1
|
Segarra-Casas A, Iruzubieta P, Kapetanovic S, Hernández-Laín A, Jericó I, Fernández-Torrón R, Maneiro M, Marco-Moreno P, Zelaya-Huerta MV, Rodríguez-Santiago B, Calafell F, Töpf A, Straub V, Vallejo-Illarramendi A, López de Munain A, Gallano P, Gonzalez-Quereda L. A founder variant in the RYR1 gene is associated with hyperCKemia, myalgia and muscle cramps. Eur J Neurol 2025; 32:e16471. [PMID: 39742415 DOI: 10.1111/ene.16471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND AND PURPOSE Pathogenic variants in the RYR1 gene have been associated with a variety of conditions, ranging from congenital myopathy to adult manifestations. Our aim was to characterize the p.Leu2286Val variant in 17 Basque patients, to accurately determine its correlation with clinical features and to explore the possible founder effect of the variant. METHODS Families harbouring the p.Leu2286 RYR1 variant underwent a detailed clinical evaluation, including muscle magnetic resonance imaging, electromyography and muscle biopsy. Haplotypes were analysed in available patients and their relatives. RESULTS Individuals carrying the p.Leu2286Val shared a common haplotype, suggesting a founder event in the Basque Country population. The most prevalent features were exertional myalgia, high creatine kinase (CK) levels, cramps and muscle hypertrophy. None of the patients carrying only the p.Leu2286Val showed progression to severe muscle weakness and muscle magnetic resonance imaging showed a heterogeneous muscle involvement. Muscle biopsy revealed non-specific findings in two patients and features associated with central core disease in one patient carrying only the p.Leu2286Val and two patients harbouring an additional RYR1 variant. Three individuals carrying an in trans RYR1 variant presented with an earlier onset and more severe phenotype. CONCLUSION Here, it is shown that the dominantly inherited p.Leu2286Val RYR1 founder variant is associated with a milder phenotype of exercise intolerance, myalgia and hyperCKemia.
Collapse
Affiliation(s)
- Alba Segarra-Casas
- Genetics Department, Institut de Recerca Sant Pau (IR SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Genetics and Microbiology Department, Universitat Autonòma de Barcelona, Bellaterra, Spain
| | - Pablo Iruzubieta
- Group of Neuromuscular Diseases, Donostia University Hospital, Biodonostia-Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
- Faculty of Medicine, University of Deusto, Bilbao, Spain
| | - Solange Kapetanovic
- ALS and Neuromuscular Unit, Department of Neurology, Hospital Universitario Basurto, Bilbao, Spain
- Nucleic Acid Therapeutics for Rare Diseases-NAT-RD, Biobizkaia Basque Health Research Institute (IIS Biobizkaia), Barakaldo, Spain
| | - Aurelio Hernández-Laín
- Neuropathology Unit, imas12 Research Institute, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ivonne Jericó
- Department of Neurology, Neuromuscular and Motor Neuron Research Group, Navarra Health Research Institute (IdisNA), Hospital Universitario de Navarra, Pamplona, Spain
| | - Roberto Fernández-Torrón
- Group of Neuromuscular Diseases, Donostia University Hospital, Biodonostia-Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
- Faculty of Medicine, University of Deusto, Bilbao, Spain
| | - Miren Maneiro
- Group of Neuromuscular Diseases, Donostia University Hospital, Biodonostia-Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Pablo Marco-Moreno
- Group of Neuromuscular Diseases, Donostia University Hospital, Biodonostia-Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | | | - Benjamín Rodríguez-Santiago
- Genetics Department, Institut de Recerca Sant Pau (IR SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Calafell
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ainara Vallejo-Illarramendi
- Group of Neuromuscular Diseases, Donostia University Hospital, Biodonostia-Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
- Group of Neurosciences, Department of Pediatrics, University of the Basque Country UPV-EHU, Donostia-San Sebastián, Spain
| | - Adolfo López de Munain
- Group of Neuromuscular Diseases, Donostia University Hospital, Biodonostia-Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
- Faculty of Medicine, University of Deusto, Bilbao, Spain
- Group of Neurosciences, Department of Neurosciences, University of the Basque Country UPV-EHU, Donostia-San Sebastián, Spain
| | - Pia Gallano
- Genetics Department, Institut de Recerca Sant Pau (IR SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Gonzalez-Quereda
