intervals from the fNIRS signal to investigate language brain networks and not epileptogenic networks. Functional connectivity matrices on fNIRS oxy-hemoglobin concentration changes were computed using cross-correlations between all channels. Results and discussion Group comparisons of residual matrices (=individual task-based matrix minus individual resting-state matrix) revealed significantly reduced connectivity within the left and between hemispheres, increased connectivity within the right hemisphere and higher right hemispheric local efficiency for the epilepsy group compared to the control group. The epilepsy group had significantly lower cognitive performance in all domains compared to their healthy peers. Epilepsy patients' local network efficiency in the left hemisphere was negatively associated with the estimated IQ (p = 0.014), suggesting that brain reorganization in response to FLE and TLE does not allow for an optimal cognitive development.
Collapse
Affiliation(s)
- Alejandra M. Hüsser
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Phetsamone Vannasing
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
| | - Julie Tremblay
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
| | - Bradley Osterman
- Division of Neurology, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Division of Pediatric Neurology, Montreal Children’s Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Anne Lortie
- Division of Neurology, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Paola Diadori
- Division of Neurology, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Philippe Major
- Division of Neurology, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Elsa Rossignol
- Division of Neurology, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Kassandra Roger
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Solène Fourdain
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Sarah Provost
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Yara Maalouf
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Dang Khoa Nguyen
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- CHUM Research Center, Université de Montréal, Montreal, QC, Canada
| | - Anne Gallagher
- Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, Sainte-Justine Mother and Child University Hospital Center, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
8
|
Shirani S, Valentin A, Abdi-Sargezeh B, Alarcon G, Sanei S. Localization of Epileptic Brain Responses to Single-Pulse Electrical Stimulation by Developing an Adaptive Iterative Linearly Constrained Minimum Variance Beamformer. Int J Neural Syst 2023; 33:2350050. [PMID: 37567860 DOI: 10.1142/s0129065723500508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Delayed responses (DRs) to single pulse electrical stimulation (SPES) in patients with severe refractory epilepsy, from their intracranial recordings, can help to identify regions associated with epileptogenicity. Automatic DR localization is a large step in speeding up the identification of epileptogenic focus. Here, for the first time, an adaptive iterative linearly constrained minimum variance beamformer (AI-LCMV) is developed and employed to localize the DR sources from intracranial electroencephalogram (EEG) recorded using subdural electrodes. The prime objective here is to accurately localize the regions for the corresponding DRs using an adaptive localization method that exploits the morphology of DRs as the desired sources. The traditional closed-form linearly constrained minimum variance (CF-LCMV) solution is meant for tracking the sources with dominating power. Here, by incorporating the morphology of DRs, as a constraint, to an iterative linearly constrained minimum variance (LCMV) solution, the array of subdural electrodes is used to localize the low-power DRs, some not even visible in any of the electrode signals. The results from the cases included in this study also indicate more distinctive locations compared to those achievable by conventional beamformers. Most importantly, the proposed AI-LCMV is able to localize the DRs invisible over other electrodes.
Collapse
Affiliation(s)
- Sepehr Shirani
- Department of Computer Science, School of Science and Technology, Nottingham Trent University, UK
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | | | - Gonzalo Alarcon
- Department of Clinical Neurophysiology, Royal Manchester Children's Hospital, University of Manchester, UK
| | - Saeid Sanei
- Department of Computer Science, School of Science and Technology, Nottingham Trent University, UK
| |
Collapse
|
9
|
Tatum WO, Glauser T, Peters JM, Verma A, Weatherspoon S, Benbadis S, Becker DA, Puri V, Smith M, Misra SN, Rabinowicz AL, Carrazana E. Acute seizure therapies in people with epilepsy: Fact or fiction? A U.S. Perspective. Epilepsy Behav Rep 2023; 23:100612. [PMID: 37520180 PMCID: PMC10372156 DOI: 10.1016/j.ebr.2023.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Patients with epilepsy (PWE) may experience seizure emergencies including acute repetitive seizures despite chronic treatment with daily antiseizure medications. Seizures may adversely impact routine daily activities and/or healthcare utilization and may impair the quality of life of patients with epilepsy and their caregivers. Seizures often occur at home, school, or work in a community setting. Appropriate treatment that is readily accessible for patients with seizure urgencies and emergencies is essential outside the hospital setting. When determining the best acute antiseizure therapy for PWE, clinicians need to consider all of the available rescue medications and their routes of administration including the safety and efficacy profiles. Benzodiazepines are a standard of care as a rescue therapy, yet there are several misconceptions about their use and safety. Reevaluating potential misconceptions and formulating best practices are necessary to maximize usage for each available option of acute therapy. We examine common beliefs associated with traditional use of acute seizure therapies to refute or support them based on the current level of evidence in the published literature.
Collapse
Affiliation(s)
- William O. Tatum
- Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224-1865, USA
| | - Tracy Glauser
- Comprehensive Epilepsy Center, Cincinnati Children’s Hospital, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jurriaan M. Peters
- Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Amit Verma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, 6560 Fannin St., Ste 802, Houston, TX 77030, USA
| | - Sarah Weatherspoon
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, 848 Adams Ave., Memphis, TN 38103, USA
| | - Selim Benbadis
- Comprehensive Epilepsy Program, University of South Florida & Tampa General Hospital, 2 Tampa General Cir., Tampa, FL 33606, USA
| | - Danielle A. Becker
- Department of Neurology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Vinay Puri
- Norton Children’s Neuroscience Institute, affiliated with University of Louisville, 411 E. Chestnut St., Suite 645, Louisville, KY 40202, USA
| | - Michael Smith
- Department of Neurology, Rush University, 1725 W. Harrison St., Ste 885, Chicago, IL 60612, USA
| | - Sunita N. Misra
- Neurelis Inc., 3430 Carmel Mountain Rd., Ste 300, San Diego, CA 92121, USA
| | | | - Enrique Carrazana
- Neurelis Inc., 3430 Carmel Mountain Rd., Ste 300, San Diego, CA 92121, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| |
Collapse
|
10
|
Johnson GW, Doss DJ, Morgan VL, Paulo DL, Cai LY, Shless JS, Negi AS, Gummadavelli A, Kang H, Reddy SB, Naftel RP, Bick SK, Williams Roberson S, Dawant BM, Wallace MT, Englot DJ. The Interictal Suppression Hypothesis in focal epilepsy: network-level supporting evidence. Brain 2023; 146:2828-2845. [PMID: 36722219 PMCID: PMC10316780 DOI: 10.1093/brain/awad016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 02/02/2023] Open
Abstract
Why are people with focal epilepsy not continuously having seizures? Previous neuronal signalling work has implicated gamma-aminobutyric acid balance as integral to seizure generation and termination, but is a high-level distributed brain network involved in suppressing seizures? Recent intracranial electrographic evidence has suggested that seizure-onset zones have increased inward connectivity that could be associated with interictal suppression of seizure activity. Accordingly, we hypothesize that seizure-onset zones are actively suppressed by the rest of the brain network during interictal states. Full testing of this hypothesis would require collaboration across multiple domains of neuroscience. We focused on partially testing this hypothesis at the electrographic network level within 81 individuals with drug-resistant focal epilepsy undergoing presurgical evaluation. We used intracranial electrographic resting-state and neurostimulation recordings to evaluate the network connectivity of seizure onset, early propagation and non-involved zones. We then used diffusion imaging to acquire estimates of white-matter connectivity to evaluate structure-function coupling effects on connectivity findings. Finally, we generated a resting-state classification model to assist clinicians in detecting seizure-onset and propagation zones without the need for multiple ictal recordings. Our findings indicate that seizure onset and early propagation zones demonstrate markedly increased inwards connectivity and decreased outwards connectivity using both resting-state (one-way ANOVA, P-value = 3.13 × 10-13) and neurostimulation analyses to evaluate evoked responses (one-way ANOVA, P-value = 2.5 × 10-3). When controlling for the distance between regions, the difference between inwards and outwards connectivity remained stable up to 80 mm between brain connections (two-way repeated measures ANOVA, group effect P-value of 2.6 × 10-12). Structure-function coupling analyses revealed that seizure-onset zones exhibit abnormally enhanced coupling (hypercoupling) of surrounding regions compared to presumably healthy tissue (two-way repeated measures ANOVA, interaction effect P-value of 9.76 × 10-21). Using these observations, our support vector classification models achieved a maximum held-out testing set accuracy of 92.0 ± 2.2% to classify early propagation and seizure-onset zones. These results suggest that seizure-onset zones are actively segregated and suppressed by a widespread brain network. Furthermore, this electrographically observed functional suppression is disproportionate to any observed structural connectivity alterations of the seizure-onset zones. These findings have implications for the identification of seizure-onset zones using only brief electrographic recordings to reduce patient morbidity and augment the presurgical evaluation of drug-resistant epilepsy. Further testing of the interictal suppression hypothesis can provide insight into potential new resective, ablative and neuromodulation approaches to improve surgical success rates in those suffering from drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Derek J Doss
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Danika L Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Jared S Shless
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aarushi S Negi
- Department of Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Abhijeet Gummadavelli
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37232, USA
| | - Shilpa B Reddy
- Department of Pediatrics, Vanderbilt Children’s Hospital, Nashville, TN 37232, USA
| | - Robert P Naftel
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah K Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Benoit M Dawant
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
11
|
Johnson GW, Cai LY, Doss DJ, Jiang JW, Negi AS, Narasimhan S, Paulo DL, González HFJ, Roberson SW, Bick SK, Chang CE, Morgan VL, Wallace MT, Englot DJ. Localizing seizure onset zones in surgical epilepsy with neurostimulation deep learning. J Neurosurg 2023; 138:1002-1007. [PMID: 36152321 PMCID: PMC10619627 DOI: 10.3171/2022.8.jns221321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE In drug-resistant temporal lobe epilepsy, automated tools for seizure onset zone (SOZ) localization that use brief interictal recordings could supplement presurgical evaluations and improve care. Thus, the authors sought to localize SOZs by training a multichannel convolutional neural network on stereoelectroencephalography (SEEG) cortico-cortical evoked potentials. METHODS The authors performed single-pulse electrical stimulation in 10 drug-resistant temporal lobe epilepsy patients implanted with SEEG. Using 500,000 unique poststimulation SEEG epochs, the authors trained a multichannel 1-dimensional convolutional neural network to determine whether an SOZ had been stimulated. RESULTS SOZs were classified with mean sensitivity of 78.1% and specificity of 74.6% according to leave-one-patient-out testing. To achieve maximum accuracy, the model required a 0- to 350-msec poststimulation time period. Post hoc analysis revealed that the model accurately classified unilateral versus bilateral mesial temporal lobe seizure onset, as well as neocortical SOZs. CONCLUSIONS This was the first demonstration, to the authors' knowledge, that a deep learning framework can be used to accurately classify SOZs with single-pulse electrical stimulation-evoked responses. These findings suggest that accurate classification of SOZs relies on a complex temporal evolution of evoked responses within 350 msec of stimulation. Validation in a larger data set could provide a practical clinical tool for the presurgical evaluation of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Graham W. Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville
| | - Leon Y. Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville
| | - Derek J. Doss
- Department of Biomedical Engineering, Vanderbilt University, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville
| | - Jasmine W. Jiang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Aarushi S. Negi
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Saramati Narasimhan
- Department of Biomedical Engineering, Vanderbilt University, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Danika L. Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hernán F. J. González
- Department of Biomedical Engineering, Vanderbilt University, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville
| | - Shawniqua Williams Roberson
- Department of Biomedical Engineering, Vanderbilt University, Nashville
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah K. Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Catie E. Chang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville
| | - Victoria L. Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark T. Wallace
- Department of Hearing & Speech Sciences, Vanderbilt University, Nashville
- Department of Psychology, Vanderbilt University, Nashville
- Departments of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville
- Department of Pharmacology, Vanderbilt University, Nashville
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
12
|
Cudna A, Bronisz E, Jopowicz A, Kurkowska-Jastrzębska I. Changes in serum blood-brain barrier markers after bilateral tonic-clonic seizures. Seizure 2023; 106:129-137. [PMID: 36841062 DOI: 10.1016/j.seizure.2023.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Seizures have been shown to increase blood-brain barrier (BBB) permeability, yet the role of this phenomenon is not fully understood. Additionally, dysfunction of the BBB leads to initiation and propagation of seizures in animal models. To demonstrate the increased permeability of the BBB in time, we investigated changes of the serum levels of BBB markers in patients with epilepsy after bilateral tonic-clonic seizures. We chose markers that might reflect endothelial activation (ICAM-1, selectins), BBB leakage (MMP-9, S100B) and mechanisms of BBB restoration (TIMP-1, thrombomodulin -TM). METHODS We enrolled 50 consecutive patients hospitalised after bilateral tonic-clonic seizures who agreed to take part in the study and 50 participants with no history of epilepsy. Serum levels of selected markers were measured by ELISA at 1-3, 24, and 72 hours after seizures and one time in the control group. RESULTS We found increased levels of S100B, ICAM-1, MMP-9 and P-selectin at 1-3 and 24 hours after seizures and TIMP-1 and TM at 24 and 72 hours after seizures as compared to the control group. The level of E-selectin was decreased at 72 hours after seizures. CONCLUSIONS Our findings suggest early activation of endothelium and increased BBB permeability after seizures. While we are aware of the limitations due to the non-specificity of the tested proteins, our results might indicate the presence of prolonged BBB impairment due to seizure activity.
