1
|
Vallortigara J, Greenfield J, Hunt B, Hoffman D, Booth S, Morris S, Giunti P. Comparison of specialist ataxia centres with non-specialist services in terms of treatment, care, health services resource utilisation and costs in the UK using patient-reported data. BMJ Open 2024; 14:e084865. [PMID: 39242169 PMCID: PMC11381710 DOI: 10.1136/bmjopen-2024-084865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2024] Open
Abstract
OBJECTIVES This study aims to assess the patient-reported benefits and the costs of coordinated care and multidisciplinary care at specialist ataxia centres (SACs) in the UK compared with care delivered in standard neurological clinics. DESIGN A patient survey was distributed between March and May 2019 to patients with ataxia or carers of patients with ataxia through the Charity Ataxia UK's mailing list, website, magazine and social media to gather information about the diagnosis, management of the ataxias in SAC and non-specialist settings, utilisation of various healthcare services and patients' satisfaction. We compared mean resource use for each contact type and health service costs per patient, stratifying patients by whether they were currently attending a SAC or never attended one. SETTING Secondary care including SACs and general neurology clinics. PARTICIPANTS We had 277 participants in the survey, aged 16 years old and over, diagnosed with ataxia and living in the UK. PRIMARY OUTCOME MEASURES Patient experience and perception of the two healthcare services settings, patient level of satisfaction, difference in healthcare services use and costs. RESULTS Patients gave positive feedback about the role of SAC in understanding their condition (96.8% of SAC group), in coordinating referrals to other healthcare specialists (86.6%), and in offering opportunities to take part in research studies (85.2%). Participants who attended a SAC reported a better management of their symptoms and a more personalised care received compared with participants who never attended a SAC (p<0.001). Costs were not significantly different in between those attending a SAC and those who did not. We identified some barriers for patients in accessing the SACs, and some gaps in the care provided, for which we made some recommendations. CONCLUSIONS This study provides useful information about ataxia patient care pathways in the UK. Overall, the results showed significantly higher patient satisfaction in SAC compared with non-SAC, at similar costs. The findings can be used to inform policy recommendations on how to improve treatment and care for people with these very rare and complex neurological diseases. Improving access to SAC for patients across the UK is one key policy recommendation of this study.
Collapse
Affiliation(s)
- Julie Vallortigara
- Ataxia Centre, Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | | | | | - Suzanne Booth
- Ataxia Centre, Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Paola Giunti
- Ataxia Centre, Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
2
|
Lopriore P, Palermo G, Meli A, Bellini G, Benevento E, Montano V, Siciliano G, Mancuso M, Ceravolo R. Mitochondrial Parkinsonism: A Practical Guide to Genes and Clinical Diagnosis. Mov Disord Clin Pract 2024; 11:948-965. [PMID: 38943319 PMCID: PMC11329577 DOI: 10.1002/mdc3.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/19/2024] [Accepted: 06/01/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Primary mitochondrial diseases (PMDs) are the most common inborn errors of energy metabolism, with a combined prevalence of 1 in 4300. They can result from mutations in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). These disorders are multisystemic and mainly affect high energy-demanding tissues, such as muscle and the central nervous system (CNS). Among many clinical features of CNS involvement, parkinsonism is one of the most common movement disorders in PMDs. METHODS This review provides a pragmatic educational overview of the most recent advances in the field of mitochondrial parkinsonism, from pathophysiology and genetic etiologies to phenotype and diagnosis. RESULTS mtDNA maintenance and mitochondrial dynamics alterations represent the principal mechanisms underlying mitochondrial parkinsonism. It can be present in isolation, alongside other movement disorders or, more commonly, as part of a multisystemic phenotype. Mutations in several nuclear-encoded genes (ie, POLG, TWNK, SPG7, and OPA1) and, more rarely, mtDNA mutations, are responsible for mitochondrial parkinsonism. Progressive external opthalmoplegia and optic atrophy may guide genetic etiology identification. CONCLUSION A comprehensive deep-phenotyping approach is needed to reach a diagnosis of mitochondrial parkinsonism, which lacks distinctive clinical features and exemplifies the intricate genotype-phenotype interplay of PMDs.
Collapse
Affiliation(s)
- Piervito Lopriore
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Adriana Meli
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Gabriele Bellini
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Elena Benevento
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Vincenzo Montano
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Gabriele Siciliano
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Michelangelo Mancuso
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| |
Collapse
|
3
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
4
|
Kaur G, Ganev Y, Rodriguez W, Tseng S, Orozco L, Chand P. Deep Brain Stimulation for Medication Refractory Tremor in Leber Optic Neuropathy Plus Syndrome. Cureus 2024; 16:e58255. [PMID: 38756271 PMCID: PMC11098546 DOI: 10.7759/cureus.58255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/18/2024] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a mitochondrial disorder that presents with acute to subacute onset of unilateral progressive optic neuropathy, with sequential involvement of the fellow eye months to years later. The condition may be accompanied by neurological symptoms, including tremors, dystonia, seizures, or psychosis, in which case, it is termed LHON-plus. Here, we present the case of a 53-year-old man who was initially diagnosed with essential tremor but was later found to have LHON-plus after the onset of bilateral visual loss and a genetic panel. His essential tremor was refractory to standard pharmacological therapies, including propranolol, primidone, and topiramate. As a result, he elected to undergo bilateral deep brain stimulation (DBS) of the bilateral ventral intermediate nucleus of the thalamus with a dramatic improvement in symptoms. To our knowledge, this is the first case of essential tremor presenting in the context of LHON-plus to be treated successfully with DBS. While DBS has been applied in LHON-plus presenting with dystonia with limited success, our outcome suggests that there is promise in this approach and that more research is needed to evaluate it.
Collapse
Affiliation(s)
- Gunjanpreet Kaur
- Neurology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Yoan Ganev
- Neurology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Wilson Rodriguez
- Neurology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Shannon Tseng
- Neurology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Lissette Orozco
- Internal Medicine, St. Joseph Mercy Ann Arbor Hospital, Ann Arbor, USA
| | - Pratap Chand
- Neurology, Saint Louis University School of Medicine, Saint Louis, USA
| |
Collapse
|
5
|
Samir S. Human DNA Mutations and their Impact on Genetic Disorders. Recent Pat Biotechnol 2024; 18:288-315. [PMID: 37936448 DOI: 10.2174/0118722083255081231020055309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023]
Abstract
DNA is a remarkably precise medium for copying and storing biological information. It serves as a design for cellular machinery that permits cells, organs, and even whole organisms to work. The fidelity of DNA replication results from the action of hundreds of genes involved in proofreading and damage repair. All human cells can acquire genetic changes in their DNA all over life. Genetic mutations are changes to the DNA sequence that happen during cell division when the cells make copies of themselves. Mutations in the DNA can cause genetic illnesses such as cancer, or they could help humans better adapt to their environment over time. The endogenous reactive metabolites, therapeutic medicines, and an excess of environmental mutagens, such as UV rays all continuously damage DNA, compromising its integrity. One or more chromosomal alterations and point mutations at a single site (monogenic mutation) including deletions, duplications, and inversions illustrate such DNA mutations. Genetic conditions can occur when an altered gene is inherited from parents, which increases the risk of developing that particular condition, or some gene alterations can happen randomly. Moreover, symptoms of genetic conditions depend on which gene has a mutation. There are many different diseases and conditions caused by mutations. Some of the most common genetic conditions are Alzheimer's disease, some cancers, cystic fibrosis, Down syndrome, and sickle cell disease. Interestingly, scientists find that DNA mutations are more common than formerly thought. This review outlines the main DNA mutations that occur along the human genome and their influence on human health. The subject of patents pertaining to DNA mutations and genetic disorders has been brought up.
Collapse
Affiliation(s)
- Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
6
|
Pizzamiglio C, Hanna MG, Pitceathly RDS. Primary mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:53-76. [PMID: 39322395 DOI: 10.1016/b978-0-323-99209-1.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Primary mitochondrial diseases (PMDs) are a heterogeneous group of hereditary disorders characterized by an impairment of the mitochondrial respiratory chain. They are the most common group of genetic metabolic disorders, with a prevalence of 1 in 4,300 people. The presence of leukoencephalopathy is recognized as an important feature in many PMDs and can be a manifestation of mutations in both mitochondrial DNA (classic syndromes such as mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes; myoclonic epilepsy with ragged-red fibers [RRFs]; Leigh syndrome; and Kearns-Sayre syndrome) and nuclear DNA (mutations in maintenance genes such as POLG, MPV17, and TYMP; Leigh syndrome; and mitochondrial aminoacyl-tRNA synthetase disorders). In this chapter, PMDs associated with white matter involvement are outlined, including details of clinical presentations, brain MRI features, and elements of differential diagnoses. The current approach to the diagnosis of PMDs and management strategies are also discussed. A PMD diagnosis in a subject with leukoencephalopathy should be considered in the presence of specific brain MRI features (for example, cyst-like lesions, bilateral basal ganglia lesions, and involvement of both cerebral hemispheres and cerebellum), in addition to a complex neurologic or multisystem disorder. Establishing a genetic diagnosis is crucial to ensure appropriate genetic counseling, multidisciplinary team input, and eligibility for clinical trials.