- Genetics Department, Institut de Recerca Sant Pau (IR SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Buyle C, Vanclooster P, Platteeuw J, Mortelé P, Linden P, Floré P, Ryckaert T. Exertion induced rhabdomyolysis in both triceps muscles in a 36-year old woman: A case report. Radiol Case Rep 2024; 19:3308-3315. [PMID: 38817640 PMCID: PMC11137360 DOI: 10.1016/j.radcr.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Rhabdomyolysis is a condition, often caused by strenuous exercise, which can lead to acute kidney injury, severe electrolyte imbalances, coagulopathies, compartment syndromes, and even have a fatal outcome in a few cases. Recognition and management of fluid and electrolyte abnormalities is one of the first steps of treatment and key to a good outcome. We report a case of a 36-year old woman who was referred to the ER by her general practitioner with severe muscle tenderness to the upper arms and highly elevated creatine kinase (CK) serum levels. Initial ultrasound imagery showed a patent venous system but demonstrated a moderate edematous infiltration of the muscle bellies of both m. triceps. Additional magnetic resonance imagery showed a hyperintense signal in T2 in both triceps' muscles. Given the clinical presentation, the MRI-findings were consistent with a form of exertion-induced rhabdomyolysis of both triceps' muscles. The patient was admitted for administration of IV-fluids to prevent acute kidney injury. Symptoms resolved in a few days and new magnetic resonance imagery showed a regression of the subcutaneous soft tissue infiltration. The aim of this paper is to raise awareness about this diagnosis. If overlooked, severe complications as mentioned above can occur.
Collapse
Affiliation(s)
- Cindy Buyle
- Department of Physical Therapy and Rehabilitation medicine, AZ Delta Hospital, Torhout/Roeselare, Belgium
| | - Pieter Vanclooster
- Department of Physical Therapy and Rehabilitation medicine, AZ Delta Hospital, Torhout/Roeselare, Belgium
| | - Joke Platteeuw
- Department of Physical Therapy and Rehabilitation medicine, AZ Delta Hospital, Torhout/Roeselare, Belgium
| | - Piet Mortelé
- Department of Physical Therapy and Rehabilitation medicine, AZ Delta Hospital, Torhout/Roeselare, Belgium
| | - Patrick Linden
- Department of Physical Therapy and Rehabilitation medicine, AZ Delta Hospital, Torhout/Roeselare, Belgium
| | - Pierre Floré
- Department of Physical Therapy and Rehabilitation medicine, AZ Delta Hospital, Torhout/Roeselare, Belgium
| | - Thomas Ryckaert
- Department of Radiology, AZ Delta Hospital, Roeselare, Belgium
| |
Collapse
|
3
|
Invernizzi F, Izzo R, Colangelo I, Legati A, Zanetti N, Garavaglia B, Lamantea E, Peverelli L, Ardissone A, Moroni I, Maggi L, Bonanno S, Fiori L, Velardo D, Magri F, Comi GP, Ronchi D, Ghezzi D, Lamperti C. NGS-Based Genetic Analysis in a Cohort of Italian Patients with Suspected Inherited Myopathies and/or HyperCKemia. Genes (Basel) 2023; 14:1393. [PMID: 37510298 PMCID: PMC10379733 DOI: 10.3390/genes14071393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Introduction/Aims HyperCKemia is considered a hallmark of neuromuscular diseases. It can be either isolated or associated with cramps, myalgia, weakness, myoglobinuria, or rhabdomyolysis, suggesting a metabolic myopathy. The aim of this work was to investigate possible genetic causes in order to help diagnose patients with recurrent hyperCKemia or clinical suspicion of inherited metabolic myopathy. Methods A cohort of 139 patients (90 adults and 49 children) was analyzed using a custom panel containing 54 genes associated with hyperCKemia. Results A definite genetic diagnosis was obtained in 15.1% of cases, while candidate variants or variants of uncertain significance were found in a further 39.5%. Similar percentages were obtained in patients with infantile or adult onset, with some different causative genes. RYR1 was the gene most frequently identified, either with single or compound heterozygous variants, while ETFDH variants were the most common cause for recessive cases. In one patient, mRNA analysis allowed identifying a large LPIN1 deletion missed by DNA sequencing, leading to a certain diagnosis. Conclusion These data confirm the high genetic heterogeneity of hyperCKemia and metabolic myopathies. The reduced diagnostic yield suggests the existence of additional genes associated with this condition but also allows speculation that a significant number of cases presenting with hyperCKemia or muscle symptoms are due to extrinsic, not genetic, factors.