Collapse
Affiliation(s)
- Agnieszka Cudna
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Elżbieta Bronisz
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Jopowicz
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | |
Collapse
|
13
|
Evans K, Stamas N, Li Q, Vincent T, Halchenko Y, Zhang L, Danielson V, Murphy J, Barion F, Lam S, Lassagne R, Berger A. Impact of Vagus Nerve Stimulation for the Treatment of Drug-Resistant Epilepsy on Patterns of Use and Cost of Health Care Services and Pharmacotherapy: Comparisons of the 24-Month Periods Before and After Implantation. Clin Ther 2023; 45:136-150. [PMID: 36746736 DOI: 10.1016/j.clinthera.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE This study examines the impact of vagus nerve stimulation (VNS) as treatment for drug-resistant epilepsy (DRE) on the use and cost of health care services and pharmacotherapy. METHODS Using a large US health care claims database, we identified all patients with DRE who underwent VNS between January 1, 2012 and December 31, 2019. VNS implantation date was designated as the index date, and patients had to be continuously enrolled for the 24-month period before this date (preindex period). Outcomes included all-cause and epilepsy-related hospitalization, emergency department (ED) visits, and health care costs; health care claims resulting in an epilepsy diagnosis and all claims for antiseizure medications were deemed epilepsy related. Preindex data, except care related to preoperative medical clearance for VNS, were used to estimate multivariate regression models predicting outcomes during the 24-month postindex period (follow-up period). Predicted outcomes during follow-up were then compared with observed values. As a sensitivity analysis, we also replicated all analyses among subgroups defined by comorbid depression. FINDINGS A total of 659 patients underwent VNS for DRE and met the selection criteria. For the composite outcome of all-cause hospitalizations and ED visits, observed values were 42% lower than expected during the 24-month follow-up period; for the composite outcome of epilepsy-related hospitalizations and ED visits, observed values were 49% lower (P < 0.001 for both). Observed mean total all-cause costs, inclusive of costs of the procedure, were not significantly different than expected costs by month 19 of follow-up; mean total epilepsy-related costs were comparable by month 18. Findings were similar in subgroups with and without depression, although nominally greater differences (observed - expected) were seen in those with comorbid depression. IMPLICATIONS Our findings suggest that VNS is associated with decreased risk of hospitalization or ED visits (all cause and epilepsy related) during the 2-year period subsequent to implantation and may become cost-neutral within 2 years of implantation (vs continued medical management of DRE without VNS). Although expected outcomes were estimated based on the 24-month period before implantation, the degree to which they approximated what would have happened in the absence of VNS is unknowable. Further research is needed to better understand the extend and duration of the impact of VNS on seizure frequency and severity and health-related quality of life, including its performance among those with and without comorbid depression.
Collapse
Affiliation(s)
| | | | | | | | | | - Lu Zhang
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Sandi Lam
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | |
Collapse
|
14
|
Rampp S, Kaltenhäuser M, Müller-Voggel N, Doerfler A, Kasper BS, Hamer HM, Brandner S, Buchfelder M. MEG Node Degree for Focus Localization: Comparison with Invasive EEG. Biomedicines 2023; 11:biomedicines11020438. [PMID: 36830974 PMCID: PMC9953213 DOI: 10.3390/biomedicines11020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Epilepsy surgery is a viable therapy option for patients with pharmacoresistant focal epilepsies. A prerequisite for postoperative seizure freedom is the localization of the epileptogenic zone, e.g., using electro- and magnetoencephalography (EEG/MEG). Evidence shows that resting state MEG contains subtle alterations, which may add information to the workup of epilepsy surgery. Here, we investigate node degree (ND), a graph-theoretical parameter of functional connectivity, in relation to the seizure onset zone (SOZ) determined by invasive EEG (iEEG) in a consecutive series of 50 adult patients. Resting state data were subjected to whole brain, all-to-all connectivity analysis using the imaginary part of coherence. Graphs were described using parcellated ND. SOZ localization was investigated on a lobar and sublobar level. On a lobar level, all frequency bands except alpha showed significantly higher maximal ND (mND) values inside the SOZ compared to outside (ratios 1.11-1.20, alpha 1.02). Area-under-the-curve (AUC) was 0.67-0.78 for all expected alpha (0.44, ns). On a sublobar level, mND inside the SOZ was higher for all frequency bands (1.13-1.38, AUC 0.58-0.78) except gamma (1.02). MEG ND is significantly related to SOZ in delta, theta and beta bands. ND may provide new localization tools for presurgical evaluation of epilepsy surgery.
Collapse
Affiliation(s)
- Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-9131-85-46921; Fax: +49-9131-85-34476
| | - Martin Kaltenhäuser
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Nadia Müller-Voggel
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Burkhard S. Kasper
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Hajo M. Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Sebastian Brandner
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
15
|
Shirani S, Valentin A, Alarcon G, Kazi F, Sanei S. Separating Inhibitory and Excitatory Responses of Epileptic Brain to Single-Pulse Electrical Stimulation. Int J Neural Syst 2023; 33:2350008. [PMID: 36495050 DOI: 10.1142/s0129065723500089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To enable an accurate recognition of neuronal excitability in an epileptic brain for modeling or localization of epileptic zone, here the brain response to single-pulse electrical stimulation (SPES) has been decomposed into its constituent components using adaptive singular spectrum analysis (SSA). Given the response at neuronal level, these components are expected to be the inhibitory and excitatory components. The prime objective is to thoroughly investigate the nature of delayed responses (elicited between 100[Formula: see text]ms-1 s after SPES) for localization of the epileptic zone. SSA is a powerful subspace signal analysis method for separation of single channel signals into their constituent uncorrelated components. The consistency in the results for both early and delayed brain responses verifies the usability of the approach.
Collapse
Affiliation(s)
- Sepehr Shirani
- Department of Computer Science, School of Science and Technology, Nottingham Trent University, UK
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | | | - Farhana Kazi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | - Saeid Sanei
- Department of Computer Science, School of Science and Technology, Nottingham Trent University, UK
| |
Collapse
|
16
|
Lopez-Castroman J, Jaussent I, Pastre M, Baeza-Velasco C, Kahn JP, Leboyer M, Diaz E, Courtet P. Severity features of suicide attempters with epilepsy. J Psychiatr Res 2022; 154:44-49. [PMID: 35926425 DOI: 10.1016/j.jpsychires.2022.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND After the Food and Drug Administration alert about antiepileptic medication and suicide, incident epilepsy has been associated with first or recurrent suicide attempts independently of psychiatric comorbidities and antiepileptic treatment. Following this thread, the aim of this study was to analyze if epilepsy was associated with a higher severity of lifetime suicide attempts (SAs). METHODS Analyses were carried out on 1677 adults hospitalized between 1999 and 2012 after a SA in a specialized ward for affective episodes. Five severity features were studied: frequent SAs (>2), early onset of first SA (≤26 years), history of violent SA, high suicide intent and high lethality of the SA. Adjusted logistic regression models were used to estimate the association between the lifetime diagnosis of epilepsy and the severity features. RESULTS Among suicide attempters, ninety-three patients reported a lifetime diagnosis of epilepsy (5.5%). Epileptic patients diagnosed after the first SA were more likely to be frequent suicide attempters than non-epileptic ones. They showed also higher SA planification scores. LIMITATIONS Diagnosis accuracy is limited by the use of self-reports for epilepsy. The lack of precise information about the disease course and treatment have not allowed for further statistical analysis. With regard to psychiatric comorbidities, personality disorders could not be taken into account. CONCLUSIONS Suicide attempters with epilepsy present an increased severity in some aspects of their suicidal behavior regardless of demographic and clinical variables. Our results give support to the existence of a bidirectional association between epilepsy and suicidal behavior.
Collapse
Affiliation(s)
- Jorge Lopez-Castroman
- Department of Psychiatry, CHU Nimes, Nimes, France; IGF, Université de Montpellier, CNRS-INSERM, Montpellier, France.
| | | | | | - Carolina Baeza-Velasco
- IGF, Université de Montpellier, CNRS-INSERM, Montpellier, France; Department of Emergency Psychiatry and Post-acute Care, CHU Montpellier, Montpellier, France; Université de Paris, Laboratoire de Psychopathologie et Processus de Santé, F-92100, Boulogne Billancourt, France
| | - Jean-Pierre Kahn
- Université de Lorraine, Nancy, France, Clinique Soins-Etudes de Vitry le François, Fondation Santé des Etudiants de France (FSEF), Paris, France
| | - Marion Leboyer
- INSERM U955, Neuro-Psychiatrie Translationnelle, Université Paris-Est, Créteil, France; AP-HP, DMU IMPACT, Département Médical Universitaire de Psychiatrie, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | | | - Philippe Courtet
- IGF, Université de Montpellier, CNRS-INSERM, Montpellier, France; Department of Emergency Psychiatry and Post-acute Care, CHU Montpellier, Montpellier, France
| |
Collapse
|
17
|
Xu C, Lin H, Xu J, Zhang X, Hao G, Liu QQ, Ding C, Wang S, Zhao Q, Bai X, Chen K, Ni D, Li Y, Yu T, Wang Y. Long-term outcomes and prognosis factors of vagus nerve stimulation in patients with refractory epilepsy. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Vagus nerve stimulation (VNS) is an effective treatment for patients with refractory epilepsy, yet with varied predictive factors and heterogeneous long-term outcomes. Adjustment of VNS parameters is critical for obtaining favorable efficacy. In this study, we aimed to investigate the long-term outcomes and the possible predictive factors of VNS in patients with refractory epilepsy.
Methods
Eighty-six patients (59 males and 27 females) who underwent VNS implantation for treatment of refractory epilepsy between May 2016 and May 2017 at five Epilepsy Centers were enrolled. The clinical data, including sex, age at epilepsy onset, VNS implantation, epilepsy duration, seizure type, MRI findings, history of neurosurgical operations, and responder rate (responders were those with ≥50% seizure reduction), were analyzed.