Collapse
Affiliation(s)
- Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
7
|
Conti F, Di Martino S, Drago F, Bucolo C, Micale V, Montano V, Siciliano G, Mancuso M, Lopriore P. Red Flags in Primary Mitochondrial Diseases: What Should We Recognize? Int J Mol Sci 2023; 24:16746. [PMID: 38069070 PMCID: PMC10706469 DOI: 10.3390/ijms242316746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Primary mitochondrial diseases (PMDs) are complex group of metabolic disorders caused by genetically determined impairment of the mitochondrial oxidative phosphorylation (OXPHOS). The unique features of mitochondrial genetics and the pivotal role of mitochondria in cell biology explain the phenotypical heterogeneity of primary mitochondrial diseases and the resulting diagnostic challenges that follow. Some peculiar features ("red flags") may indicate a primary mitochondrial disease, helping the physician to orient in this diagnostic maze. In this narrative review, we aimed to outline the features of the most common mitochondrial red flags offering a general overview on the topic that could help physicians to untangle mitochondrial medicine complexity.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95213 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| |
Collapse
|
8
|
Finsterer J, Mehri S. Do not biopsy the MELAS brain. Parkinsonism Relat Disord 2023; 115:105801. [PMID: 37607851 DOI: 10.1016/j.parkreldis.2023.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/05/2023] [Indexed: 08/24/2023]
Affiliation(s)
| | - Sounira Mehri
- Biochemistry Laboratory, LR12ES05 "Nutrition-Functional Foods and Vascular Health", Faculty of Medicine, Monastir, Tunisia.
| |
Collapse
|
9
|
Hass RM, Whitwell JL, Coon EA, Josephs KA, Ali F. Mitochondrial encephalopathy with lactic-acidosis and stroke-like episodes syndrome presenting as progressive supranuclear palsy. Parkinsonism Relat Disord 2023; 113:105516. [PMID: 37451107 PMCID: PMC10804397 DOI: 10.1016/j.parkreldis.2023.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Reece M Hass
- Mayo Clinic Rochester, Department of Neurology, United States.
| | | | | | - Keith A Josephs
- Mayo Clinic Rochester, Department of Neurology, United States
| | - Farwa Ali
- Mayo Clinic Rochester, Department of Neurology, United States
| |
Collapse
|
10
|
Finsterer J, Ghosh R. Effective treatment of choreaballism due to an MT-CYB variant with haloperidol, tetrabenazine, and antioxidants. Clin Case Rep 2023; 11:e7592. [PMID: 37351357 PMCID: PMC10282112 DOI: 10.1002/ccr3.7592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Hypokinetic and hyperkinetic movement disorders are a common phenotypic feature of mitochondrial disorders. Choreaballism has been reported particularly in patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome and in maternally inherited diabetes and deafness syndrome. The pathophysiological basis of movement disorders in mitochondrial disorders is the involvement of the basal ganglia or the midbrain. Haloperidol and mitochondrial cocktails have proven beneficial in some of these cases. Here we present another patient with mitochondrial choreaballism who benefited significantly from symptomatic therapy. The patient is a 14-year-old male with a history of hypoacusis, ptosis, and focal tonic-clonic seizures of the upper/lower limbs on either side since childhood. Since this time he has also developed occasional, abnormal involuntary limb movements, choreaballism, facial grimacing, carpopedal spasms, and abnormal lip sensations. He was diagnosed with a non-syndromic mitochondrial disorder after detection of the variant m.15043G > A in MT-CYB. Seizures have been successfully treated with lamotrigine. Hypocalcemia was treated with intravenous calcium. For hypoparathyroidism calcitriol was given. Choreaballism was treated with haloperidol and tetrabenazine. In addition, he received coenzyme Q10, L-carnitine, thiamine, riboflavin, alpha-lipoic acid, biotin, vitamin-C, vitamin-E, and creatine-monohydrate. With this therapy, the choreaballism disappeared completely. This case shows that mitochondrial disorders can manifest with cognitive impairment, seizures, movement disorder, hypoacusis, endocrinopathy, cardiomyopathy, neuropathy, and myopathy, that choreaballism can be a phenotypic feature of multisystem mitochondrial disorders, and that choreaballism favorably responds to haloperidol, tetrabenazine, and possibly to a cocktail of antioxidants, cofactors, and vitamins.
Collapse
Affiliation(s)
| | - Ritwik Ghosh
- Department of General MedicineBurdwan Medical College & HospitalBurdwanWest BengalIndia
| |
Collapse
|
11
|
Kornblum C, Lamperti C, Parikh S. Currently available therapies in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:189-206. [PMID: 36813313 DOI: 10.1016/b978-0-12-821751-1.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a heterogeneous group of multisystem disorders caused by impaired mitochondrial function. These disorders occur at any age and involve any tissue, typically affecting organs highly dependent on aerobic metabolism. Diagnosis and management are extremely difficult due to various underlying genetic defects and a wide range of clinical symptoms. Preventive care and active surveillance are strategies to try to reduce morbidity and mortality by timely treatment of organ-specific complications. More specific interventional therapies are in early phases of development and no effective treatment or cure currently exists. A variety of dietary supplements have been utilized based on biological logic. For several reasons, few randomized controlled trials have been completed to assess the efficacy of these supplements. The majority of the literature on supplement efficacy represents case reports, retrospective analyses and open-label studies. We briefly review selected supplements that have some degree of clinical research support. In mitochondrial diseases, potential triggers of metabolic decompensation or medications that are potentially toxic to mitochondrial function should be avoided. We shortly summarize current recommendations on safe medication in mitochondrial diseases. Finally, we focus on the frequent and debilitating symptoms of exercise intolerance and fatigue and their management including physical training strategies.
Collapse
Affiliation(s)
- Cornelia Kornblum
- Department of Neurology, Neuromuscular Disease Section, University Hospital Bonn, Bonn, Germany.