Collapse
Affiliation(s)
- Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Rossella Izzo
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Isabel Colangelo
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Andrea Legati
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Nadia Zanetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Eleonora Lamantea
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Lorenzo Peverelli
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Anna Ardissone
- Child Neurology Unit-Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Isabella Moroni
- Child Neurology Unit-Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Lorenzo Maggi
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Silvia Bonanno
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Laura Fiori
- UOS di Malattie Metaboliche e Nutrizione, Ospedale dei Bambini Vittore Buzzi, 20154 Milan, Italy
| | - Daniele Velardo
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Magri
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giacomo P Comi
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, 20122 Milan, Italy
| | - Dario Ronchi
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, 20122 Milan, Italy
| | - Daniele Ghezzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
- Lab of Neurogenetics and Mitochondrial Disorders, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| |
Collapse
|
4
|
Kruijt N, den Bersselaar LV, Snoeck M, Kramers K, Riazi S, Bongers C, Treves S, Jungbluth H, Voermans N. RYR1-related rhabdomyolysis: a spectrum of hypermetabolic states due to ryanodine receptor dysfunction. Curr Pharm Des 2021; 28:2-14. [PMID: 34348614 DOI: 10.2174/1381612827666210804095300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
Variants in the ryanodine receptor-1 gene (RYR1) have been associated with a wide range of neuromuscular conditions, including various congenital myopathies and malignant hyperthermia (MH). More recently, a number of RYR1 variants, mostly MH-associated, have been demonstrated to contribute to rhabdomyolysis events not directly related to anesthesia in otherwise healthy individuals. This review focuses on RYR1-related rhabdomyolysis, in the context of several clinical presentations (i.e., exertional rhabdomyolysis, exertional heat illnesses and MH), and conditions involving a similar hypermetabolic state, in which RYR1 variants may be present (i.e., neuroleptic malignant syndrome and serotonin syndrome). The variety of triggers that can evoke rhabdomyolysis, on their own or in combination, as well as the number of potentially associated complications, illustrates that this is a condition relevant to several medical disciplines. External triggers include but are not limited to strenuous physical exercise, especially if unaccustomed or performed under challenging environmental conditions (e.g., high ambient temperature or humidity), alcohol/illicit drugs, prescription medication (in particular statins, other anti-lipid agents, antipsychotics and antidepressants) infection, or heat. Amongst all patients presenting with rhabdomyolysis, a genetic susceptibility is present in a proportion, with RYR1 being one of the most common genetic causes. Clinical clues for a genetic susceptibility include recurrent rhabdomyolysis, creatine kinase (CK) levels above 50 times the upper limit of normal, hyperCKemia lasting for 8 weeks or longer, drug/medication doses insufficient to explain the rhabdomyolysis event, and a positive family history. For the treatment or prevention of RYR1-related rhabdomyolysis, the RYR1 antagonist dantrolene can be administered, both in the acute phase, or prophylactically in patients with a history of muscle cramps and/or recurrent rhabdomyolysis events. Aside from dantrolene, several other drugs are being investigated for their potential therapeutic use in RYR1-related disorders. These findings offer further therapeutic perspectives for humans, suggesting an important area for future research.