Results
Four-year follow-up data were available for 76 patients (53 males and 23 females). The mean current intensity at the last follow-up was 1.8 ± 0.3 mA (range: 0.75–2.5 mA). The mean seizure reduction was 36.2% at 6 months, 38.5% at 1 year, 69.4% at 3 years, and 56.7% at 4 years. A favorable outcome of ≥50% reduction in seizure frequency occurred in 40.0% of the patients at 6 months, 55.9% at 1 year with 4 patients being seizure-free, 63.2% at 3 years with 5 patients being seizure-free, and 68.4% at 4 years with 5 patients being seizure-free. Earlier onset age (P < 0.001) and shorter duration (P = 0.042) were associated with favorable prognosis. Compared with generalized tonic-clonic seizures, tonic seizures had a favorable outcome (P = 0.026). Twenty-three patients underwent neurosurgical operations before VNS implantation, and the responder rate was 60.9% at the last follow-up.
Conclusions
VNS is an adjunctive and effective treatment for patients with refractory epilepsy who are not good candidates for surgical resection or have failed to respond to surgical treatment. The stimulation efficacy increases over time after implantation, and earlier exposure to VNS improves the prognosis.
Collapse
|
18
|
Haut SR, Nabbout R. Recognizing seizure clusters in the community: The path to uniformity and individualization in nomenclature and definition. Epilepsia 2022; 63 Suppl 1:S6-S13. [PMID: 35999176 DOI: 10.1111/epi.17346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Seizure emergencies experienced by patients with epilepsy include status epilepticus and seizure clusters. Although an accepted definition of status epilepticus exists, no clear consensus definition of seizure clusters has emerged; this is further complicated by the appearance in the literature of various empirically based definitions that have been developed for clinical trial study designs. In general, patients with intractable epilepsy have been shown to have a significant risk for acute episodes of increased seizure activity called seizure clusters (also referred to as acute repetitive seizures, among other terms) that differ from their usual seizure pattern. Duration (e.g., number of hours or days) is often included in the definition of a seizure cluster; however, the duration may vary among patients, with some seizure clusters lasting ≥24 h and requiring long-acting treatment for this period. In addition to seizure cluster duration, the time between seizures and possible acceleration in seizure frequency during the cluster may be important variables. The recognition and treatment of seizure clusters require urgent action because episodes that are not quickly and appropriately treated may lead to injury or progress to status epilepticus or potentially death. Most seizure clusters occur outside a medical facility (in the community) and treatment is usually administered by nonmedical individuals; therefore, health care providers may benefit from a clear description of these potential seizure emergencies that they can then use to educate patients and caregivers on the prompt and appropriate identification of seizure clusters and administration of rescue therapy. Here we explore why greater uniformity is needed in the discussion of seizure clusters. This exploration examines epidemiologic studies of seizure clusters and status epilepticus, inconsistencies in nomenclature and definitions for seizure clusters, practical application of seizure cluster terminology, and the potential use of acute seizure action plans and patient-specific individualized definitions in the clinical setting.
Collapse
Affiliation(s)
- Sheryl R Haut
- Comprehensive Epilepsy Management Center, Einstein-Montefiore, Bronx, New York, USA
| | - Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Hôpital Necker Enfants Malades, APHP, EPICARE European Reference Network, Université de Paris Cité, Institut Imagine, Inserm U1163, Paris, France
| |
Collapse
|
19
|
Johnson GW, Cai LY, Narasimhan S, González HFJ, Wills KE, Morgan VL, Englot DJ. Temporal lobe epilepsy lateralisation and surgical outcome prediction using diffusion imaging. J Neurol Neurosurg Psychiatry 2022; 93:599-608. [PMID: 35347079 PMCID: PMC9149039 DOI: 10.1136/jnnp-2021-328185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/02/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE We sought to augment the presurgical workup of medically refractory temporal lobe epilepsy by creating a supervised machine learning technique that uses diffusion-weighted imaging to classify patient-specific seizure onset laterality and surgical outcome. METHODS 151 subjects were included in this analysis: 62 patients (aged 18-68 years, 36 women) and 89 healthy controls (aged 18-71 years, 47 women). We created a supervised machine learning technique that uses diffusion-weighted metrics to classify subject groups. Specifically, we sought to classify patients versus healthy controls, unilateral versus bilateral temporal lobe epilepsy, left versus right temporal lobe epilepsy and seizure-free versus not seizure-free surgical outcome. We then reduced the dimensionality of derived features with community detection for ease of interpretation. RESULTS We classified the subject groups in withheld testing data sets with a cross-fold average testing areas under the receiver operating characteristic curve of 0.745 for patients versus healthy controls, 1.000 for unilateral versus bilateral seizure onset, 0.662 for left versus right seizure onset, 0.800 for left-sided seizure-free vsersu not seizure-free surgical outcome and 0.775 for right-sided seizure-free versus not seizure-free surgical outcome. CONCLUSIONS This technique classifies important clinical decisions in the presurgical workup of temporal lobe epilepsy by generating discerning white-matter features. We believe that this work augments existing network connectivity findings in the field by further elucidating important white-matter pathology in temporal lobe epilepsy. We hope that this work contributes to recent efforts aimed at using diffusion imaging as an augmentation to the presurgical workup of this devastating neurological disorder.
Collapse
Affiliation(s)
- Graham W Johnson
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Leon Y Cai
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Saramati Narasimhan
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Hernán F J González
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kristin E Wills
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Victoria L Morgan
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dario J Englot
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Electrical Engineering and Computer Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Rahimi N, Modabberi S, Faghir-Ghanesefat H, Shayan M, Farzad Maroufi S, Asgari Dafe E, Reza Dehpour A. The Possible Role of Nitric Oxide signaling and NMDA Receptors in Allopurinol effect on Maximal Electroshock- and Pentylenetetrazol-Induced Seizures in Mice. Neurosci Lett 2022; 778:136620. [PMID: 35395326 DOI: 10.1016/j.neulet.2022.136620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/26/2022]
Abstract
Allopurinol, a uric-acid-lowering medication, has shown its efficacy in several studies suggesting that allopurinol can be prescribed as adjunctive cure meant for intractable epilepsy. The exact mechanism of allopurinol is still unknown. This study evaluates allopurinol's effect on seizure threshold, seizure incidence, and mortality rate in mice models. Moreover, the possible involvement of nitric oxide (NO) pathway and N-methyl-D-aspartate (NMDA) receptors are investigated. To evaluate the effect of allopurinol on seizure, we used the pentylenetetrazole (PTZ)-induced seizure along with maximal electroshock (MES)-induced seizure. To assess the underlying mechanism behind the allopurinol activity, we used nitric oxide synthase (NOS) substrate (L-arginine), NOS inhibitors (L-NAME, aminoguanidine, 7-nitroindazole), and NMDA receptor antagonist (MK-801). Intraperitoneal allopurinol administration at a dose of 50 mg/kg in mice showed a significant (p<0.001) anti-convulsant activity in the PTZ-induced seizure. Even though pre-treatment with L-Arginine (60 mg/kg) potentiates allopurinol's anti-convulsant effect in the PTZ-induced seizure, pre-treatment with L-NAME (10 mg/kg), aminoguanidine (100 mg/kg), and 7-nitroindazole (30 mg/kg) reversed the anti-convulsant effect of allopurinol in the PTZ-induced seizure. In addition, pre-treatment with MK-801 also decreased the anti-convulsant effect of allopurinol in the PTZ-induced seizure. While allopurinol at a dose of 50 mg/kg and 100 mg/kg did not induce protection against seizure incidence in the MES-induced seizure, it revealed a remarkable effect in reducing the mortality rate in the MES-induced seizure. Allopurinol increases the seizure threshold in PTZ-induced seizure and enhances the survival rate in MES-induced seizure. Allopurinol exerts its anti-convulsant effect, possibly through targeting NO pathway and NMDA receptors.
Collapse
Affiliation(s)
- Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Modabberi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedyeh Faghir-Ghanesefat
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Farzad Maroufi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Asgari Dafe
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Costagliola G, Depietri G, Michev A, Riva A, Foiadelli T, Savasta S, Bonuccelli A, Peroni D, Consolini R, Marseglia GL, Orsini A, Striano P. Targeting Inflammatory Mediators in Epilepsy: A Systematic Review of Its Molecular Basis and Clinical Applications. Front Neurol 2022; 13:741244. [PMID: 35359659 PMCID: PMC8961811 DOI: 10.3389/fneur.2022.741244] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Recent studies prompted the identification of neuroinflammation as a potential target for the treatment of epilepsy, particularly drug-resistant epilepsy, and refractory status epilepticus. This work provides a systematic review of the clinical experience with anti-cytokine agents and agents targeting lymphocytes and aims to evaluate their efficacy and safety for the treatment of refractory epilepsy. Moreover, the review analyzes the main therapeutic perspectives in this field. Methods A systematic review of the literature was conducted on MEDLINE database. Search terminology was constructed using the name of the specific drug (anakinra, canakinumab, tocilizumab, adalimumab, rituximab, and natalizumab) and the terms “status epilepticus,” “epilepsy,” and “seizure.” The review included clinical trials, prospective studies, case series, and reports published in English between January 2016 and August 2021. The number of patients and their age, study design, specific drugs used, dosage, route, and timing of administration, and patients outcomes were extracted. The data were synthesized through quantitative and qualitative analysis. Results Our search identified 12 articles on anakinra and canakinumab, for a total of 37 patients with epilepsy (86% febrile infection-related epilepsy syndrome), with reduced seizure frequency or seizure arrest in more than 50% of the patients. The search identified nine articles on the use of tocilizumab (16 patients, 75% refractory status epilepticus), with a high response rate. Only one reference on the use of adalimumab in 11 patients with Rasmussen encephalitis showed complete response in 45% of the cases. Eight articles on rituximab employment sowed a reduced seizure burden in 16/26 patients. Finally, one trial concerning natalizumab evidenced a response in 10/32 participants. Conclusion The experience with anti-cytokine agents and drugs targeting lymphocytes in epilepsy derives mostly from case reports or series. The use of anti-IL-1, anti-IL-6, and anti-CD20 agents in patients with drug-resistant epilepsy and refractory status epilepticus has shown promising results and a good safety profile. The experience with TNF inhibitors is limited to Rasmussen encephalitis. The use of anti-α4-integrin agents did not show significant effects in refractory focal seizures. Concerning research perspectives, there is increasing interest in the potential use of anti-chemokine and anti-HMGB-1 agents.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Pediatric Immunology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Greta Depietri
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Alexandre Michev
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
- *Correspondence: Alexandre Michev
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “Giannina Gaslini”, Genova, Italy
| | - Thomas Foiadelli
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Salvatore Savasta
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Alice Bonuccelli
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Diego Peroni
- Pediatric Immunology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Pediatric Immunology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Gian Luigi Marseglia
- Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Alessandro Orsini
- Pediatric Neurology, Pediatric University Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “Giannina Gaslini”, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
22
|
Stern T, Kornreich L, Goldberg H. Yield of Brain Magnetic Resonance Imaging in Epilepsy Diagnosis from 1998 to 2020: A Large Retrospective Cohort Study. Neuropediatrics 2022; 53:15-19. [PMID: 34327696 DOI: 10.1055/s-0041-1732325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND We aimed to find the clinical significance of brain abnormalities on magnetic resonance imaging (MRI) in epilepsy and the lateralization of these findings with electroencephalogram (EEG). METHODS We retrospectively analyzed the results of all EEGs and brain MRIs of 600 consecutive epilepsy patients from 1998 to 2020. RESULTS Data were available for 563 cases (267 females). Ninety percent of the patients were 18 years old or younger. A total of 345 patients (61.3%) had focal epilepsy, 180 (32%), generalized, and 38 (6.7%), inconclusive. In 187 (33.2%), the first MRI was abnormal and in 81 (out of 108 repeated MRI), the second was pathological. The most frequent brain abnormalities were cortical dysplasia in 41 (18.1%), other structural abnormalities in 25 (11%), various phacomatoses in 23 (10.1%), and mesial temporal sclerosis in 17 (7.5%). Among 226 patients with abnormal MRI, 171 (75.6%) had focal epilepsy when compared with 36 (15.9%) with generalized epilepsy (p <0.001). In 121 patients (53.5%), the result of the abnormal MRI contributed significantly to the understanding of the epilepsy etiology. The side of abnormality was lateralized to the EEG focus in 120 cases (53%); in 10/15 cases with infantile spasms (66%), MRI was significantly abnormal. In 33, in whom the first MRI was normal, a second MRI revealed a significant abnormality. CONCLUSION Brain MRI is an important tool in epilepsy diagnosis, mainly in focal seizures and infantile spasms. A repeat MRI is mandatory in intractable focal cases to improve the yield of this test.