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sumit Parikh
- Center for Pediatric Neurosciences, Mitochondrial Medicine & Neurogenetics, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
12
|
Koens LH, Klamer MR, Sival DA, Balint B, Bhatia KP, Contarino MF, van Egmond ME, Erro R, Friedman J, Fung VSC, Ganos C, Kurian MA, Lang AE, McGovern EM, Roze E, de Koning TJ, Tijssen MAJ. A Screening Tool to Quickly Identify Movement Disorders in Patients with Inborn Errors of Metabolism. Mov Disord 2023; 38:646-653. [PMID: 36727539 DOI: 10.1002/mds.29332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Movement disorders are frequent in patients with inborn errors of metabolism (IEMs) but poorly recognized, particularly by nonmovement disorder specialists. We propose an easy-to-use clinical screening tool to help recognize movement disorders. OBJECTIVE The aim is to develop a user-friendly rapid screening tool for nonmovement disorder specialists to detect moderate and severe movement disorders in patients aged ≥4 years with IEMs. METHODS Videos of 55 patients with different IEMs were scored by experienced movement disorder specialists (n = 12). Inter-rater agreements were determined on the presence and subtype of the movement disorder. Based on ranking and consensus, items were chosen to be incorporated into the screening tool. RESULTS A movement disorder was rated as present in 80% of the patients, with a moderate inter-rater agreement (κ =0.420, P < 0.001) on the presence of a movement disorder. When considering only moderate and severe movement disorders, the inter-rater agreement increased to almost perfect (κ = 0.900, P < 0.001). Dystonia was most frequently scored (27.3%) as the dominant phenotype. Treatment was mainly suggested for patients with moderate or severe movement disorders. Walking, observations of the arms, and drawing a spiral were found to be the most informative tasks and were included in the screening tool. CONCLUSIONS We designed a screening tool to recognize movement disorders in patients with IEMs. We propose that this screening tool can contribute to select patients who should be referred to a movement disorder specialist for further evaluation and, if necessary, treatment of the movement disorder. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lisette H Koens
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marrit R Klamer
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Deborah A Sival
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pediatric Neurology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Bettina Balint
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Maria Fiorella Contarino
- Department of Neurology, Haga Teaching Hospital, The Hague, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martje E van Egmond
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Jennifer Friedman
- UCSD Department of Neuroscience and Pediatrics, Rady Children's Hospital Division of Neurology, Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Christos Ganos
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,Department of Medicine, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, University Health Network, Toronto, Ontario, Canada
| | - Eavan M McGovern
- Department of Neurology, Beaumont Hospital Dublin, Dublin, Ireland.,School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emmanuel Roze
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, France.,Department of Neurology, AP-HP, Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Tom J de Koning
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Pediatrics, Clinical Sciences, Lund University, Lund, Sweden
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Leber’s hereditary optic neuropathy plus dystonia caused by the mitochondrial ND1 gene m.4160 T > C mutation. Neurol Sci 2022; 43:5581-5592. [DOI: 10.1007/s10072-022-06165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
14
|
Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP. The Biochemical Assessment of Mitochondrial Respiratory Chain Disorders. Int J Mol Sci 2022; 23:ijms23137487. [PMID: 35806492 PMCID: PMC9267223 DOI: 10.3390/ijms23137487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondrial respiratory chain (MRC) disorders are a complex group of diseases whose diagnosis requires a multidisciplinary approach in which the biochemical investigations play an important role. Initial investigations include metabolite analysis in both blood and urine and the measurement of lactate, pyruvate and amino acid levels, as well as urine organic acids. Recently, hormone-like cytokines, such as fibroblast growth factor-21 (FGF-21), have also been used as a means of assessing evidence of MRC dysfunction, although work is still required to confirm their diagnostic utility and reliability. The assessment of evidence of oxidative stress may also be an important parameter to consider in the diagnosis of MRC function in view of its association with mitochondrial dysfunction. At present, due to the lack of reliable biomarkers available for assessing evidence of MRC dysfunction, the spectrophotometric determination of MRC enzyme activities in skeletal muscle or tissue from the disease-presenting organ is considered the ‘Gold Standard’ biochemical method to provide evidence of MRC dysfunction. The purpose of this review is to outline a number of biochemical methods that may provide diagnostic evidence of MRC dysfunction in patients.
Collapse
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Neve Cufflin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Mollie Dewsbury
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Olivia Fitzpatrick
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Rahida Islam
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Lowidka Linares Watler
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Cara McPartland
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Sophie Whitelaw
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Caitlin Connor
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Charlotte Morris
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Jason Fang
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Ollie Gartland
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Liv Holt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
15
|
Classification of Dystonia. Life (Basel) 2022; 12:life12020206. [PMID: 35207493 PMCID: PMC8875209 DOI: 10.3390/life12020206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 12/23/2022] Open
Abstract
Dystonia is a hyperkinetic movement disorder characterized by abnormal movement or posture caused by excessive muscle contraction. Because of its wide clinical spectrum, dystonia is often underdiagnosed or misdiagnosed. In clinical practice, dystonia could often present in association with other movement disorders. An accurate physical examination is essential to describe the correct phenomenology. To help clinicians reaching the proper diagnosis, several classifications of dystonia have been proposed. The current classification consists of axis I, clinical characteristics, and axis II, etiology. Through the application of this classification system, movement disorder specialists could attempt to correctly characterize dystonia and guide patients to the most effective treatment. The aim of this article is to describe the phenomenological spectrum of dystonia, the last approved dystonia classification, and new emerging knowledge.
Collapse
|
16
|
Vaishali K, Kumar N, Rao V, Kovela RK, Sinha MK. Exercise and Mitochondrial Function: Importance and InferenceA Mini Review. Curr Mol Med 2021; 22:755-760. [PMID: 34844538 DOI: 10.2174/1566524021666211129110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
Skeletal muscles must generate and distribute energy properly in order to function perfectly. Mitochondria in skeletal muscle cells form vast networks to meet this need, and their functions may improve as a result of exercise. In the present review, we discussed exercise-induced mitochondrial adaptations, age-related mitochondrial decline, and a biomarker as a mitochondrial function indicator and exercise interference.
Collapse
Affiliation(s)
- Vaishali K
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka. India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar. India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka. India
| | - Rakesh Krishna Kovela
- Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Sawangi (Meghe), Wardha, Maharashtra. India
| | - Mukesh Kumar Sinha
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka. India
| |
Collapse
|
17
|
Hikmat O, Isohanni P, Keshavan N, Ferla MP, Fassone E, Abbott MA, Bellusci M, Darin N, Dimmock D, Ghezzi D, Houlden H, Invernizzi F, Kamarus Jaman NB, Kurian MA, Morava E, Naess K, Ortigoza-Escobar JD, Parikh S, Pennisi A, Barcia G, Tylleskär KB, Brackman D, Wortmann SB, Taylor JC, Bindoff LA, Fellman V, Rahman S. Expanding the phenotypic spectrum of BCS1L-related mitochondrial disease. Ann Clin Transl Neurol 2021; 8:2155-2165. [PMID: 34662929 PMCID: PMC8607453 DOI: 10.1002/acn3.51470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
Objective To delineate the full phenotypic spectrum of BCS1L‐related disease, provide better understanding of the genotype–phenotype correlations and identify reliable prognostic disease markers. Methods We performed a retrospective multinational cohort study of previously unpublished patients followed in 15 centres from 10 countries. Patients with confirmed biallelic pathogenic BCS1L variants were considered eligible. Clinical, laboratory, neuroimaging and genetic data were analysed. Patients were stratified into different groups based on the age of disease onset, whether homozygous or compound heterozygous for the c.232A>G (p.Ser78Gly) variant, and those with other pathogenic BCS1L variants. Results Thirty‐three patients were included. We found that growth failure, lactic acidosis, tubulopathy, hepatopathy and early death were more frequent in those with disease onset within the first month of life. In those with onset after 1 month, neurological features including movement disorders and seizures were more frequent. Novel phenotypes, particularly involving movement disorder, were identified in this group. The presence of the c.232A>G (p.Ser78Gly) variant was associated with significantly worse survival and exclusively found in those with disease onset within the first month of life, whilst other pathogenic BCS1L variants were more frequent in those with later symptom onset. Interpretation The phenotypic spectrum of BCS1L‐related disease comprises a continuum of clinical features rather than a set of separate syndromic clinical identities. Age of onset defines BCS1L‐related disease clinically and early presentation is associated with poor prognosis. Genotype correlates with phenotype in the presence of the c.232A>G (p.Ser78Gly) variant.
Collapse
Affiliation(s)
- Omar Hikmat
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, 5021, Norway.,Department of Clinical Medicine (K1), University of Bergen, Norway
| | - Pirjo Isohanni
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nandaki Keshavan
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK.,Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Matteo P Ferla
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Elisa Fassone
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mary-Alice Abbott
- Medical Genetics, Department of Pediatrics, UMass Chan Medical School, Baystate, USA
| | - Marcello Bellusci
- Reference Center for Hereditary Metabolic Disorders - MetabERN, '12 de Octubre' University Hospital, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Niklas Darin
- Department of Pediatrics, University of Gothenburg, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - David Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20126, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Federica Invernizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20126, Italy
| | | | - Manju A Kurian
- Neurogenetics Group, Developmental Neurosciences, Zayed Centre for Research into Rare Diseases in Children, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA.,Metabolic Center, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII, Barcelona, Spain.,European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Sumit Parikh
- Neuroscience Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alessandra Pennisi
- Federation of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker - Enfants Malades Hospital, Paris, France
| | - Giulia Barcia
- Federation of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker - Enfants Malades Hospital, Paris, France
| | - Karin B Tylleskär
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, 5021, Norway
| | - Damien Brackman
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, 5021, Norway
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University, Salzburg, Austria.,Radboud Center for Mitochondrial Medicine (RCMM), Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Norway.,Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, 5021, Norway
| | - Vineta Fellman
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Department of Clinical Sciences, Lund University, Paediatrics, Sweden
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK.,Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Riboldi GM, Frattini E, Monfrini E, Frucht SJ, Fonzo AD. A Practical Approach to Early-Onset Parkinsonism. JOURNAL OF PARKINSONS DISEASE 2021; 12:1-26. [PMID: 34569973 PMCID: PMC8842790 DOI: 10.3233/jpd-212815] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Early-onset parkinsonism (EO parkinsonism), defined as subjects with disease onset before the age of 40 or 50 years, can be the main clinical presentation of a variety of conditions that are important to differentiate. Although rarer than classical late-onset Parkinson’s disease (PD) and not infrequently overlapping with forms of juvenile onset PD, a correct diagnosis of the specific cause of EO parkinsonism is critical for offering appropriate counseling to patients, for family and work planning, and to select the most appropriate symptomatic or etiopathogenic treatments. Clinical features, radiological and laboratory findings are crucial for guiding the differential diagnosis. Here we summarize the most important conditions associated with primary and secondary EO parkinsonism. We also proposed a practical approach based on the current literature and expert opinion to help movement disorders specialists and neurologists navigate this complex and challenging landscape.