Collapse
Affiliation(s)
- Nick Kruijt
- Department of Neurology, Radboud University Medical Centre, Nijmegen. Netherlands
| | | | - Marc Snoeck
- Malignant Hyperthermia Investigation Unit, Canisius Wilhelmina Hospital, Nijmegen. Netherlands
| | - Kees Kramers
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen. Netherlands
| | - Sheila Riazi
- Department of Anesthesiology and Pain Medicine, University Health Network, University of Toronto, Toronto, ON. Canada
| | - Coen Bongers
- Department of Physiology, Radboudumc, Nijmegen. Netherlands
| | - Susan Treves
- Department of Biomedicine, University Hospital Basel. Switzerland
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London. United Kingdom
| | - Nicol Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen. Netherlands
| |
Collapse
|
5
|
Inherited Neuromuscular Disorders: Which Role for Serum Biomarkers? Brain Sci 2021; 11:brainsci11030398. [PMID: 33801069 PMCID: PMC8004068 DOI: 10.3390/brainsci11030398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuromuscular disorders (INMD) are a heterogeneous group of rare diseases that involve muscles, motor neurons, peripheral nerves or the neuromuscular junction. Several different lab abnormalities have been linked to INMD: sometimes they are typical of the disorder, but they usually appear to be less specific. Sometimes serum biomarkers can point out abnormalities in presymtomatic or otherwise asymptomatic patients (e.g., carriers). More often a biomarker of INMD is evaluated by multiple clinicians other than expert in NMD before the diagnosis, because of the multisystemic involvement in INMD. The authors performed a literature search on biomarkers in inherited neuromuscular disorders to provide a practical approach to the diagnosis and the correct management of INMD. A considerable number of biomarkers have been reported that support the diagnosis of INMD, but the role of an expert clinician is crucial. Hence, the complete knowledge of such abnormalities can accelerate the diagnostic workup supporting the referral to specialists in neuromuscular disorders.
Collapse
|
6
|
Chiba N, Matsuzaki M, Mawatari T, Mizuochi M, Sakurai A, Kinoshita K. Beneficial effects of dantrolene in the treatment of rhabdomyolysis as a potential late complication associated with COVID-19: a case report. Eur J Med Res 2021; 26:18. [PMID: 33557936 PMCID: PMC7868892 DOI: 10.1186/s40001-021-00489-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background Patients with severe COVID-19 have disorders of the respiratory, cardiovascular, coagulation, skeletal muscle, and central nervous systems. These systemic failures may be associated with cytokine release syndrome, characterized by hyperpyrexia, thrombocytopenia, hyperferritinemia, and the elevation of other inflammatory markers. Rhabdomyolysis with high fever is a complication that is rarely found in COVID-19. The exact relations of these clinical conditions in patients with COVID-19 remain unknown. Case presentation We present the case of a 36-year-old man with severe COVID-19 complicated by rhabdomyolysis and high fever. After admission, his condition continued to deteriorate, with a high body temperature. On day 9, the patient had elevated creatine kinase and myoglobin levels consistent with rhabdomyolysis (26,046 U/L and 3668 ng/mL, respectively). In addition to viral therapy, he was immediately treated with hydration. However, the patient had persistent fever and elevated creatine kinase levels. The patient was diagnosed with malignant hyperthermia as a late complication of COVID-19, although he had no hereditary predisposition to malignant hyperthermia or neuroleptic malignant syndrome. The administration of dantrolene with muscle relaxation and anti-inflammatory function showed potential efficacy for rhabdomyolysis, high fever, and increased plasma inflammatory markers. Conclusions Malignant hyperthermia is triggered by not only anesthetic agents but also viral infections. A possible mechanism of malignant hyperthermia is hypersensitivity of calcium release from the sarcoplasmic reticulum. These include mutations in or the activation of the skeletal muscle ryanodine receptor calcium release channel. Dantrolene is a ryanodine receptor antagonist and is used as an anti-inflammatory agent. The administration of dantrolene showed potential efficacy for rhabdomyolysis, high body temperature due to inflammation, and increased inflammatory markers. The underlying mechanism of the association of rhabdomyolysis and high fever in COVID-19 might be similar to the pathogenesis of malignant hyperthermia.