Collapse
Affiliation(s)
- Tomer Stern
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liora Kornreich
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Neurology Department, Imaging Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Hadassa Goldberg
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Neurology Department, Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
23
|
Yıldız A, Vardı N, Parlakpınar H, Ateş B, Çolakoğlu N. Effects of Low- and High-Dose Valproic Acid and Lamotrigine on the Heart in Female Rats. Cardiovasc Toxicol 2022; 22:326-340. [DOI: 10.1007/s12012-021-09714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022]
|
24
|
Vincent T, Li Q, Zhang L, Stokes M, Danielson V, Murphy J, Barion F, Lam S, Lassagne R, Berger A. Comparison of utilization and cost of healthcare services and pharmacotherapy following implantation of vagus nerve stimulation vs. responsive neurostimulation or deep brain stimulation for the treatment of drug-resistant epilepsy: analyses of a large United States healthcare claims database. J Med Econ 2022; 25:1218-1230. [PMID: 36384429 DOI: 10.1080/13696998.2022.2148680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM Vagus nerve stimulation (VNS), responsive neurostimulation (RNS), and deep brain stimulation (DBS) all are options for drug-resistant epilepsy (DRE). However, little is known about how the choice of neurostimulation impacts subsequent healthcare costs. MATERIALS AND METHODS We used a large US healthcare claims database to identify all patients with epilepsy who underwent neurostimulation between 2012 and 2019. Eligible patients were identified and stratified based on procedure received (VNS vs. RNS/DBS). VNS patients were matched by propensity scoring to RNS/DBS patients. Use and cost of healthcare resources and pharmacotherapy were ascertained over the 24-month period following neurostimulation, incorporating all-cause and epilepsy-related measures. Disease-related care was defined based on diagnoses of claims for medical care and relevant pharmacotherapies. RESULTS Seven hundred and ninety-two patients met all selection criteria. VNS patients were younger, were prescribed a higher pre-index mean number of anti-seizure medications (ASMs), and had higher pre-index levels of use and cost of epilepsy-related healthcare services. We propensity matched 148 VNS patients to an equal number of RNS/DBS patients. One year following index date (inclusive), mean total all-cause healthcare costs were 50% lower among VNS patients than RNS/DBS patients, and mean epilepsy-related costs were 55% lower; corresponding decreases at the two-year mark were 41% and 48%, respectively. LIMITATIONS Some clinical variables, such as seizure frequency and severity, quality of life, and functional status were unavailable in the database, precluding our ability to comprehensively assess differences between devices. Administrative claims data are subject to billing code errors, inaccuracies, and missing data, resulting in possible misclassification and/or unmeasured confounding. CONCLUSIONS After matching, VNS was associated with significantly lower all-cause and epilepsy-related costs for the two-year period following implantation. All-cause and epilepsy-related costs remained statistically significantly lower for VNS even after costs of implantation were excluded.
Collapse
Affiliation(s)
| | | | - Lu Zhang
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | - Sandi Lam
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
25
|
Chen Y, Fallon N, Kreilkamp BAK, Denby C, Bracewell M, Das K, Pegg E, Mohanraj R, Marson AG, Keller SS. Probabilistic mapping of thalamic nuclei and thalamocortical functional connectivity in idiopathic generalised epilepsy. Hum Brain Mapp 2021; 42:5648-5664. [PMID: 34432348 PMCID: PMC8559489 DOI: 10.1002/hbm.25644] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
It is well established that abnormal thalamocortical systems play an important role in the generation and maintenance of primary generalised seizures. However, it is currently unknown which thalamic nuclei and how nuclear‐specific thalamocortical functional connectivity are differentially impacted in patients with medically refractory and non‐refractory idiopathic generalised epilepsy (IGE). In the present study, we performed structural and resting‐state functional magnetic resonance imaging (MRI) in patients with refractory and non‐refractory IGE, segmented the thalamus into constituent nuclear regions using a probabilistic MRI segmentation method and determined thalamocortical functional connectivity using seed‐to‐voxel connectivity analyses. We report significant volume reduction of the left and right anterior thalamic nuclei only in patients with refractory IGE. Compared to healthy controls, patients with refractory and non‐refractory IGE had significant alterations of functional connectivity between the centromedian nucleus and cortex, but only patients with refractory IGE had altered cortical connectivity with the ventral lateral nuclear group. Patients with refractory IGE had significantly increased functional connectivity between the left and right ventral lateral posterior nuclei and cortical regions compared to patients with non‐refractory IGE. Cortical effects were predominantly located in the frontal lobe. Atrophy of the anterior thalamic nuclei and resting‐state functional hyperconnectivity between ventral lateral nuclei and cerebral cortex may be imaging markers of pharmacoresistance in patients with IGE. These structural and functional abnormalities fit well with the known importance of thalamocortical systems in the generation and maintenance of primary generalised seizures, and the increasing recognition of the importance of limbic pathways in IGE.
Collapse
Affiliation(s)
- Yachin Chen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Nicholas Fallon
- Department of Psychology, University of Liverpool, Liverpool, UK
| | - Barbara A K Kreilkamp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | | | - Martyn Bracewell
- The Walton Centre NHS Foundation Trust, Liverpool, UK.,Schools of Medical Sciences and Psychology, Bangor University, Bangor, UK
| | - Kumar Das
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Emily Pegg
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Rajiv Mohanraj
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Anthony G Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
26
|
Mumtaz F, Rashki A, Imran Khan M, Shadboorestan A, Abdollahi A, Ghazi-Khansari M, Alotaibi G, Dehpour AR. Neuroprotective effect of sumatriptan in pentylenetetrazole-induced seizure is mediated through N-methyl-D-aspartate/nitric oxide and cAMP response element-binding protein signaling pathway. Fundam Clin Pharmacol 2021; 36:250-261. [PMID: 34545607 DOI: 10.1111/fcp.12728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/29/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Seizure occurs as a result of uncontrolled electrical disturbances within the brain. Various biomolecules such as N-methyl-D-aspartate (NMDA), nitric oxide (NO), and cAMP response element-binding protein (CREB) have been implicated in the pathophysiology of seizure. Sumatriptan is a specific 5-Hydroxytryptamine 1B/1D receptor agonist and has neuroprotective effects in various neuropsychiatric disorders. In the current study, we tried to investigate the possible interaction of sumatriptan with NMDA/NO and CREB signaling pathway in PTZ induced seizure. For this purpose, various agonist and antagonist of NMDA such as MK-801 and Ketamine, NO precursor L-ARG, and NOS inhibitors L-NAME and 7-NI were co-administered with sumatriptan in PTZ induced seizure model. The level of nitrite in mice hippocampus was determined by Griess reaction. The gene expression of NR1, NR2A, NR2B, and CREB were quantified by quantitative real time-polymerase chain reaction (qRT-PCR). Furthermore, the involved neuronal nitric oxide synthase (nNOS) protein expression was examined via western blot analysis. Effective dose of sumatriptan (1.2 mg/kg) alone and subeffective dose of sumatriptan (0.3 mg/kg) in combination with NMDA and/or NO antagonist showed significant (P < 0.001) anticonvulsant activity in mice. Furthermore, sumatriptan significantly inhibited the PTZ-induced mRNA expression of NR2A (P < 0.0001), NR2B (P < 0.05), and CREB (P < 0.01). Also, the expression of nNOS protein in PTZ treated group was reversed by sumatriptan (P < 0.01). Hence, current findings suggest that the anticonvulsant effect of sumatriptan was due to down regulation of NMDA/NO and CREB signaling pathway.
Collapse
Affiliation(s)
- Faiza Mumtaz
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,International Campus of Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Rashki
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Muhammad Imran Khan
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Kingdom of Saudi Arabia
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Zhang M, Li B, Liu Y, Tang R, Lang Y, Huang Q, He J. Different Modes of Low-Frequency Focused Ultrasound-Mediated Attenuation of Epilepsy Based on the Topological Theory. MICROMACHINES 2021; 12:mi12081001. [PMID: 34442623 PMCID: PMC8399944 DOI: 10.3390/mi12081001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/17/2023]
Abstract
Epilepsy is common brain dysfunction, where abnormal synchronized activities can be observed across multiple brain regions. Low-frequency focused pulsed ultrasound has been proven to modulate the epileptic brain network. In this study, we used two modes of low-intensity focused ultrasound (pulsed-wave and continuous-wave) to sonicate the brains of KA-induced epileptic rats, analyzed the EEG functional brain connections to explore their respective effect on the epileptic brain network, and discuss the mechanism of ultrasound neuromodulation. By comparing the brain network characteristics before and after sonication, we found that two modes of ultrasound both significantly affected the functional brain network, especially in the low-frequency band below 12 Hz. After two modes of sonication, the power spectral density of the EEG signals and the connection strength of the brain network were significantly reduced, but there was no significant difference between the two modes. Our results indicated that the ultrasound neuromodulation could effectively regulate the epileptic brain connections. The ultrasound-mediated attenuation of epilepsy was independent of modes of ultrasound.
Collapse
Affiliation(s)
- Minjian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
| | - Bo Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
| | - Yafei Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
| | - Rongyu Tang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (R.T.); (Y.L.)
| | - Yiran Lang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (R.T.); (Y.L.)
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
| | - Jiping He
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
- Correspondence: ; Tel.: +86-010-68917396
| |
Collapse
|
28
|
Benson A, Shahwan A. Monitoring the frequency and duration of epileptic seizures: "A journey through time". Eur J Paediatr Neurol 2021; 33:168-178. [PMID: 34120833 DOI: 10.1016/j.ejpn.2021.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/19/2021] [Accepted: 05/25/2021] [Indexed: 11/28/2022]
Abstract
Seizure monitoring plays an undeniably important role in diagnosing and managing epileptic seizures. Establishing the frequency and duration of seizures is crucial for assessing the burden of this chronic neurological disease, selecting treatment methods, determining how frequently these methods are applied, and informing short and long-term therapeutic decisions. Over the years, seizure monitoring tools and methods have evolved and become increasingly sophisticated; from home seizure diaries to EEG monitoring to cutting-edge responsive neurostimulation systems. In this article, the various methods of seizure monitoring are reviewed.