Collapse
Affiliation(s)
- Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Emanuele Frattini
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation , University of Milan, Milan, Italy
| | - Edoardo Monfrini
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation , University of Milan, Milan, Italy
| | - Steven J Frucht
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Alessio Di Fonzo
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The discovery of new disease-causing genes and availability of next-generation sequencing platforms have both progressed rapidly over the last few years. For the practicing neurologist, this presents an increasingly bewildering array both of potential diagnoses and of means to investigate them. We review the latest newly described genetic conditions associated with dystonia, and also address how the changing landscape of gene discovery and genetic testing can best be approached, from both a research and a clinical perspective. RECENT FINDINGS Several new genetic causes for disorders in which dystonia is a feature have been described in the last 2 years, including ZNF142, GSX2, IRF2BPL, DEGS1, PI4K2A, CAMK4, VPS13D and VAMP2. Dystonia has also been a newly described feature or alternative phenotype of several other genetic conditions, notably for genes classically associated with several forms of epilepsy. The DYT system for classifying genetic dystonias, however, last recognized a new gene discovery (KMT2B) in 2016. SUMMARY Gene discovery for dystonic disorders proceeds rapidly, but a high proportion of cases remain undiagnosed. The proliferation of rare disorders means that it is no longer realistic for clinicians to aim for diagnosis to the level of predicting genotype from phenotype in all cases, but rational and adaptive use of available genetic tests can certainly expedite diagnosis.
Collapse
|
20
|
Rossi M, Wainsztein N, Merello M. Cardiac Involvement in Movement Disorders. Mov Disord Clin Pract 2021; 8:651-668. [PMID: 34307738 DOI: 10.1002/mdc3.13188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Background Several conditions represented mainly by movement disorders are associated with cardiac disease, which can be overlooked in clinical practice in the context of a prominent primary neurological disorder. Objectives To review neurological conditions that combine movement disorders and primary cardiac involvement. Methods A comprehensive and structured literature search following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria was conducted to identify disorders combining movement disorders and cardiac disease. Results Some movement disorders are commonly or prominently associated with cardiac disease. Neurological and cardiac symptoms may share underlying physiopathological mechanisms in diseases, such as Friedreich's ataxia and Wilson's disease, and in certain metabolic disorders, including Refsum disease, Gaucher disease, a congenital disorder of glycosylation, or cerebrotendinous xanthomatosis. In certain conditions, such as Sydenham's chorea or dilated cardiomyopathy with ataxia syndrome (ATX-DNAJC19), heart involvement can present early in the course of disease, whereas in others such as Friedreich's ataxia or Refsum disease, cardiac symptoms tend to present in later stages. In another 68 acquired or inherited conditions, cardiac involvement or movement disorders are seldom reported. Conclusions As cardiac disease is part of the phenotypic spectrum of several movement disorders, heart involvement should be carefully investigated and increased awareness of this association encouraged as it may represent a leading cause of morbidity and mortality.
Collapse
Affiliation(s)
- Malco Rossi
- Sección Movimientos Anormales, Departamento de Neurociencias Instituto de Investigaciones Neurológicas Raúl Carrea, Fleni Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council Buenos Aires Argentina
| | - Nestor Wainsztein
- Departamento de Medicina Interna Unidad de Cuidados Críticos, Fleni Buenos Aires Argentina
| | - Marcelo Merello
- Sección Movimientos Anormales, Departamento de Neurociencias Instituto de Investigaciones Neurológicas Raúl Carrea, Fleni Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council Buenos Aires Argentina.,Pontificia Universidad Católica Argentina Buenos Aires Argentina
| |
Collapse
|
21
|
Koens LH, de Vries JJ, Vansenne F, de Koning TJ, Tijssen MAJ. How to detect late-onset inborn errors of metabolism in patients with movement disorders - A modern diagnostic approach. Parkinsonism Relat Disord 2021; 85:124-132. [PMID: 33745796 DOI: 10.1016/j.parkreldis.2021.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/15/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022]
Abstract
We propose a modern approach to assist clinicians to recognize and diagnose inborn errors of metabolism (IEMs) in adolescents and adults that present with a movement disorder. IEMs presenting in adults are still largely unexplored. These disorders receive little attention in neurological training and daily practice, and are considered complicated by many neurologists. Adult-onset presentations of IEMs differ from childhood-onset phenotypes, which may lead to considerable diagnostic delay. The identification of adult-onset phenotypes at the earliest stage of the disease is important, since early treatment may prevent or lessen further brain damage. Our approach is based on a systematic review of all papers that concerned movement disorders due to an IEM in patients of 16 years or older. Detailed clinical phenotyping is the diagnostic cornerstone of the approach. An underlying IEM should be suspected in particular in patients with more than one movement disorder, or in patients with additional neurological, psychiatric, or systemic manifestations. As IEMs are all genetic disorders, we recommend next-generation sequencing (NGS) as the first diagnostic approach to confirm an IEM. Biochemical tests remain the first choice in acute-onset or treatable IEMs that require rapid diagnosis, or to confirm the metabolic diagnosis after NGS results. With the use of careful and systematic clinical phenotyping combined with novel diagnostic approaches such as NGS, the diagnostic yield of late-onset IEMs will increase, in particular in patients with mild or unusual phenotypes.
Collapse
Affiliation(s)
- Lisette H Koens
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Jeroen J de Vries
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Fleur Vansenne
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Tom J de Koning
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Department of Clinical Sciences and Department of Pediatrics, Lund University, Box 188, SE-221 00, Lund, Sweden
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.
| |
Collapse
|
22
|
Allouche S, Schaeffer S, Chapon F. [Mitochondrial diseases in adults: An update]. Rev Med Interne 2021; 42:541-557. [PMID: 33455836 DOI: 10.1016/j.revmed.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial diseases, characterized by a respiratory chain deficiency, are considered as rare genetic diseases but are the most frequent among inherited metabolic disorders. The complexity of their diagnosis is due to the dual control by the mitochondrial (mtDNA) and the nuclear DNA (nDNA), and to the heterogeneous clinical presentations; illegitimate association of symptoms should prompt the clinician to evoke a mitochondrial disorder. The goals of this review are to provide clinicians a better understanding of mitochondrial diseases in adults. After a brief overview on the mitochondrial origin and functions, especially their role in the energy metabolism, we will describe the genetic bases for mitochondrial diseases, then we will describe the various clinical presentations with the different affected tissues as well as the main symptoms encountered. Even if the new sequencing approaches have profoundly changed the diagnostic process, the brain imaging, the biological, the biochemical, and the histological explorations are still important highlighting the need for a multidisciplinary approach. While for most of the patients with a mitochondrial disease, only supportive and symptomatic therapies are available, recent advances in the understanding of the pathophysiological mechanisms have been made and new therapies are being developed and are evaluated in human clinical trials.