Collapse
Affiliation(s)
- Nobutaka Chiba
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamimachi, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Masakazu Matsuzaki
- Department of Emergency and Critical Care Medicine, Nihon University Hospital, Tokyo, Japan
| | - Takayuki Mawatari
- Department of Internal Medicine, Kanamachi Kisen Hospital, Tokyo, Japan
| | - Minori Mizuochi
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamimachi, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Atsushi Sakurai
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamimachi, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Kosaku Kinoshita
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamimachi, Itabashi-Ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
7
|
Zullo A, Frisso G, Carsana A. Influence of physical activity on structure and function of the RyR1 calcium channel: a systematic review. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2020. [DOI: 10.23736/s0393-3660.19.04238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
HyperCKemia and rhabdomyolysis in the neuroleptic malignant and serotonin syndromes: A literature review. Neuromuscul Disord 2020; 30:949-958. [PMID: 33250373 DOI: 10.1016/j.nmd.2020.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/23/2022]
Abstract
Neuroleptic malignant syndrome and serotonin syndrome are two syndromes whose molecular bases remain poorly understood. The phenotypes of both syndromes overlap with other syndromes that have a clear genetic background, in particular RYR1-related malignant hyperthermia. Through a literature review, performed according to the PRISMA guidelines, we aimed to report the clinical features of both syndromes, and the results of genetic testing performed. 10 case series and 99 case reports were included, comprising 134 patients. A male predominance of 58% was found. The median age was 35 (range 4-84) years. Eight patients experienced recurrent episodes of rhabdomyolysis. Genetic analysis was performed in eleven patients (8%), revealing four RYR1 variants, three likely benign (p.Asp849Asn, p.Arg4645Gln, p.Arg4645Gln) and one variant of uncertain significance (p.Ala612Thr). This review underlines that a subset of patients with neuroleptic malignant syndrome and serotonin syndrome develop recurrent episodes of rhabdomyolysis. This recurrent pattern suggests a possible underlying (genetic) susceptibility. However, the genetic background of neuroleptic malignant syndrome and serotonin syndrome has only been investigated to a very limited degree so far. The increasing availability of next generation sequencing offers an opportunity to identify potentially associated genetic backgrounds, especially in patients with recurrent episodes or a positive family history.