Collapse
Affiliation(s)
- Ailbhe Benson
- Department of Clinical Neurophysiology & Neurology, CHI at Temple Street, Dublin, Ireland.
| | - Amre Shahwan
- Department of Clinical Neurophysiology & Neurology, CHI at Temple Street, Dublin, Ireland.
| |
Collapse
|
29
|
Maternal epilepsy- perinatal outcome and long-term neurological morbidity of the offspring: a population-based cohort study. Arch Gynecol Obstet 2021; 305:55-62. [PMID: 34100131 DOI: 10.1007/s00404-021-06114-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The current study was aimed to assess whether maternal epilepsy is linked to long-term neurological morbidity of the offspring, and to examine whether maternal epilepsy is associated with adverse pregnancy outcomes. METHODS A population-based cohort study was conducted comparing perinatal outcomes of women with and without epilepsy, including long-term neurological morbidity of the offspring. Both the exposed and unexposed groups were followed up to 18 years of age for neurological-related morbidity. To assess perinatal outcomes of women with epilepsy, generalized estimation equation (GEE) models were used to control for confounders. To compare the cumulative incidence of long-term neurological morbidity a Kaplan-Meier survival curve was used. A Cox proportional hazards model was built to control for confounders. RESULTS During the study period, 243,682 deliveries met the inclusion criteria; 711 (0.29%) were of mothers with epilepsy. Maternal epilepsy was noted as an independent risk factor for preterm delivery, cesarean delivery, and low birth weight using GEE models controlling for maternal age and parity. Offspring born to mothers with epilepsy had higher rates of long-term neurological morbidity (Kaplan-Meier log-rank test, p < 0.001). A Cox proportional hazards model, controlled for maternal age, hypertensive disorders, gestational age, and diabetes mellitus, demonstrated that being born to a mother with epilepsy was an independent risk factor for long-term neurological morbidity of the offspring (adjusted HR 2.7, 95% CI 2.12-3.56, p < 0.001). CONCLUSIONS The pregnancy of epileptic women is independently associated with the adverse perinatal outcome as well as a higher risk for long-term neurological morbidity of the offspring.
Collapse
|
30
|
Mumtaz F, Shafaroodi H, Nezamoleslami S, Zubair M, Sheibani M, Nikoui V, Ghazi-Khansari M, Dehpour AR. Involvement of nNOS, and α1, α2, β1, and β2 Subunits of Soluble Guanylyl Cyclase Genes Expression in Anticonvulsant Effect of Sumatriptan on Pentylenetetrazole-Induced Seizure in Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:181-192. [PMID: 33841534 PMCID: PMC8019868 DOI: 10.22037/ijpr.2020.112594.13844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Epileptic seizure is phenomenon of abnormal synchronous neuronal discharge of a set of neurons in brain as a result of neuronal excitation. Evidence shows the nitric oxide (NO) involvement in neuronal excitability. Moreover, the role of cyclic guanosine monophosphate (cGMP) activation in seizure pathogenesis is well-established. Sumatriptan is a selective agonist of 5-Hydroxytryptamine1B/D auto-receptor, has been reassessed for its neuroprotection. This study was aimed to explore the anticonvulsant effect of sumatriptan through possible involvement of NO-cGMP pathway in mice. For this purpose, the protective effect of sumatriptan on PTZ-induced clonic seizure threshold (CST) was measured using NO-cGMP pathway inhibitors including N(G)-nitro-L-arginine (L-NNA, 1, 5, and 10 mg/kg), 7-nitroindazole (7-NI, 30, 45, and 60 mg/kg), aminoguanidine (AG, 30, 50, and 100 mg/kg), methylene blue (MB, 0.1, 0.5, and 1 mg/kg) and sildenafil (5, 10, and 20 mg/kg). The involvement of nitrergic system was further confirmed by measurement of nitrite levels by Griess reaction. The gene expression of neuronal nitric oxide synthase (nNOS) and subunits of soluble guanylyl cyclase (sGC) was studied using qRT-PCR analysis. Acute administration of sumatriptan (1.2 and 0.3 mg/kg) in combination with subeffective doses of NOS, sGC, and phosphodiesterase 5 inhibitors significantly reversed the PTZ-induced CST (P ≤ 0.001). The nitrite level in prefrontal cortex was significantly attenuated by sumatriptan (P ≤ 0.01). Furthermore, sumatriptan downregulated the PTZ-induced mRNA expression of nNOS (P ≤ 0.01), α1 (P ≤ 0.001), α2 (P ≤ 0.05), and β1 (P ≤ 0.05) genes in cerebral cortex of mice. In conclusion, the anticonvulsant activity of sumatriptan at least, in part, is mediated through inhibiting NO-cGMP pathway.
Collapse
Affiliation(s)
- Faiza Mumtaz
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadaf Nezamoleslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Zubair
- Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, PR China
| | - Mohammad Sheibani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Makuch-Kocka A, Andres-Mach M, Zagaja M, Śmiech A, Pizoń M, Flieger J, Cielecka-Piontek J, Plech T. Effect of Chronic Administration of 5-(3-chlorophenyl)-4-Hexyl-2,4 -Dihydro-3 H-1,2,4-Triazole-3-Thione (TP-315)-A New Anticonvulsant Drug Candidate-On Living Organisms. Int J Mol Sci 2021; 22:ijms22073358. [PMID: 33805962 PMCID: PMC8037910 DOI: 10.3390/ijms22073358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
About 70 million people suffer from epilepsy—a chronic neurodegenerative disease. In most cases, the cause of the disease is unknown, but epilepsy can also develop as the result of a stroke, trauma to the brain, or the use of psychotropic substances. The treatment of epilepsy is mainly based on the administration of anticonvulsants, which the patient must most often use throughout their life. Despite significant progress in research on antiepileptic drugs, about 30% of patients still have drug-resistant epilepsy, which is insensitive to pharmacotherapy used so far. In our recent studies, we have shown that 4-alkyl-5-aryl-1,2,4-triazole-3-thiones act on the voltage-gated sodium channels and exhibit anticonvulsant activity in an MES (maximal electroshock-induced seizure) and 6Hz test in mice. Previous studies have shown their beneficial toxic and pharmacological profile, but their effect on a living organism during chronic use is still unknown. In the presented study, on the basis of the previously conducted tests and the PAMPA (parallel artificial membrane permeability assay) BBB (blood–brain barrier) test, we selected one 1,2,4-triazole-3-thione derivative—TP-315—for further studies aimed at assessing the impact of its chronic use on a living organism. After long-term administration of TP-315 to Albino Swiss mice, its effect on the functional parameters of internal organs was assessed by performing biochemical, morphological, and histopathological examinations. It was also determined whether the tested compound inhibits selected isoforms of the CYP450 enzyme system. On the basis of the conducted tests, it was found that TP-315 does not show nephrotoxic nor hepatotoxic effects and does not cause changes in hematological parameters. In vitro tests showed that TP-315 did not inhibit CYP2B6, CYP2D6, CYP3A4, or CYP3A5 enzymes at the concentration found in the serum of mice subjected to long-term exposure to this compound.
Collapse
Affiliation(s)
- Anna Makuch-Kocka
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence:
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, 20-090 Lublin, Poland; (M.A.-M.); (M.Z.)
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, 20-090 Lublin, Poland; (M.A.-M.); (M.Z.)
| | - Anna Śmiech
- Sub-Department of Pathomorphology and Forensic Veterinary Medicine, Department and Clinic of Animal Internal Diseases, University of Life Sciences in Lublin, 20-612 Lublin, Poland;
| | - Magdalena Pizoń
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (M.P.); (J.F.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (M.P.); (J.F.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 61-781 Poznań, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
32
|
Kavaye Kandeda A, Okomolo Moto FC, Omam Omam JP, Mbomo Ayissi RE, Ojong L, Ngo Bum E. Pergularia daemia alters epileptogenesis and attenuates cognitive impairment in kainate-treated mice: Insight into anti-inflammatory mechanisms. Epilepsy Behav 2021; 115:107707. [PMID: 33429138 DOI: 10.1016/j.yebeh.2020.107707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/21/2020] [Accepted: 12/12/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND About 60% of temporal lobe epilepsies are drug resistant. Thus, medicinal plants are sources of new antiepileptic drugs. Pergularia daemia is used in Cameroon to treat pain, fever, arthritis, infections, and temporal lobe epilepsy. However, there are no scientific reports on the anti-inflammatory activity of P. daemia during epileptogenesis. OBJECTIVE This study aimed at determining the involvement of the anti-inflammatory activity of P. daemia during epileptogenesis in kainate-treated mice. METHODS Status epilepticus was induced in mice with kainate (15 mg/kg; i.p.). Those developing status epilepticus for 2 h were divided and treated once daily, for two weeks, with distilled water (10 ml/kg; p.o.), P. daemia extract (4.9, 12.3, 24.5, and 49 mg/kg; p.o.), and sodium valproate (300 mg/kg; i.p.) or aspirin (20 mg/kg; i.p.). One hour following the last treatment, the susceptibility of mice to seizures was assessed during epileptogenesis with pentylenetetrazole (40 mg/kg; i.p.). Then, mice were subjected to morris water maze, object recognition, and open-field tests. After completion of behavioral analysis, hippocampi and blood were collected for pro-inflammatory markers or histological analysis. RESULTS The extract of P. daemia at all doses significantly reduced the latency and duration of seizures and increased seizure score. P. daemia (24.5 and 49 mg/kg) also prevented SE-induced cognitive impairment. Furthermore, the extract (24.5 and 49 mg/kg) markedly decreased tumor necrosis factor-α, interleukins-1β, and -6 levels in hippocampi or serum. Histological analysis revealed that P. daemia attenuated neuronal loss in CA1 and CA3 areas of the hippocampus. CONCLUSIONS These findings suggest that anti-inflammatory mechanisms are involved in the antiepileptogenic effect of P. daemia extract. This justifies therefore its use to treat epilepsy and inflammation in Cameroon traditional folk medicine.
Collapse
Affiliation(s)
- Antoine Kavaye Kandeda
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Fleur Clarisse Okomolo Moto
- Department of Biological Sciences, Higher Teachers Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| | - Jean Pierre Omam Omam
- Department of Biological Sciences, Higher Teachers Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| | - Rigobert Espoir Mbomo Ayissi
- Department of Biological Sciences, Higher Teachers Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| | - Lucie Ojong
- Center of Medical Research, Institute of Medical Research and Medicinal Plant Studies, P.O. Box 6163, Yaoundé, Cameroon.
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 52, Maroua, Cameroon.
| |
Collapse
|
33
|
Villanueva V, Sánchez-Álvarez JC, Carreño M, Salas-Puig J, Caballero-Martínez F, Gil-Nagel A. Initiating antiepilepsy treatment: An update of expert consensus in Spain. Epilepsy Behav 2021; 114:107540. [PMID: 33243687 DOI: 10.1016/j.yebeh.2020.107540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022]
Abstract
Following publication in 2014 of the International League Against Epilepsy (ILAE) official report changing the definition of epilepsy, a number of questions remain unresolved in regard to deciding when to start treatment and to the choice of a particular antiseizure medication (ASM). This study uses a Delphi method to update consensus among a panel of experts on the initiation of epilepsy treatment in order to provide insight regarding those questions. The study was undertaken in four phases. Firstly, a multi-center steering committee met to review relevant bibliography and to draft a questionnaire. Secondly, a panel of neurologists specialized in epilepsy was selected and convened. Thirdly, an online survey was carried out in two rounds. Fourthly, the final results were discussed at a face-to-face meeting of the steering committee to draw conclusions. The final questionnaire focused on three independent sections: the decision to commence ASM in different clinical situations, the choice of initial monotherapy depending on the type of epilepsy and the patient's age/sex (including childbearing potential), and the choice of initial monotherapy depending on comorbidity. In these two latter sections, fourteen ASMs approved for monotherapy use by the EMA and available in Spain were considered. Regarding the decision as to when to commence treatment, the results show agreement exists to initiate treatment following a first generalized tonic-clonic seizure or a focal seizure if the electroencephalography (EEG) reveals epileptiform activity, if the MRI reveals a lesion, or when it occurs in elderly patients. With respect to the choice of initial monotherapy depending on the type of epilepsy and the patient's age/sex profile, it is agreed to avoid valproic acid (VPA) in women with childbearing potential, with levetiracetam (LEV) and lamotrigine (LTG) being the preferable options in generalized epilepsy. In focal epilepsy, the options are broader, particularly in men, and include the most recent ASMs approved for monotherapy. In the elderly, LEV, lacosamide (LCM), eslicarbazepine acetate (ESL) and LTG are considered the most suitable drugs for initiating treatment. With regard to comorbidities, the recommendation is to avoid enzyme inducing ASMs, with LEV, the most recent ASMs approved for monotherapy and LTG being the preferred options. In conclusion, as the ILAE definition states, there are different situations that lead to treatment initiation after a first seizure. When choosing the first ASM, the type of epilepsy, childbearing potential and drug-drug interaction are key factors.