Collapse
Affiliation(s)
- S Allouche
- Laboratoire de biochimie, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France.
| | - S Schaeffer
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| | - F Chapon
- Centre de compétence des maladies neuromusculaires, Centre Hospitalier et Universitaire, avenue côte de nacre, 14033 Caen cedex, France
| |
Collapse
|
23
|
Zhang Y, Liao X, Jiang Y, Lv X, Yu Y, Dai Q, Ao L, Tao L, Peng Z. Urinary coenzyme Q10 as a diagnostic biomarker and predictor of remission in a patient with ADCK4-associated Glomerulopathy: a case report. BMC Nephrol 2021; 22:11. [PMID: 33413146 PMCID: PMC7791994 DOI: 10.1186/s12882-020-02208-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AarF domain-containing kinase 4 (ADCK4)-associated glomerulopathy is a mitochondrial nephropathy caused by mutations in the ADCK4 gene, which disrupt coenzyme Q10 biosynthesis. CASE PRESENTATION We report the case of a 25-year-old female patient with ADCK4-associated glomerulopathy presenting with proteinuria (and with no additional systemic symptoms). A known missense substitution c.737G > A (p.S246N) and a novel frameshift c.577-600del (p.193-200del) mutation were found. We followed the patient for 24 months during supplementation with coenzyme Q10 (20 mg/kg/d - 30 mg/kg/d) and describe the clinical course. In addition, we measured serum and urine coenzyme Q10 levels before and after coenzyme Q10 supplementation and compared them with those of healthy control subjects. The patient's urinary coenzyme Q10 to creatinine ratio was higher than that of healthy controls before coenzyme Q10 supplementation, but decreased consistently with proteinuria after coenzyme Q10 supplementation. CONCLUSIONS Although the use of urinary coenzyme Q10 as a diagnostic biomarker and predictor of clinical remission in patients with ADCK4-associated glomerulopathy should be confirmed by larger studies, we recommend measuring urinary coenzyme Q10 in patients with isolated proteinuria of unknown cause, since it may provide a diagnostic clue to mitochondrial nephropathy.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yupeng Jiang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yue Yu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qin Dai
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Liyun Ao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
24
|
Therapeutical Management and Drug Safety in Mitochondrial Diseases-Update 2020. J Clin Med 2020; 10:jcm10010094. [PMID: 33383961 PMCID: PMC7794679 DOI: 10.3390/jcm10010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial diseases (MDs) are a group of genetic disorders that may manifest with vast clinical heterogeneity in childhood or adulthood. These diseases are characterized by dysfunctional mitochondria and oxidative phosphorylation deficiency. Patients are usually treated with supportive and symptomatic therapies due to the absence of a specific disease-modifying therapy. Management of patients with MDs is based on different therapeutical strategies, particularly the early treatment of organ-specific complications and the avoidance of catabolic stressors or toxic medication. In this review, we discuss the therapeutic management of MDs, supported by a revision of the literature, and provide an overview of the drugs that should be either avoided or carefully used both for the specific treatment of MDs and for the management of comorbidities these subjects may manifest. We finally discuss the latest therapies approved for the management of MDs and some ongoing clinical trials.
Collapse
|
25
|
Ortigoza-Escobar JD. A Proposed Diagnostic Algorithm for Inborn Errors of Metabolism Presenting With Movements Disorders. Front Neurol 2020; 11:582160. [PMID: 33281718 PMCID: PMC7691570 DOI: 10.3389/fneur.2020.582160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited metabolic diseases or inborn errors of metabolism frequently manifest with both hyperkinetic (dystonia, chorea, myoclonus, ataxia, tremor, etc.) and hypokinetic (rigid-akinetic syndrome) movement disorders. The diagnosis of these diseases is in many cases difficult, because the same movement disorder can be caused by several diseases. Through a literature review, two hundred and thirty one inborn errors of metabolism presenting with movement disorders have been identified. Fifty-one percent of these diseases exhibits two or more movement disorders, of which ataxia and dystonia are the most frequent. Taking into account the wide range of these disorders, a methodical evaluation system needs to be stablished. This work proposes a six-step diagnostic algorithm for the identification of inborn errors of metabolism presenting with movement disorders comprising red flags, characterization of the movement disorders phenotype (type of movement disorder, age and nature of onset, distribution and temporal pattern) and other neurological and non-neurological signs, minimal biochemical investigation to diagnose treatable diseases, radiological patterns, genetic testing and ultimately, symptomatic, and disease-specific treatment. As a strong action, it is emphasized not to miss any treatable inborn error of metabolism through the algorithm.
Collapse
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| |
Collapse
|
26
|
Update on Cerebellar Ataxia with Neuropathy and Bilateral Vestibular Areflexia Syndrome (CANVAS). THE CEREBELLUM 2020; 20:687-700. [PMID: 33011895 PMCID: PMC8629873 DOI: 10.1007/s12311-020-01192-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/13/2020] [Indexed: 02/06/2023]
Abstract
The syndrome of cerebellar ataxia with neuropathy and bilateral vestibular areflexia (CANVAS) has emerged progressively during the last 30 years. It was first outlined by the neurootology/neurophysiology community in the vestibular areflexic patients, through the description of patients slowly developing late-onset cerebellar ataxia and bilateral vestibulopathy. The characteristic deficit of visuo-vestibulo-ocular reflex (VVOR) due to the impaired slow stabilizing eye movements was put forward and a specific disease subtending this syndrome was suggested. The association to a peripheral sensory axonal neuropathy was described later on, with neuropathological studies demonstrating that both sensory neuropathy and vestibular areflexia were diffuse ganglionopathy. Clinical and electrophysiological criteria of CANVAS were then proposed in 2016. Besides the classical triad, frequent chronic cough, signs of dysautonomia and neurogenic pains were frequently observed. From the beginning of published cohorts, sporadic as well as familial cases were reported, the last suggestive of an autosomal recessive mode of transmission. The genetic disorder was discovered in 2019, under the form of abnormal biallelic expansion in the replication factor C subunit 1 (RFC1) in a population of late-onset ataxia. This pathological expansion was found in 100% of the familial form and 92% of sporadic ones when the triad was complete. But using the genetic criteria, the phenotype of CANVAS seems to expand, for exemple including patients with isolated neuronopathy. We propose here to review the clinical, electrophysiological, anatomical, genetic aspect of CANVAS in light of the recent discovery of the genetic aetiology, and discuss differential diagnosis, neuropathology and physiopathology.
Collapse
|
27
|
Early-onset COQ8B (ADCK4) glomerulopathy in a child with isolated proteinuria: a case report and literature review. BMC Nephrol 2020; 21:406. [PMID: 32957916 PMCID: PMC7507654 DOI: 10.1186/s12882-020-02038-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Herein, a 3-year-old boy presented with hidden-onset isolated proteinuria was reported. The disease was induced by COQ8B (previously termed ADCK4) compound heterozygous variants, including c.[271C > T] and c.[737G > A], which were inherited from his father and mother, respectively. Case presentation The patient visited our clinic due to non-nephrotic range proteinuria for 3 months, but no obvious abnormality was detected in the vital signs or laboratory test results. Renal histopathology revealed mitochondrial nephropathy, which manifested as mild glomerular abnormalities under light microscope, together with mitochondrial proliferation and hypertrophy and crowded arrangement under electron microscope. As suggested by whole exome sequencing, the patient inherited the COQ8B compound heterozygous variants from both of his parents who showed normal phenotype. After literature review, it was confirmed that one of the variant site (c.[271C > T]) had not been reported among the East Asian populations so far. Conclusions Steroid-resistant nephrotic syndrome and focal segmental glomerulosclerosis are the most common phenotypes and renal histopathological manifestations of COQ8B variant. Nonetheless, our case shows that such variant may have hidden and mild clinical manifestations at the early onset. Therefore, early diagnosis will help to identify children at the early disease stage who have opportunity to benefit from oral coenzyme Q10 supplementation.
Collapse
|
28
|
Abstract
Background: Movement disorders are often a prominent part of the phenotype of many neurologic rare diseases. In order to promote awareness and diagnosis of these rare diseases, the International Parkinson’s and Movement Disorders Society Rare Movement Disorders Study Group provides updates on rare movement disorders. Methods: In this narrative review, we discuss the differential diagnosis of the rare disorders that can cause chorea. Results: Although the most common causes of chorea are hereditary, it is critical to identify acquired or symptomatic choreas since these are potentially treatable conditions. Disorders of metabolism and mitochondrial cytopathies can also be associated with chorea. Discussion: The present review discusses clues to the diagnosis of chorea of various etiologies. Authors propose algorithms to help the clinician in the diagnosis of these rare disorders.