Collapse
|
9
|
Aleman M, Zhang R, Feng W, Qi L, Lopez JR, Crowe C, Dong Y, Cherednichenko G, Pessah IN. Dietary Caffeine Synergizes Adverse Peripheral and Central Responses to Anesthesia in Malignant Hyperthermia Susceptible Mice. Mol Pharmacol 2020; 98:351-363. [PMID: 32764093 PMCID: PMC7491310 DOI: 10.1124/mol.120.119412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022] Open
Abstract
Ryanodine receptor (RYR) mutations confer stress-triggered malignant hyperthermia (MH) susceptibility. Dietary caffeine (CAF) is the most commonly consumed psychoactive compound by humans. CAF-triggered Ca2+ release and its influences on skeletal muscle contractility are widely used as experimental tools to study RYR function/dysfunction and diagnose MH susceptibility. We hypothesize that dietary CAF achieving blood levels measured in human plasma exacerbates the penetrance of RYR1 MH susceptibility mutations triggered by gaseous anesthetic, affecting both central and peripheral adverse responses. Heterozygous R163C-RYR1 (HET) MH susceptible mice are used to investigate the influences of dietary CAF on both peripheral and central responses before and after induction of halothane (HAL) maintenance anesthesia under experimental conditions that maintain normal core body temperature. HET mice receiving CAF (plasma CAF 893 ng/ml) have significantly shorter times to respiratory arrest compared with wild type, without altering blood chemistry or displaying hyperthermia or muscle rigor. Intraperitoneal bolus dantrolene before HAL prolongs time to respiratory arrest. A pilot electrographic study using subcutaneous electrodes reveals that dietary CAF does not alter baseline electroencephalogram (EEG) total power, but significantly shortens delay to isoelectric EEG, which precedes respiratory and cardiac arrest. CAF ± HAL are studied on RYR1 single-channel currents and HET myotubes to define molecular mechanisms of gene-by-environment synergism. Strong pharmacological synergism between CAF and HAL is demonstrated in both single-channel and myotube preparations. Central and peripheral nervous systems mediate adverse responses to HAL in a HET model of MH susceptibility exposed to dietary CAF, a modifiable lifestyle factor that may mitigate risks of acute and chronic diseases associated with RYR1 mutations. SIGNIFICANCE STATEMENT: Dietary caffeine at a human-relevant dose synergizes adverse peripheral and central responses to anesthesia in malignant hyperthermia susceptible mice. Synergism of these drugs can be attributed to their actions at ryanodine receptors.
Collapse
Affiliation(s)
- Monica Aleman
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Rui Zhang
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Lihong Qi
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Jose R Lopez
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Chelsea Crowe
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Genady Cherednichenko
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| |
Collapse
|
10
|
Truong KM, Cherednichenko G, Pessah IN. Interactions of Dichlorodiphenyltrichloroethane (DDT) and Dichlorodiphenyldichloroethylene (DDE) With Skeletal Muscle Ryanodine Receptor Type 1. Toxicol Sci 2020; 170:509-524. [PMID: 31127943 DOI: 10.1093/toxsci/kfz120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) are ubiquitous in the environment and detected in tissues of living organisms. Although DDT owes its insecticidal activity to impeding closure of voltage-gated sodium channels, it mediates toxicity in mammals by acting as an endocrine disruptor (ED). Numerous studies demonstrate DDT/DDE to be EDs, but studies examining muscle-specific effects mediated by nonhormonal receptors in mammals are lacking. Therefore, we investigated whether o,p'-DDT, p,p'-DDT, o,p'-DDE, and p,p'-DDE (DDx, collectively) alter the function of ryanodine receptor type 1 (RyR1), a protein critical for skeletal muscle excitation-contraction coupling and muscle health. DDx (0.01-10 µM) elicited concentration-dependent increases in [3H]ryanodine ([3H]Ry) binding to RyR1 with o,p'-DDE showing highest potency and efficacy. DDx also showed sex differences in [3H]Ry-binding efficacy toward RyR1, where [3H]Ry-binding in female muscle preparations was greater than male counterparts. Measurements of Ca2+ transport across sarcoplasmic reticulum (SR) membrane vesicles further confirmed DDx can selectively engage with RyR1 to cause Ca2+ efflux from SR stores. DDx also disrupts RyR1-signaling in HEK293T cells stably expressing RyR1 (HEK-RyR1). Pretreatment with DDx (0.1-10 µM) for 100 s, 12 h, or 24 h significantly sensitized Ca2+-efflux triggered by RyR agonist caffeine in a concentration-dependent manner. o,p'-DDE (24 h; 1 µM) significantly increased Ca2+-transient amplitude from electrically stimulated mouse myotubes compared with control and displayed abnormal fatigability. In conclusion, our study demonstrates DDx can directly interact and modulate RyR1 conformation, thereby altering SR Ca2+-dynamics and sensitize RyR1-expressing cells to RyR1 activators, which may ultimately contribute to long-term impairments in muscle health.