Collapse
Affiliation(s)
- Vicente Villanueva
- Unidad Epilepsia Refractaria, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| | | | - Mar Carreño
- Unidad de Epilepsia, Hospital Clínic, Barcelona, Spain
| | | | | | | |
Collapse
|
34
|
Spanoghe J, Larsen LE, Craey E, Manzella S, Van Dycke A, Boon P, Raedt R. The Signaling Pathways Involved in the Anticonvulsive Effects of the Adenosine A 1 Receptor. Int J Mol Sci 2020; 22:ijms22010320. [PMID: 33396826 PMCID: PMC7794785 DOI: 10.3390/ijms22010320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/20/2022] Open
Abstract
Adenosine acts as an endogenous anticonvulsant and seizure terminator in the brain. Many of its anticonvulsive effects are mediated through the activation of the adenosine A1 receptor, a G protein-coupled receptor with a wide array of targets. Activating A1 receptors is an effective approach to suppress seizures. This review gives an overview of the neuronal targets of the adenosine A1 receptor focusing in particular on signaling pathways resulting in neuronal inhibition. These include direct interactions of G protein subunits, the adenyl cyclase pathway and the phospholipase C pathway, which all mediate neuronal hyperpolarization and suppression of synaptic transmission. Additionally, the contribution of the guanyl cyclase and mitogen-activated protein kinase cascades to the seizure-suppressing effects of A1 receptor activation are discussed. This review ends with the cautionary note that chronic activation of the A1 receptor might have detrimental effects, which will need to be avoided when pursuing A1 receptor-based epilepsy therapies.
Collapse
Affiliation(s)
- Jeroen Spanoghe
- 4Brain, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (J.S.); (L.E.L.); (E.C.); (S.M.); (P.B.)
| | - Lars E. Larsen
- 4Brain, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (J.S.); (L.E.L.); (E.C.); (S.M.); (P.B.)
| | - Erine Craey
- 4Brain, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (J.S.); (L.E.L.); (E.C.); (S.M.); (P.B.)
| | - Simona Manzella
- 4Brain, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (J.S.); (L.E.L.); (E.C.); (S.M.); (P.B.)
| | - Annelies Van Dycke
- Department of Neurology, General Hospital Sint-Jan Bruges, 8000 Bruges, Belgium;
| | - Paul Boon
- 4Brain, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (J.S.); (L.E.L.); (E.C.); (S.M.); (P.B.)
| | - Robrecht Raedt
- 4Brain, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (J.S.); (L.E.L.); (E.C.); (S.M.); (P.B.)
- Correspondence:
| |
Collapse
|
35
|
Mutti C, Riccò M, Bartolini Y, Bernabè G, Trippi I, Melpignano A, Ciliento R, Zinno L, Florindo I, Sasso E, Odone A, Parrino L, Vaudano AE. Incomplete hippocampal inversion and epilepsy: A systematic review and meta-analysis. Epilepsia 2020; 62:383-396. [PMID: 33325054 DOI: 10.1111/epi.16787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Incomplete hippocampal inversion (IHI) is a relatively frequent radiological finding at visual inspection in both epilepsy and healthy controls, but its clinical significance is unclear. Here, we systematically retrieve and assess the association between epilepsy and IHI using a meta-analytic approach. Additionally, we estimate the prevalence of IHI in patients with malformation of cortical development (MCD). METHODS We systematically searched two databases (Embase and PubMed) to identify potentially eligible studies from their inception to December 2019. For inclusion, studies were population-based, case-control, observational studies reporting on epilepsy and IHI. The risk of developing epilepsy in IHI (estimated with odds ratio [ORs]) and the frequency of IHI among patients with MCD are provided. RESULTS We screened 3601 records and assessed eligibility of 2812 full-text articles. The final material included 13 studies involving 1630 subjects. Seven studies (1329 subjects: 952 epileptic and 377 nonepileptic) were included for the estimation of the risk of developing epilepsy in the presence of IHI. The estimated OR of active epilepsy in IHI was 1.699 (95% confidence interval = 0.880-3.281), with moderate heterogeneity across studies (I2 = 71%). Seven studies (591 patients) provided information about the frequency of IHI in MCD. Up to one third of patients with MCD (27.9%) presented coexistent IHI. SIGNIFICANCE The present findings confirm that IHI is commonly observed in patients with MCD especially in periventricular nodular heterotopia or polymicrogyria. However, the estimated OR indicates overall weak increased odds of epilepsy in people with IHI, suggesting that the presence of isolated IHI cannot be considered a strong independent predictor for epilepsy development. Clear-cut neuroradiological criteria for IHI and advanced postprocessing analyses on structural magnetic resonance imaging scans are recommended to highlight differences between epileptogenic and nonepileptogenic IHI.
Collapse
Affiliation(s)
- Carlotta Mutti
- Neurology Unit, Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Matteo Riccò
- AUSL-IRCCS of Reggio Emilia, Occupational Health and Safety Service, Reggio Emilia, Italy
| | - Yerma Bartolini
- Neurology Unit, Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Giorgia Bernabè
- Neurology Unit, Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Irene Trippi
- Neurology Unit, Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Andrea Melpignano
- Neurology Unit, Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Rosario Ciliento
- Neurology Unit, Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Lucia Zinno
- Neurology Unit, Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Irene Florindo
- Neurology Unit, Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Enrico Sasso
- Neurology Unit, Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Anna Odone
- School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Liborio Parrino
- Neurology Unit, Department of Medicine and Surgery, Sleep Disorders Center, University of Parma, Parma, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, Baggiovara Hospital, University Hospital of Modena, Modena, Italy.,Department of Biomedical, Metabolic, and Neural Science, and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
36
|
Kaproń B, Czarnomysy R, Wysokiński M, Andrys R, Musilek K, Angeli A, Supuran CT, Plech T. 1,2,4-Triazole-based anticonvulsant agents with additional ROS scavenging activity are effective in a model of pharmacoresistant epilepsy. J Enzyme Inhib Med Chem 2020; 35:993-1002. [PMID: 32253957 PMCID: PMC7178883 DOI: 10.1080/14756366.2020.1748026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
There are numerous studies supporting the contribution of oxidative stress to the pathogenesis of epilepsy. Prolonged oxidative stress is associated with the overexpression of ATP-binding cassette transporters, which results in antiepileptic drugs resistance. During our studies, three 1,2,4-triazole-3-thione derivatives were evaluated for the antioxidant activity and anticonvulsant effect in the 6 Hz model of pharmacoresistant epilepsy. The investigated compounds exhibited 2-3 times more potent anticonvulsant activity than valproic acid in 6 Hz test in mice, which is well-established preclinical model of pharmacoresistant epilepsy. The antioxidant/ROS scavenging activity was confirmed in both single-electron transfer-based methods (DPPH and CUPRAC) and during flow cytometric analysis of total ROS activity in U-87 MG cells. Based on the enzymatic studies on human carbonic anhydrases (CAs), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), one can assume that the herein investigated drug candidates will not impair the cognitive processes mediated by CAs and will have minimal off-target cholinergic effects.
Collapse
Affiliation(s)
- Barbara Kaproń
- Department of Clinical Genetics, I Faculty of Medicine with Dentistry Division, Medical University of Lublin, Lublin, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Białystok, Bialystok, Poland
| | - Mariusz Wysokiński
- Department of Basic Nursing and Medical Teaching, Chair of Development in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Rudolf Andrys
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Andrea Angeli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Claudiu T. Supuran
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Tomasz Plech
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
37
|
Verdru J, Van Paesschen W. Wearable seizure detection devices in refractory epilepsy. Acta Neurol Belg 2020; 120:1271-1281. [PMID: 32632710 DOI: 10.1007/s13760-020-01417-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/29/2020] [Indexed: 12/01/2022]
Abstract
Epilepsy affects 50 million patients and their caregivers worldwide. Devices that facilitate the detection of seizures can have a large influence on a patient's quality of life, therapeutic decisions and the conduct of clinical trials with anti-epileptic drugs. This article provides an up-to-date overview and comparison between wearable seizure detection devices (WSDDs), taking into account the newly proposed standards for testing and clinical validation of devices. 16 devices were included in our comparison. The F1-score, combining the device's accurate recall and precision, was calculated for each of these devices and used to evaluate their performance. The devices were separated by development phase and ranked by F1-score from highest to lowest. We describe 16 WSDDs: 6 of which were accelerometry (ACM)-based, 3 surface electromyography-based, 1 was a wearable application of EEG, 4 had multimodal sensors and 2 other types of sensors. We observed a significant inconsistency in the description of performance measures. The devices in the most advanced development phase with the highest F1-scores incorporated ACM- and sEMG-based sensors to detect tonic-clonic seizures. This review highlights the importance of implementing standards for an optimal comparison and, therefore, improving the research and development of WSDDs. WSDDs can improve the patient's care and quality of life, decrease seizure underreporting and they could potentially prevent sudden-unexpected-death in epilepsy. We discuss the central role of the neurologist in the use of WSDDs, and why a business to business to consumer model is better than the current business to consumer model of most WSDDs.
Collapse
Affiliation(s)
- Julie Verdru
- Faculty of Medicine/UZ Leuven, KU Leuven, Leuven, Belgium.
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Neurology, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
38
|
Narasimhan S, Kundassery KB, Gupta K, Johnson GW, Wills KE, Goodale SE, Haas K, Rolston JD, Naftel RP, Morgan VL, Dawant BM, González HFJ, Englot DJ. Seizure-onset regions demonstrate high inward directed connectivity during resting-state: An SEEG study in focal epilepsy. Epilepsia 2020; 61:2534-2544. [PMID: 32944945 PMCID: PMC7899016 DOI: 10.1111/epi.16686] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVE In patients with medically refractory focal epilepsy, stereotactic-electroencephalography (SEEG) can aid in localizing epileptogenic regions for surgical treatment. SEEG, however, requires long hospitalizations to record seizures, and ictal interpretation can be incomplete or inaccurate. Our recent work showed that non-directed resting-state analyses may identify brain regions as epileptogenic or uninvolved. Our present objective is to map epileptogenic networks in greater detail and more accurately identify seizure-onset regions using directed resting-state SEEG connectivity. METHODS In 25 patients with focal epilepsy who underwent SEEG, 2 minutes of resting-state, artifact-free, SEEG data were selected and functional connectivity was estimated. Using standard clinical interpretation, brain regions were classified into four categories: ictogenic, early propagation, irritative, or uninvolved. Three non-directed connectivity measures (mutual information [MI] strength, and imaginary coherence between and within regions) and four directed measures (partial directed coherence [PDC] and directed transfer function [DTF], inward and outward strength) were calculated. Logistic regression was used to generate a predictive model of ictogenicity. RESULTS Ictogenic regions had the highest and uninvolved regions had the lowest MI strength. Although both PDC and DTF inward strengths were highest in ictogenic regions, outward strengths did not differ among categories. A model incorporating directed and nondirected connectivity measures demonstrated an area under the receiver-operating characteristic (ROC) curve (AUC) of 0.88 in predicting ictogenicity of individual regions. The AUC of this model was 0.93 when restricted to patients with favorable postsurgical seizure outcomes. SIGNIFICANCE Directed connectivity measures may help identify epileptogenic networks without requiring ictal recordings. Greater inward but not outward connectivity in ictogenic regions at rest may represent broad inhibitory input to prevent seizure generation.