Collapse
|
29
|
Magrinelli F, Latorre A, Balint B, Mackenzie M, Mulroy E, Stamelou M, Tinazzi M, Bhatia KP. Isolated and combined genetic tremor syndromes: a critical appraisal based on the 2018 MDS criteria. Parkinsonism Relat Disord 2020; 77:121-140. [PMID: 32818815 DOI: 10.1016/j.parkreldis.2020.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
The 2018 consensus statement on the classification of tremors proposes a two-axis categorization scheme based on clinical features and etiology. It also defines "isolated" and "combined" tremor syndromes depending on whether tremor is the sole clinical manifestation or is associated with other neurological or systemic signs. This syndromic approach provides a guide to investigate the underlying etiology of tremors, either genetic or acquired. Several genetic defects have been proven to cause tremor disorders, including autosomal dominant and recessive, X-linked, and mitochondrial diseases, as well as chromosomal abnormalities. Furthermore, some tremor syndromes are recognized in individuals with a positive family history, but their genetic confirmation is pending. Although most genetic tremor disorders show a combined clinical picture, there are some distinctive conditions in which tremor may precede the appearance of other neurological signs by years or remain the prominent manifestation throughout the disease course, previously leading to misdiagnosis as essential tremor (ET). Advances in the knowledge of genetically determined tremors may have been hampered by the inclusion of heterogeneous entities in previous studies on ET. The recent classification of tremors therefore aims to provide more consistent clinical data for deconstructing the genetic basis of tremor syndromes in the next-generation and long-read sequencing era. This review outlines the wide spectrum of tremor disorders with defined or presumed genetic etiology, both isolated and combined, unraveling diagnostic clues of these conditions and focusing mainly on ET-like phenotypes. Furthermore, we suggest a phenotype-to-genotype algorithm to support clinicians in identifying tremor syndromes and guiding genetic investigations.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Melissa Mackenzie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Maria Stamelou
- Department of Neurology, Attikon University Hospital, Athens, Greece.
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
30
|
Finsterer J. Only pathogenic variants in protein-coding mtDNA genes cause Leigh syndrome. J Neurol Sci 2019; 407:116447. [PMID: 31627182 DOI: 10.1016/j.jns.2019.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria.
| |
Collapse
|
31
|
van der Veen S, Zutt R, Klein C, Marras C, Berkovic SF, Caviness JN, Shibasaki H, de Koning TJ, Tijssen MA. Nomenclature of Genetically Determined Myoclonus Syndromes: Recommendations of the International Parkinson and Movement Disorder Society Task Force. Mov Disord 2019; 34:1602-1613. [PMID: 31584223 PMCID: PMC6899848 DOI: 10.1002/mds.27828] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Genetically determined myoclonus disorders are a result of a large number of genes. They have wide clinical variation and no systematic nomenclature. With next-generation sequencing, genetic diagnostics require stringent criteria to associate genes and phenotype. To improve (future) classification and recognition of genetically determined movement disorders, the Movement Disorder Society Task Force for Nomenclature of Genetic Movement Disorders (2012) advocates and renews the naming system of locus symbols. Here, we propose a nomenclature for myoclonus syndromes and related disorders with myoclonic jerks (hyperekplexia and myoclonic epileptic encephalopathies) to guide clinicians in their diagnostic approach to patients with these disorders. Sixty-seven genes were included in the nomenclature. They were divided into 3 subgroups: prominent myoclonus syndromes, 35 genes; prominent myoclonus syndromes combined with another prominent movement disorder, 9 genes; disorders that present usually with other phenotypes but can manifest as a prominent myoclonus syndrome, 23 genes. An additional movement disorder is seen in nearly all myoclonus syndromes: ataxia (n = 41), ataxia and dystonia (n = 6), and dystonia (n = 5). However, no additional movement disorders were seen in related disorders. Cognitive decline and epilepsy are present in the vast majority. The anatomical origin of myoclonus is known in 64% of genetic disorders: cortical (n = 34), noncortical areas (n = 8), and both (n = 1). Cortical myoclonus is commonly seen in association with ataxia, and noncortical myoclonus is often seen with myoclonus-dystonia. This new nomenclature of myoclonus will guide diagnostic testing and phenotype classification. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sterre van der Veen
- Department of NeurologyUniversity Groningen, University Medical Center GroningenGroningenNetherlands
| | - Rodi Zutt
- Department of NeurologyUniversity Groningen, University Medical Center GroningenGroningenNetherlands
- Department of NeurologyHaga Teaching HospitalThe HagueThe Netherlands
| | | | - Connie Marras
- Edmond J. Safra Program in Parkinson's DiseaseToronto Western Hospital, University of TorontoTorontoOntarioCanada
| | - Samuel F. Berkovic
- Epilepsy Research Center, Department of MedicineUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | | | | | - Tom J. de Koning
- Department of NeurologyUniversity Groningen, University Medical Center GroningenGroningenNetherlands
- Department of GeneticsUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
| | - Marina A.J. Tijssen
- Department of NeurologyUniversity Groningen, University Medical Center GroningenGroningenNetherlands
| |
Collapse
|
32
|
Tobore TO. Towards a comprehensive understanding of the contributions of mitochondrial dysfunction and oxidative stress in the pathogenesis and pathophysiology of Huntington's disease. J Neurosci Res 2019; 97:1455-1468. [DOI: 10.1002/jnr.24492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
|
33
|
Zierz CM, Baty K, Blakely EL, Hopton S, Falkous G, Schaefer AM, Hadjivassiliou M, Sarrigiannis PG, Ng YS, Taylor RW. A Novel Pathogenic Variant in MT-CO2 Causes an Isolated Mitochondrial Complex IV Deficiency and Late-Onset Cerebellar Ataxia. J Clin Med 2019; 8:jcm8060789. [PMID: 31167410 PMCID: PMC6617079 DOI: 10.3390/jcm8060789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/03/2023] Open
Abstract
Both nuclear and mitochondrial DNA defects can cause isolated cytochrome c oxidase (COX; complex IV) deficiency, leading to the development of the mitochondrial disease. We report a 52-year-old female patient who presented with a late-onset, progressive cerebellar ataxia, tremor and axonal neuropathy. No family history of neurological disorder was reported. Although her muscle biopsy demonstrated a significant COX deficiency, there was no clinical and electromyographical evidence of myopathy. Electrophysiological studies identified low frequency sinusoidal postural tremor at 3 Hz, corroborating the clinical finding of cerebellar dysfunction. Complete sequencing of the mitochondrial DNA genome in muscle identified a novel MT-CO2 variant, m.8163A>G predicting p.(Tyr193Cys). We present several lines of evidence, in proving the pathogenicity of this heteroplasmic mitochondrial DNA variant, as the cause of her clinical presentation. Our findings serve as an important reminder that full mitochondrial DNA analysis should be included in the diagnostic pipeline for investigating individuals with spinocerebellar ataxia.
Collapse
Affiliation(s)
- Charlotte M Zierz
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Karen Baty
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK.
| | - Emma L Blakely
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK.
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK.
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK.
| | - Andrew M Schaefer
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK.
| | - Marios Hadjivassiliou
- Academic Directorate of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.
| | - Ptolemaios G Sarrigiannis
- Academic Directorate of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.
- Department of Clinical Neurophysiology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK.
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
34
|
Shree R, Mehta S, Goyal MK, Gaspar BL, Lal V. Muscle Biopsy: A Boon for Diagnosis of Mitochondrial Parkinsonism in Developing Countries. Ann Indian Acad Neurol 2019; 22:228-230. [PMID: 31007443 PMCID: PMC6472221 DOI: 10.4103/aian.aian_436_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial dysfunction plays an important role in the pathogenesis of Parkinson's disease. Primary genetic abnormalities in the mitochondrial DNA or nuclear DNA can cause parkinsonism. Mitochondrial parkinsonism presents with classical features of parkinsonism along with multisystem involvement. Genetic analysis is essential in reaching the diagnosis which is not always possible, especially in developing countries. Muscle biopsy can be a boon in this setting as exemplified in our report of two siblings where a diagnosis of mitochondrial parkinsonism was made on the basis of muscle biopsy.
Collapse
Affiliation(s)
- Ritu Shree
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sahil Mehta
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj K Goyal
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Balan L Gaspar
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivek Lal
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
35
|
Infantile Presentation of Leber Hereditary Optic Neuropathy "Plus" Disease. J Neuroophthalmol 2019; 39:249-252. [PMID: 30829945 DOI: 10.1097/wno.0000000000000753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Lin L, Cui P, Qiu Z, Wang M, Yu Y, Wang J, Sun Q, Zhao H. The mitochondrial tRNA Ala 5587T>C and tRNA Leu(CUN) 12280A>G mutations may be associated with hypertension in a Chinese family. Exp Ther Med 2018; 17:1855-1862. [PMID: 30783460 DOI: 10.3892/etm.2018.7143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
Hypertension is a very common cardiovascular disorder, however, the molecular mechanism underlying this disease remains poorly understood. Recently, an increasing number of studies have demonstrated that mitochondrial (mt)DNA mutations serve important roles in the pathogenesis of hypertension. The current study reported the clinical and molecular characterization of a Chinese family with maternally inherited hypertension (the penetrance of hypertension was 71.4%). In addition, the entire mitochondrial transfer (mt-t)RNA genomes was amplified using a polymerase chain reaction (PCR) and identified through direct Sanger sequencing. Additionally, the mtDNA copy number in matrilineal relatives in this family was evaluated using quantitative PCR. The sequence analysis of the 22 mt-tRNA genes led to the identification of tRNAAla 5587T>C (thymine to cytosine) and tRNALeu(CUN) 12280A>G (adenine to guanine) mutations. Notably, the heteroplasmic 5587T>C mutation was located at the 3' end of tRNAAla (position 73), which is highly conserved from bacteria to human mitochondria. In addition, the 12280A>G mutation was revealed to occurs at the dihydrouridine loop of tRNALeu(CUN) (position 15) and may decrease the steady-state level of mt-tRNA. As a result, 5587T>C and 12280A>G mutations may lead to the failure of tRNAs metabolism and subsequently cause mitochondrial protein synthesis defects. Molecular analysis revealed that patients carrying the 5587T>C and 12280A>G mutations had a lower copy number of mtDNA compared with a control with hypertension, but without the mutations, suggesting that these mutations may cause mitochondrial dysfunctions that are responsible for hypertension. Therefore, mt-tRNAAla 5587T>C and tRNALeu(CUN) 12280A>G mutations may be involved in the pathogenesis of hypertension in this family.