Collapse
Affiliation(s)
- Kim M Truong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616-5270
| | - Gennady Cherednichenko
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616-5270
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616-5270
| |
Collapse
|
11
|
Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Update on Congenital Myopathies in Adulthood. Int J Mol Sci 2020; 21:ijms21103694. [PMID: 32456280 PMCID: PMC7279481 DOI: 10.3390/ijms21103694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital myopathies (CMs) constitute a group of heterogenous rare inherited muscle diseases with different incidences. They are traditionally grouped based on characteristic histopathological findings revealed on muscle biopsy. In recent decades, the ever-increasing application of modern genetic technologies has not just improved our understanding of their pathophysiology, but also expanded their phenotypic spectrum and contributed to a more genetically based approach for their classification. Later onset forms of CMs are increasingly recognised. They are often considered milder with slower progression, variable clinical presentations and different modes of inheritance. We reviewed the key features and genetic basis of late onset CMs with a special emphasis on those forms that may first manifest in adulthood.
Collapse
|
12
|
Nicolau S, Liewluck T, Tracy JA, Laughlin RS, Milone M. Congenital myopathies in the adult neuromuscular clinic: Diagnostic challenges and pitfalls. NEUROLOGY-GENETICS 2019; 5:e341. [PMID: 31321302 PMCID: PMC6563518 DOI: 10.1212/nxg.0000000000000341] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/29/2019] [Indexed: 01/28/2023]
Abstract
Objective To investigate the spectrum of undiagnosed congenital myopathies (CMs) in adults presenting to our neuromuscular clinic and to identify the pitfalls responsible for diagnostic delays. Methods We conducted a retrospective review of patients diagnosed with CM in adulthood in our neuromuscular clinic between 2008 and 2018. Patients with an established diagnosis of CM before age 18 years were excluded. Results We identified 26 patients with adult-onset CM and 18 patients with pediatric-onset CM who were only diagnosed in adulthood. Among patients with adult onset, the median age at onset was 47 years, and the causative genes were RYR1 (11 families), MYH7 (3 families) and ACTA1 (2 families), and SELENON, MYH2, DNM2, and CACNA1S (1 family each). Of 33 patients who underwent muscle biopsy, only 18 demonstrated histologic abnormalities characteristic of CM. Before their diagnosis of CM, 23 patients had received other diagnoses, most commonly non-neurologic disorders. The main causes of diagnostic delays were mildness of the symptoms delaying neurologic evaluation and attribution of the symptoms to coexisting comorbidities, particularly among pediatric-onset patients. Conclusions CMs in adulthood represent a diagnostic challenge, as they may lack the clinical and myopathologic features classically associated with CM. Our findings underscore the need for a revision of the terminology and current classification of these disorders.
Collapse
|
13
|
Truong KM, Pessah IN. Comparison of Chlorantraniliprole and Flubendiamide Activity Toward Wild-Type and Malignant Hyperthermia-Susceptible Ryanodine Receptors and Heat Stress Intolerance. Toxicol Sci 2019; 167:509-523. [PMID: 30329129 PMCID: PMC6358238 DOI: 10.1093/toxsci/kfy256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chlorantraniliprole (CP) and flubendiamide (FD) are widely used in agriculture globally to control lepidopteran pests. Both insecticides target ryanodine receptors (RyRs) and promote Ca2+ leak from sarcoplasmic reticulum (SR) within insect skeletal muscle yet are purportedly devoid of activity toward mammalian RyR1 and muscle. RyRs are ion channels that regulate intracellular Ca2+ release from SR during physiological excitation-contraction coupling. Mutations in RYR1 genes confer malignant hyperthermia susceptibility (MHS), a potentially lethal pharmacogenetic disorder in humans and animals. Compared with vehicle control, CP (10 µM) triggers a 65-fold higher rate of Ca2+ efflux from Ca2+-loaded mammalian WT-RyR1 SR vesicles, whereas FD (10 µM) produces negligible influence on Ca2+ leak. We, therefore, compared whether CP or FD differentially influence patterns of high-affinity [3H]ryanodine ([3H]Ry) binding to RyR1 isolated from muscle SR membranes prepared from adult C57BL/6J mice expressing WT, homozygous C-terminal MHS mutation T4826I, or heterozygous N-terminal MHS mutation R163C. Basal [3H]Ry binding differed among genotypes with rank order T4826I ≫R163C∼WT, regardless of [Ca2+] in the assay medium. Both CP and FD (0.01-100 µM) elicited concentration-dependent increase in [3H]Ry binding, although CP showed greater efficacy regardless of genotype or [Ca2+]. Exposure to CP (500 mg/kg; p.o) failed to shift intolerance to heat stress (38°C) characteristic of R163C and T4826I MHS mice, nor cause lethality in WT mice. Although nM-µM of either diamide is capable of differentially altering WT and MHS RyR1 conformation in vitro, human RyR1 mutations within putative diamide N- and C-terminal interaction domains do not alter heat stress intolerance (HSI) in vivo.