Collapse
Affiliation(s)
- Saramati Narasimhan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Keshav B. Kundassery
- Department of Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kanupriya Gupta
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Graham W. Johnson
- Department of Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Kristin E. Wills
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah E. Goodale
- Department of Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Kevin Haas
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John D. Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah
| | - Robert P. Naftel
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Victoria L. Morgan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Benoit M. Dawant
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee
| | - Hernán F. J. González
- Department of Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Dario J. Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
39
|
Qiu L, Shen L, Wang J, Ren F, Xu M, Jiang F, Sheng X, Li F, Li F. Knowledge and attitudes among preschools staff in Shanghai, China, regarding epilepsy. BMC Pediatr 2020; 20:477. [PMID: 33050899 PMCID: PMC7550838 DOI: 10.1186/s12887-020-02376-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
Background Epilepsy is one of the most common neurological problems among children. The aim of this survey was to assess the knowledge and attitude among preschool staff in Shanghai regarding epilepsy. Methods A cross-sectional survey was carried out among the staff at selected preschools. A stratified random sampling method was first used to identify suitable subjects. Data were obtained using a self-completed questionnaire. A standardized collection of demographic information was performed, and participants were given a questionnaire about their knowledge and attitudes regarding epilepsy. Results A total of 1069 subjects completed the questionnaire. In this survey, 387 (36.2%) staff members had previously participated in related training. 17.6% of teachers knew how to provide appropriate first aid for seizures. Correct responses regarding first aid for seizures, such as laying the person on his or her side (24.9%), moving harmful objects out of the way (20.7%), protecting the head (36.1%), waiting until the seizure ends (7.9%), and dialing the emergency number (40.1%), were low. The staff members had different attitudes towards children with epilepsy: some subjects had a positive attitude, some had a negative attitude. Conclusions The level of first-aid knowledge among preschool staff in Shanghai relevant to epilepsy was low. There is an urgent need to educate staff about epilepsy and appropriate first-aid practices for seizures.
Collapse
Affiliation(s)
- Liyan Qiu
- Department of developmental behavioral pediatric & children healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Rd, Shanghai, 200092, China
| | - Lixiao Shen
- Department of developmental behavioral pediatric & children healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Rd, Shanghai, 200092, China
| | - Junli Wang
- Department of developmental behavioral pediatric & children healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Rd, Shanghai, 200092, China
| | - Fang Ren
- Department of developmental behavioral pediatric & children healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Rd, Shanghai, 200092, China
| | - Mingyu Xu
- Department of developmental behavioral pediatric & children healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Rd, Shanghai, 200092, China
| | - Fan Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Pediatric Translational Research Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University, MOE-Shanghai Key Laboratory of Children's Environmental Health, 1678 Dongfang Rd, Shanghai, 200127, China
| | - Xiaoyang Sheng
- Department of developmental behavioral pediatric & children healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Rd, Shanghai, 200092, China
| | - Fei Li
- Department of developmental behavioral pediatric & children healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Rd, Shanghai, 200092, China
| | - Feng Li
- Department of developmental behavioral pediatric & children healthcare, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Rd, Shanghai, 200092, China.
| |
Collapse
|
40
|
Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci 2020; 14:572965. [PMID: 33117120 PMCID: PMC7574889 DOI: 10.3389/fnins.2020.572965] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Gangliosides are glycosphingolipids highly abundant in the nervous system, and carry most of the sialic acid residues in the brain. Gangliosides are enriched in cell membrane microdomains ("lipid rafts") and play important roles in the modulation of membrane proteins and ion channels, in cell signaling and in the communication among cells. The importance of gangliosides in the brain is highlighted by the fact that loss of function mutations in ganglioside biosynthetic enzymes result in severe neurodegenerative disorders, often characterized by very early or childhood onset. In addition, changes in the ganglioside profile (i.e., in the relative abundance of specific gangliosides) were reported in healthy aging and in common neurological conditions, including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), stroke, multiple sclerosis and epilepsy. At least in HD, PD and in some forms of epilepsy, experimental evidence strongly suggests a potential role of gangliosides in disease pathogenesis and potential treatment. In this review, we will summarize ganglioside functions that are crucial to maintain brain health, we will review changes in ganglioside levels that occur in major neurological conditions and we will discuss their contribution to cellular dysfunctions and disease pathogenesis. Finally, we will review evidence of the beneficial roles exerted by gangliosides, GM1 in particular, in disease models and in clinical trials.
Collapse
Affiliation(s)
- Simonetta Sipione
- Department of Pharmacology, Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
41
|
Jabran Y, Mahmoudzadeh M, Martinez N, Heberlé C, Wallois F, Bourel-Ponchel E. Temporal and Spatial Dynamics of Different Interictal Epileptic Discharges: A Time-Frequency EEG Approach in Pediatric Focal Refractory Epilepsy. Front Neurol 2020; 11:941. [PMID: 33013634 PMCID: PMC7506028 DOI: 10.3389/fneur.2020.00941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Characterization of the spatial and temporal dynamics of interictal epileptic discharges (IED) using time-frequency analysis (TFA) and electrical-source localization (ESL). Methods: TFA was performed on IED (spikes, spike waves, and polyspike waves) recorded by high-density-EEG (HD-EEG) in 19 refractory focal epileptic children. Temporal modulations related to IEDs were analyzed in a time window around the IED peaks [−1,000 to 1,000 ms]. Spatial modulations were analyzed by ESL in the time-frequency and time domains. Results: IED were associated with complex power spectral modulations. We observed increases in power spectrum (IPS) patterns specific to IED type. For spikes, the TFA pattern consisted of an IPS (−100 to +100 ms, 4–50 Hz). For spike waves, the IPS was followed by a second IPS (+100 to +400 ms, 4–10 Hz), corresponding to the slow wave. IPS patterns were preceded (−400 to −100 ms, 4–40 Hz), and followed (+100 to +400 ms) by a decrease in the power spectrum (DPS) (n = 8). For 14 out of 19 patients, at least one ESL method was concordant with the epileptogenic area. For the remaining five patients, all of them had temporal epilepsies. ESL in the time-frequency domain (DPS/IPS) provided concordant (n = 6) or complementary (n = 4) information to the ESL in the time domain concerning the epileptogenic zone. ESL in time-frequency domain (DPS/IPS) was the only method to provide concordant information concerning the epileptogenic zone in three patients. Significance: TFA demonstrates complex time-frequency modulations of the neuronal networks around IED, suggesting that the pathological mechanisms are initiated well before onset of the classical hyper-synchronization of the IED. Combining time and time-frequency analysis of the ESL provides complementary information to define the epileptogenic zone in refractory focal epilepsy.
Collapse
Affiliation(s)
- Younes Jabran
- INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, Amiens, France
| | - Mahdi Mahmoudzadeh
- INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, Amiens, France
| | - Nicolas Martinez
- INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, Amiens, France
| | - Claire Heberlé
- INSERM UMR 1105, Pediatric Neurophysiology Unit, Amiens University Hospital, Amiens, France
| | - Fabrice Wallois
- INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, Amiens, France.,INSERM UMR 1105, Pediatric Neurophysiology Unit, Amiens University Hospital, Amiens, France
| | - Emilie Bourel-Ponchel
- INSERM UMR 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, Amiens, France.,INSERM UMR 1105, Pediatric Neurophysiology Unit, Amiens University Hospital, Amiens, France
| |
Collapse
|
42
|
The effects of sex on prevalence and mechanisms underlying neurodevelopmental disorders. HANDBOOK OF CLINICAL NEUROLOGY 2020. [PMID: 32958183 DOI: 10.1016/b978-0-444-64150-2.00025-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Neurodevelopmental disorders occur more frequently in boys than in girls and often differ in presentation between the sexes. The sex differences in prevalence and presentation of autism spectrum disorder, intellectual disability, communication disorders, specific learning disabilities, attention deficit/hyperactivity disorder, Tourette's syndrome, and epilepsy are discussed, as well as sex differences in the patterns of comorbidities between these disorders. Prominent theories have been proposed to explain sex biases. These include genetic factors, sex hormones, sociological factors, cognitive differences between the sexes, and environmental insult. Despite the large body of research reviewed in this chapter, many aspects of sex-related effects in neurodevelopmental disorders remain poorly understood.
Collapse
|
43
|
Etemad L, Zamani M, Iranshahi M, Roohbakhsh A. The Protective Effect of Auraptene Against Oxidative Stress and Pentylenetetrazol-Induced Chemical Kindling in Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1395-1402. [PMID: 32641949 PMCID: PMC6934955 DOI: 10.22037/ijpr.2019.1100747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is believed that some pitfalls in the treatment of epilepsy such as serious side effects of medications and drug resistance may be resolved by natural compounds. Auraptene belongs to coumarins and is found in citrus peel. We hypothesized that auraptene might have anticonvulsant properties. Kindling was induced by repeated intraperitoneal (IP) injections of pentylenetetrazol (PTZ, 35 mg/kg) with two-day intervals for 24 days in male albino mice. Three groups received IP injections of auraptene (12.5, 25, and 50 mg/kg). Three control groups received vehicle, diazepam (3 mg/kg, IP), and vitamin E (150 mg/kg, IP). Seizure-related behaviors were recorded for 30 min after PTZ injection. Moreover, malondialdehyde and reduced glutathione (GSH) were measured in the brain. The results indicated that auraptene at the dose of 12.5 mg/kg and vitamin E significantly prolonged the latency to stage 2 of seizures (P < 0.01). Auraptene at the doses of 25 mg/kg and 50 mg/kg, prolonged the latency to stage 4 (P < 0.01) and reduced stage 5 duration of seizures (P < 0.01). All doses of auraptene reduced median of seizure scores (P < 0.01). The kindled control group had MDA levels similar to intact animals but had a lower concentration of GSH (P < 0.001). None of the tested compounds changed the malondialdehyde concentration significantly. However, auraptene at the dose of 50 mg/kg and vitamin E increased GSH levels (P < 0.05). The results suggest that auraptene had anticonvulsant effects in PTZ-induced chemical kindling that was mediated by mechanisms other than the antioxidant effect of auraptene.