Collapse
Affiliation(s)
- Lin Lin
- Health Examination Department, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peng Cui
- Multidisciplinary Consultation Center, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhipeng Qiu
- Emergency Department, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Min Wang
- Emergency Department, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yingchao Yu
- Emergency Department, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jing Wang
- Department of Joint Surgery, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qian Sun
- Department of Joint Surgery, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Hairong Zhao
- Department of General Medicine, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
37
|
A novel ADCK4 mutation in a Chinese family with ADCK4-Associated glomerulopathy. Biochem Biophys Res Commun 2018; 506:444-449. [DOI: 10.1016/j.bbrc.2018.10.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 11/15/2022]
|
38
|
Guo Y, Hong SQ, Jiang L. [An interpretation of the expert consensus on standards for the management of patients with primary mitochondrial disease from the Mitochondrial Medicine Society]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:887-892. [PMID: 30477617 PMCID: PMC7389018 DOI: 10.7499/j.issn.1008-8830.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/06/2018] [Indexed: 06/09/2023]
Abstract
Primary mitochondrial disease is the most common inborn error of metabolism and is highly heterogeneous in terms of clinical manifestations and inheritance pattern. It has high mortality and disability rates. Multiple systems are often involved in this disease, and it is necessary to perform comprehensive evaluation and multidisciplinary management. The Mitochondrial Medicine Society issued the standard for the management of patients with primary mitochondrial disease: consensus statements from the Mitochondrial Medicine Society in 2017. The statements provided recommendations based on such consensus to guide the management and care of patients. This article interprets and summarizes the screening of organs and systems commonly involved in primary mitochondrial disease and the management of patients according to the consensus.
Collapse
Affiliation(s)
- Yi Guo
- Department of Neurology, Children's Hospital, Chongqing Medical University, Chongqing 400014, China.
| | | | | |
Collapse
|
39
|
Poulton J, Finsterer J, Yu-Wai-Man P. Genetic Counselling for Maternally Inherited Mitochondrial Disorders. Mol Diagn Ther 2018; 21:419-429. [PMID: 28536827 DOI: 10.1007/s40291-017-0279-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this review was to provide an evidence-based approach to frequently asked questions relating to the risk of transmitting a maternally inherited mitochondrial disorder (MID). We do not address disorders linked with disturbed mitochondrial DNA (mtDNA) maintenance, causing mtDNA depletion or multiple mtDNA deletions, as these are autosomally inherited. The review addresses questions regarding prognosis, recurrence risks and the strategies available to prevent disease transmission. The clinical and genetic complexity of maternally inherited MIDs represent a major challenge for patients, their relatives and health professionals. Since many of the genetic and pathophysiological aspects of MIDs remain unknown, counselling of affected patients and at-risk family members remains difficult. MtDNA mutations are maternally transmitted or, more rarely, they are sporadic, occurring de novo (~25%). Females carrying homoplasmic mtDNA mutations will transmit the mutant species to all of their offspring, who may or may not exhibit a similar phenotype depending on modifying, secondary factors. Females carrying heteroplasmic mtDNA mutations will transmit a variable amount of mutant mtDNA to their offspring, which can result in considerable phenotypic heterogeneity among siblings. The majority of mtDNA rearrangements, such as single large-scale deletions, are sporadic, but there is a small risk of recurrence (~4%) among the offspring of affected women. The range and suitability of reproductive choices for prospective mothers is a complex area of mitochondrial medicine that needs to be managed by experienced healthcare professionals as part of a multidisciplinary team. Genetic counselling is facilitated by the identification of the underlying causative genetic defect. To provide more precise genetic counselling, further research is needed to clarify the secondary factors that account for the variable penetrance and the often marked differential expressivity of pathogenic mtDNA mutations both within and between families.
Collapse
Affiliation(s)
- Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - Josef Finsterer
- Krankenanstalt Rudolfstiftung, Postfach 20, 1180, Vienna, Austria.
| | - Patrick Yu-Wai-Man
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK.,NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Ridge PG, Kauwe JSK. Mitochondria and Alzheimer's Disease: the Role of Mitochondrial Genetic Variation. CURRENT GENETIC MEDICINE REPORTS 2018; 6:1-10. [PMID: 29564191 PMCID: PMC5842281 DOI: 10.1007/s40142-018-0132-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Purpose of Review Alzheimer’s disease (AD) is the most common form of dementia, affects an increasing number of people worldwide, has a rapidly increasing incidence, and is fatal. In the past several years, significant progress has been made towards solving the genetic architecture of AD, but our understanding remains incomplete and has not led to treatments that either cure or slow disease. There is substantial evidence that mitochondria are involved in AD: mitochondrial functional declines in AD, mitochondrial encoded gene expression changes, mitochondria are morphologically different, and mitochondrial fusion/fission are modified. While a majority of mitochondrial proteins are nuclear encoded and could lead to malfunction in mitochondria, the mitochondrial genome encodes numerous proteins important for the electron transport chain, which if damaged could possibly lead to mitochondrial changes observed in AD. Here, we review publications that describe a relationship between the mitochondrial genome and AD and make suggestions for analysis approaches and data acquisition, from existing datasets, to study the mitochondrial genetics of AD. Recent Findings Numerous mitochondrial haplogroups and SNPs have been reported to influence risk for AD, but the majority of these have not been replicated, nor experimentally validated. Summary The role of the mitochondrial genome in AD remains elusive, and several impediments exist to fully understand the relationship between the mitochondrial genome and AD. Yet, by leveraging existing datasets and implementing appropriate analysis approaches, determining the role of mitochondrial genetics in risk for AD is possible.
Collapse
Affiliation(s)
- Perry G. Ridge
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602 USA
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602 USA
| |
Collapse
|
41
|
Finsterer J, Zarrouk-Mahjoub S. Biomarkers for Detecting Mitochondrial Disorders. J Clin Med 2018; 7:E16. [PMID: 29385732 PMCID: PMC5852432 DOI: 10.3390/jcm7020016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 12/28/2017] [Accepted: 01/19/2018] [Indexed: 01/22/2023] Open
Abstract
(1) Objectives: Mitochondrial disorders (MIDs) are a genetically and phenotypically heterogeneous group of slowly or rapidly progressive disorders with onset from birth to senescence. Because of their variegated clinical presentation, MIDs are difficult to diagnose and are frequently missed in their early and late stages. This is why there is a need to provide biomarkers, which can be easily obtained in the case of suspecting a MID to initiate the further diagnostic work-up. (2) Methods: Literature review. (3) Results: Biomarkers for diagnostic purposes are used to confirm a suspected diagnosis and to facilitate and speed up the diagnostic work-up. For diagnosing MIDs, a number of dry and wet biomarkers have been proposed. Dry biomarkers for MIDs include the history and clinical neurological exam and structural and functional imaging studies of the brain, muscle, or myocardium by ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), MR-spectroscopy (MRS), positron emission tomography (PET), or functional MRI. Wet biomarkers from blood, urine, saliva, or cerebrospinal fluid (CSF) for diagnosing MIDs include lactate, creatine-kinase, pyruvate, organic acids, amino acids, carnitines, oxidative stress markers, and circulating cytokines. The role of microRNAs, cutaneous respirometry, biopsy, exercise tests, and small molecule reporters as possible biomarkers is unsolved. (4) Conclusions: The disadvantages of most putative biomarkers for MIDs are that they hardly meet the criteria for being acceptable as a biomarker (missing longitudinal studies, not validated, not easily feasible, not cheap, not ubiquitously available) and that not all MIDs manifest in the brain, muscle, or myocardium. There is currently a lack of validated biomarkers for diagnosing MIDs.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Postfach 20, 1180 Vienna, Austria.
| | - Sinda Zarrouk-Mahjoub
- El Manar and Genomics Platform, Pasteur Institute of Tunis, University of Tunis, Tunis 1068, Tunisia.
| |
Collapse
|
42
|
Abstract
Dystonia is a heterogeneous disorder characterized by involuntary muscle contractions, twisting movements, and abnormal postures in various body regions. It is widely accepted that the basal ganglia are involved in the pathogenesis of dystonia. A growing body of evidence, however, is challenging the traditional view and suggest that the cerebellum may also play a role in dystonia. Studies on animals indicate that experimental manipulations of the cerebellum lead to dystonic-like movements. Several clinical observations, including those from secondary dystonia cases as well as neurophysiologic and neuroimaging studies in human patients, provide further evidence in humans of a possible relationship between cerebellar abnormalities and dystonia. Claryfing the role of the cerebellum in dystonia is an important step towards providing alternative treatments based on noninvasive brain stimulation techniques.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli, Italy
| | - Alfredo Berardelli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; Neuromed Institute IRCCS, Pozzilli, Italy.
| |
Collapse
|
43
|
Parikh S, Goldstein A, Karaa A, Koenig MK, Anselm I, Brunel-Guitton C, Christodoulou J, Cohen BH, Dimmock D, Enns GM, Falk MJ, Feigenbaum A, Frye RE, Ganesh J, Griesemer D, Haas R, Horvath R, Korson M, Kruer MC, Mancuso M, McCormack S, Raboisson MJ, Reimschisel T, Salvarinova R, Saneto RP, Scaglia F, Shoffner J, Stacpoole PW, Sue CM, Tarnopolsky M, Van Karnebeek C, Wolfe LA, Cunningham ZZ, Rahman S, Chinnery PF. Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med 2017; 19:S1098-3600(21)04766-3. [PMID: 28749475 PMCID: PMC7804217 DOI: 10.1038/gim.2017.107] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
The purpose of this statement is to provide consensus-based recommendations for optimal management and care for patients with primary mitochondrial disease. This statement is intended for physicians who are engaged in the diagnosis and management of these patients. Working group members were appointed by the Mitochondrial Medicine Society. The panel included members with several different areas of expertise. The panel members utilized surveys and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. Consensus-based recommendations are provided for the routine care and management of patients with primary genetic mitochondrial disease.
Collapse
Affiliation(s)
- Sumit Parikh
- Center for Child Neurology, Cleveland Clinic Children’s Hospital, Cleveland, Ohio, USA
| | - Amy Goldstein
- Division of Child Neurology, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amel Karaa
- Division of Genetics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mary Kay Koenig
- Division of Child and Adolescent Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Irina Anselm
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - John Christodoulou
- Neurodevelopmental Genomics Research Group, Murdoch Childrens Research Institute, and Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Bruce H. Cohen
- Neurodevelopmental Science Center, Children’s Hospital Medical Center of Akron, Akron, Ohio, USA
| | - David Dimmock
- Rady Children’s Institute for Genomic Medicine, San Diego, California, USA
| | - Gregory M. Enns
- Division of Medical Genetics, Department of Pediatrics, Stanford University Lucile Packard Children’s Hospital, Palo Alto, California, USA
| | - Marni J. Falk
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Annette Feigenbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, University of California San Diego and Rady Childrens Hospital, San Diego, California, USA
| | - Richard E. Frye
- Department of Pediatrics, University of Arkansas Medical Sciences, Little Rock, Arkansas, USA
| | - Jaya Ganesh
- Division of Genetics, Department of Pediatrics, Cooper Medical School at Rowan University, Camden, New Jersey, USA
| | - David Griesemer
- Division of Neurology, Levine Children’s Hospital, Charlotte, North Carolina, USA
| | - Richard Haas
- Departments of Neurosciences and Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, Rady Children’s Hospital, San Diego, California, USA
| | - Rita Horvath
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mark Korson
- Genetic Metabolic Center for Education, Salem, Massachusetts, USA
| | - Michael C. Kruer
- Department of Pediatric Neurology, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Michelangelo Mancuso
- Department of Experimental and Clinical Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Shana McCormack
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Tyler Reimschisel
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ramona Salvarinova
- Division of Biochemical Diseases, BC Children’s Hospital, British Columbia, Canada
| | - Russell P. Saneto
- Department of Neurology, Seattle Children’s Hospital/University of Washington, Seattle, Washington, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - John Shoffner
- Neurology, Biochemical & Molecular Genetics, Atlanta, Georgia, USA
| | - Peter W. Stacpoole
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Carolyn M. Sue
- Department of Neurology and Kolling Institute, Royal North Shore Hospital, St Leonards, Australia
| | - Mark Tarnopolsky
- Division of Neurology, McMaster University, Hamilton, Ontario, Canada
| | - Clara Van Karnebeek
- Department of Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatrics, Centre for Molecular Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lynne A. Wolfe
- Undiagnosed Diseases Network, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Patrick F. Chinnery
- Department of Clinical Neurosciences & MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
44
|
Schreglmann SR, Riederer F, Galovic M, Ganos C, Kägi G, Waldvogel D, Jaunmuktane Z, Schaller A, Hidding U, Krasemann E, Michels L, Baumann CR, Bhatia K, Jung HH. Movement disorders in genetically confirmed mitochondrial disease and the putative role of the cerebellum. Mov Disord 2017; 33:146-155. [PMID: 28901595 DOI: 10.1002/mds.27174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mitochondrial disease can present as a movement disorder. Data on this entity's epidemiology, genetics, and underlying pathophysiology, however, is scarce. OBJECTIVE The objective of this study was to describe the clinical, genetic, and volumetric imaging data from patients with mitochondrial disease who presented with movement disorders. METHODS In this retrospective analysis of all genetically confirmed mitochondrial disease cases from three centers (n = 50), the prevalence and clinical presentation of video-documented movement disorders was assessed. Voxel-based morphometry from high-resolution MRI was employed to compare cerebral and cerebellar gray matter volume between mitochondrial disease patients with and without movement disorders and healthy controls. RESULTS Of the 50 (30%) patients with genetically confirmed mitochondrial disease, 15 presented with hypokinesia (parkinsonism 3/15), hyperkinesia (dystonia 5/15, myoclonus 3/15, chorea 2/15), and ataxia (3/15). In 3 patients, mitochondrial disease presented as adult-onset isolated dystonia. In comparison to healthy controls and mitochondrial disease patients without movement disorders, patients with hypo- and hyperkinetic movement disorders had significantly more cerebellar atrophy and an atrophy pattern predominantly involving cerebellar lobules VI and VII. CONCLUSION This series provides clinical, genetic, volumetric imaging, and histologic data that indicate major involvement of the cerebellum in mitochondrial disease when it presents with hyper- and hypokinetic movement disorders. As a working hypothesis addressing the particular vulnerability of the cerebellum to energy deficiency, this adds substantially to the pathophysiological understanding of movement disorders in mitochondrial disease. Furthermore, it provides evidence that mitochondrial disease can present as adult-onset isolated dystonia. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sebastian R Schreglmann
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, Queen Square, London, UK.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland.,Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Franz Riederer
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.,Neurological Center Rosenhuegel and Karl Landsteiner Institute for Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Marian Galovic
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,UK National Institute for Health Research, University College London Hospitals Biomedical Research Centre.,Department of Clinical and Experimental Epilepsy, University College London (UCL) Institute of Neurology, London, UK, Epilepsy Society, Chalfont St. Peter, UK
| | - Christos Ganos
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, Queen Square, London, UK.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Kägi
- Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Daniel Waldvogel
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Zane Jaunmuktane
- Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Andre Schaller
- Department of Genetics, Inselspital Bern, Bern, Switzerland
| | - Ute Hidding
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ernst Krasemann
- Department of Human Genetics, Medizinisches Versorgungszentrum (MVZ) Labor Fenner GmbH, Hamburg, Germany
| | - Lars Michels
- Clinic of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Kailash Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, Queen Square, London, UK
| | - Hans H Jung
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Mitochondrial movement disorders. Rev Neurol (Paris) 2016; 172:716-717. [PMID: 27773446 DOI: 10.1016/j.neurol.2016.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022]
|