Collapse
Affiliation(s)
- Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Zamani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Zhao Y, Ren J, Hillier J, Lu W, Jones EY. Antiepileptic Drug Carbamazepine Binds to a Novel Pocket on the Wnt Receptor Frizzled-8. J Med Chem 2020; 63:3252-3260. [PMID: 32049522 PMCID: PMC7104226 DOI: 10.1021/acs.jmedchem.9b02020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 01/07/2023]
Abstract
Misregulation of Wnt signaling is common in human cancer. The development of small molecule inhibitors against the Wnt receptor, frizzled (FZD), may have potential in cancer therapy. During small molecule screens, we observed binding of carbamazepine to the cysteine-rich domain (CRD) of the Wnt receptor FZD8 using surface plasmon resonance (SPR). Cellular functional assays demonstrated that carbamazepine can suppress FZD8-mediated Wnt/β-catenin signaling. We determined the crystal structure of the complex at 1.7 Å resolution, which reveals that carbamazepine binds at a novel pocket on the FZD8 CRD. The unique residue Tyr52 discriminates FZD8 from the closely related FZD5 and other FZDs for carbamazepine binding. The first small molecule-bound FZD structure provides a basis for anti-FZD drug development. Furthermore, the observed carbamazepine-mediated Wnt signaling inhibition may help to explain the phenomenon of bone loss and increased adipogenesis in some patients during long-term carbamazepine treatment.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| | - Jingshan Ren
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| | - James Hillier
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| | - Weixian Lu
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| | - E. Yvonne Jones
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
45
|
Multiple-Ascending Dose Study in Healthy Subjects to Assess the Pharmacokinetics, Tolerability, and CYP3A4 Interaction Potential of the T-Type Calcium Channel Blocker ACT-709478, A Potential New Antiepileptic Drug. CNS Drugs 2020; 34:311-323. [PMID: 31994022 DOI: 10.1007/s40263-019-00697-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND ACT-709478 is a selective, orally available T-type calcium channel blocker being studied as a potential new treatment in epilepsy. ACT-709478 had previously been investigated in a single-ascending dose study up to a dose of 400 mg. OBJECTIVES The aim of this study was to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple doses of ACT-709478. In addition, the drug-drug interaction potential of multiple doses of ACT-709478 with the cytochrome P450 3A4 substrate midazolam was investigated. METHODS This double-blind, placebo-controlled, randomized study included 46 healthy male and female subjects. Ascending multiple oral doses of ACT-709478 were administered to 10 (cohorts 1-2) or 12 (cohorts 3-4) subjects (two taking placebo per cohort). In cohorts 1-2, 30 or 10 mg ACT-709478 was administered once daily for 12 days. An up-titration regimen was used in cohorts 3-4 with administration of 10, 30, and 60 mg for 7 days each in both cohorts and an additional dose level of 100 mg ACT-709478 once daily for 8 days in cohort 4. Single doses of midazolam were administered at baseline and concomitantly to 60 mg and 100 mg ACT-709478 in cohort 4. Blood sampling for pharmacokinetic evaluations and safety assessments (clinical laboratory, vital signs, adverse events, and electrocardiogram) were performed regularly. Holter electrocardiograms were recorded at baseline and for 24 h at steady state and central nervous system effects were assessed with pharmacodynamic tests at baseline and steady state. RESULTS ACT-709478 was absorbed with a time to reach the maximum plasma concentration of 3.5-4.0 h and eliminated with a half-life of 45-53 h. Steady state was reached after 5-7 days of dosing and exposure increased dose-proportionally. An accumulation index of approximately three fold was observed in cohorts 1 and 2. Exposure to midazolam was lower upon concomitant administration of 60 and 100 mg ACT-709478 compared to midazolam alone while the half-life and time to reach the maximum plasma concentration of midazolam remained unchanged, suggesting a weak induction at the gastrointestinal but not hepatic level. Pharmacokinetic parameters of 1-hydroxymidazolam were not affected by ACT-709478 administration. The most frequent adverse events were dizziness, somnolence, and headache. A tolerability signal was detected in cohort 1 (30 mg once daily); therefore, the dose was decreased to 10 mg once daily in cohort 2. The subsequently established up-titration regimen, starting with 10 mg once daily, considerably improved tolerability. Multiple doses up to 100 mg once daily were well tolerated. No treatment-related effects were detected on vital signs, clinical laboratory tests, Holter electrocardiogram variables, or in the pharmacodynamic tests. CONCLUSIONS ACT-709478 exhibits good tolerability up to 100 mg once daily using an up-titration regimen and pharmacokinetic properties that support further clinical investigations. A weak induction of gastrointestinal cytochrome P450 3A4 activity was observed, unlikely to be of clinical relevance. CLINICALTRIALS. GOV IDENTIFIER NCT03165097.
Collapse
|
46
|
Zhang Z, Zhou X, Liu J, Qin L, Ye W, Zheng J. Aberrant functional connectivity of the cingulate subregions in right-sided temporal lobe epilepsy. Exp Ther Med 2020; 19:2901-2912. [PMID: 32256775 PMCID: PMC7086282 DOI: 10.3892/etm.2020.8551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/09/2019] [Indexed: 11/17/2022] Open
Abstract
Patients with temporal lobe epilepsy (TLE) have been indicated to exhibit abnormal resting-state functional connectivity (rsFC) of the cingulate cortex. However, it has remained elusive whether cingulate subregions show different connectivity patterns in TLE. The present study aimed to investigate the differences in rsFC of each cingulate subregion between patients with right-sided TLE (rTLE) and healthy controls (HCs), as well as their association with executive control performance in rTLE. A total of 27 patients with rTLE and 20 age-, sex- and education-matched healthy controls were recruited and all participants underwent resting-state functional MRI and an attention network test for the assessment executive control function. In each hemisphere, the cingulate gyrus (CG) was divided into CG-1 (dorsal area 23; A23d), CG-2 (rostroventral area 24; A24rv), CG-3 (pregenual area 32; A32p), CG-4 (ventral area 23; A23v), CG-5 (caudodorsal area 24; A24cd), CG-6 (caudal area 24; A23c) and CG-7 (subgenual area 32; A32sg). Pearson's correlation analysis was performed to assess the correlation between the altered FCs of the cingulate subregions and clinical variables. In patients with rTLE, the majority of the cingulate subregions exhibited decreased rsFC; this was primarily restricted to the right CG-2, the bilateral CG-6 and the bilateral CG-7. Increased rsFC was only detected in rTLE restricted to the left CG-1. Impairments in executive control efficiency were identified in patients with rTLE in comparison with the HCs. Significant alterations in rsFC between the cingulate subregion and the brain regions were mostly decreased (and some slightly increased), suggesting that FC may potentially have a left-side advantage in patients with rTLE. FC variations of the cingulate subregions were indicated to be specific to rTLE. In addition, increased connectivity in the left CG-1 and left superior frontal gyrus were negatively correlated with executive control performance, suggesting a compensatory mechanism on executive control deficits in pathological conditions. This information on differentially altered FC patterns of the cingulate subregions may provide a deeper understanding of the complex neurological mechanisms and executive control dysfunctions underlying rTLE.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinping Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei Ye
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
47
|
Rosal Lustosa Í, Soares JI, Biagini G, Lukoyanov NV. Neuroplasticity in Cholinergic Projections from the Basal Forebrain to the Basolateral Nucleus of the Amygdala in the Kainic Acid Model of Temporal Lobe Epilepsy. Int J Mol Sci 2019; 20:ijms20225688. [PMID: 31766245 PMCID: PMC6887742 DOI: 10.3390/ijms20225688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
The amygdala is a cerebral region whose function is compromised in temporal lobe epilepsy (TLE). Patients with TLE present cognitive and emotional dysfunctions, of which impairments in recognizing facial expressions have been clearly attributed to amygdala damage. However, damage to the amygdala has been scarcely addressed, with the majority of studies focusing on the hippocampus. The aim of this study was to evaluate epilepsy-related plasticity of cholinergic projections to the basolateral nucleus (BL) of the amygdala. Adult rats received kainic acid (KA) injections and developed status epilepticus. Weeks later, they showed spontaneous recurrent seizures documented by behavioral observations. Changes in cholinergic innervation of the BL were investigated by using an antibody against the vesicular acetylcholine transporter (VAChT). In KA-treated rats, it was found that (i) the BL shrunk to 25% of its original size (p < 0.01 vs. controls, Student’s t-test), (ii) the density of vesicular acetylcholine transporter-immunoreactive (VAChT-IR) varicosities was unchanged, (iii) the volumes of VAChT-IR cell bodies projecting to the BL from the horizontal limb of the diagonal band of Broca, ventral pallidum, and subcommissural part of the substantia innominata were significantly increased (p < 0.05, Bonferroni correction). These results illustrate significant changes in the basal forebrain cholinergic cells projecting to the BL in the presence of spontaneous recurrent seizures.
Collapse
Affiliation(s)
- Ítalo Rosal Lustosa
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Joana I. Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular da Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
- Programa Doutoral em Neurociências, Universidade do Porto, 4200-319 Porto, Portugal
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (G.B.); (N.V.L.)
| | - Nikolai V. Lukoyanov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular da Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
- Correspondence: (G.B.); (N.V.L.)
| |
Collapse
|
48
|
Kaproń B, Łuszczki JJ, Siwek A, Karcz T, Nowak G, Zagaja M, Andres-Mach M, Stasiłowicz A, Cielecka-Piontek J, Kocki J, Plech T. Preclinical evaluation of 1,2,4-triazole-based compounds targeting voltage-gated sodium channels (VGSCs) as promising anticonvulsant drug candidates. Bioorg Chem 2019; 94:103355. [PMID: 31662213 DOI: 10.1016/j.bioorg.2019.103355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/24/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Epilepsy is a chronic neurological disorder affecting nearly 65-70 million people worldwide. Despite the observed advances in the development of new antiepileptic drugs (AEDs), still about 30-40% of patients cannot achieve a satisfactory seizure control. In our current research, we aimed at using the combined results of radioligand binding experiments, PAMPA-BBB assay and animal experimentations in order to design a group of compounds that exhibit broad spectrum of anticonvulsant activity. The synthesized 4-alkyl-5-substituted-1,2,4-triazole-3-thione derivatives were primarily screened in the maximal electroshock-induced seizure (MES) test in mice. Next, the most promising compounds (17, 22) were investigated in 6 Hz (32 mA) psychomotor seizure model. Protective effect of compound 22 was almost similar to that of levetiracetam. Moreover, these compounds did not induce genotoxic and hemolytic changes in human cells as well as they were characterized by low cellular toxicity. Taking into account the structural requirements for good anticonvulsant activity of 4-alkyl-5-aryl-1,2,4-triazole-3-thiones, it is visible that small electron-withdrawing substituents attached to phenyl ring have beneficial effects both on affinity towards VGSCs and protective activity in the animal models of epilepsy.
Collapse
Affiliation(s)
- Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | | | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University Medical College, Cracow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Cracow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Cracow, Poland
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Anna Stasiłowicz
- Department of Pharmacognosy, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
49
|
Somboon T, Grigg-Damberger MM, Foldvary-Schaefer N. Epilepsy and Sleep-Related Breathing Disturbances. Chest 2019; 156:172-181. [DOI: 10.1016/j.chest.2019.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
|
50
|
Nitric oxide and glutamate are contributors of anti-seizure activity of rubidium chloride: A comparison with lithium. Neurosci Lett 2019; 708:134349. [PMID: 31238129 DOI: 10.1016/j.neulet.2019.134349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 12/18/2022]
Abstract
The neuro-protective effects of rubidium and lithium as alkali metals have been reported for different central nervous system dysfunctions including mania and depression. The aim of this study was evaluating as well as comparing the effects of rubidium chloride (RbCl) and lithium chloride (LiCl) on different seizures paradigms in mice and determining the involvement of NMDA receptors and nitrergic pathway. To assess the seizures threshold, animals received intravenous pentylenetetrazole (PTZ, 0.5%; 1 mL/min). Male NMRI mice (6-8 weeks) received intraperitoneal (i.p.) injections of different doses of RbCl and LiCl. Doses greater than 10 mg/kg of RbCl showed a significant anticonvulsant activity 60 min after administration; the anticonvulsant effects of LiCl was observed at the doses more than 5 mg/kg and after 30 min in PTZ-induced seizure threshold. But, RbCl (10, 20 mg/kg, i.p) or LiCl (5, 10 mg/kg, i.p) injection did not induce protection against maximal electroshock (MES) or intraperitoneal injection of PTZ lethal dose (80 mg/kg)-induced seizure models. Pre-treatment with L-NAME (non-selective nitric oxide synthase (NOS) inhibitor, 10 mg/kg; i.p.) and 7-nitroindazole (selective neuronal NOS inhibitor, 30 mg/kg; i.p.) enhanced the anticonvulsive effects of both RbCl (5 mg/kg, i.p.) and LiCl (1 mg/kg, i.p.) in PTZ-induced seizure threshold model. Injection of MK-801 (NMDA receptor antagonist, 0.05 mg/kg; i.p.) before RbCl (5 mg/kg, i.p.; P < 0.001) and LiCl (1 mg/kg, i.p.; P < 0.001) administration increased the anti-seizure activity. But, treatment with L-arginine (precursor of nitric oxide, 100 mg/kg; i.p.) decreased the seizure threshold of both RbCl (20 mg/kg, i.p.; P < 0.001) and LiCl (10 mg/kg, i.p.; P < 0.001). Measurement of nitrite levels in hippocampus of animals revealed a remarkable reduction after treatment with RbCl (20 mg/kg, i.p; P < 0.05) and LiCl (10 mg/kg, i.p; P < 0.01). To conclude, rubidium may protect central nervous system against seizures in PTZ-induced seizures threshold model through NMDA/nitrergic pathways with a similarity to lithium effects in mice.
Collapse
|