Collapse
Affiliation(s)
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616-5270
| |
Collapse
|
14
|
Damian MS, Wijdicks EFM. The clinical management of neuromuscular disorders in intensive care. Neuromuscul Disord 2018; 29:85-96. [PMID: 30639065 DOI: 10.1016/j.nmd.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Abstract
Life-threatening neuromuscular disorders affect a small, but growing group of patients in the intensive care unit who present special management problems, as well as great therapeutic opportunities. In inflammatory conditions, a cure is often possible, and for chronic, genetic or degenerative conditions, achieving the previous level of function is the target. Neuromuscular experts and intensivists need to cooperate closely to achieve the best possible outcomes. They need to acquire a very specific set of skills, including both a thorough understanding of the mechanics of ventilation as well as familiarity with the diagnostic categories of genetic and of autoimmune diseases. This review of the clinical management of adult neuromuscular disease in the ICU aims to provide an overview of the most important conditions encountered in the ICU and a practical approach to their diagnosis, monitoring, and treatment.
Collapse
Affiliation(s)
- Maxwell S Damian
- Neurology and Neurointensive Care, Cambridge University Hospitals and Ipswich Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Eelco F M Wijdicks
- Neurology Division of Critical Care Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Milone M, Liewluck T. The unfolding spectrum of inherited distal myopathies. Muscle Nerve 2018; 59:283-294. [PMID: 30171629 DOI: 10.1002/mus.26332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022]
Abstract
Distal myopathies are a group of rare muscle diseases characterized by distal weakness at onset. Although acquired myopathies can occasionally present with distal weakness, the majority of distal myopathies have a genetic etiology. Their age of onset varies from early-childhood to late-adulthood while the predominant muscle weakness can affect calf, ankle dorsiflexor, or distal upper limb muscles. A spectrum of muscle pathological changes, varying from nonspecific myopathic changes to rimmed vacuoles to myofibrillar pathology to nuclei centralization, have been noted. Likewise, the underlying molecular defect is heterogeneous. In addition, there is emerging evidence that distal myopathies can result from defective proteins encoded by genes causative of neurogenic disorders, be manifestation of multisystem proteinopathies or the result of the altered interplay between different genes. In this review, we provide an overview on the clinical, electrophysiological, pathological, and molecular aspects of distal myopathies, focusing on the most recent developments in the field. Muscle Nerve 59:283-294, 2019.
Collapse
Affiliation(s)
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Isackson PJ, Wang J, Zia M, Spurgeon P, Levesque A, Bard J, James S, Nowak N, Lee TK, Vladutiu GD. RYR1 and CACNA1S genetic variants identified with statin-associated muscle symptoms. Pharmacogenomics 2018; 19:1235-1249. [PMID: 30325262 PMCID: PMC6563124 DOI: 10.2217/pgs-2018-0106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/31/2018] [Indexed: 11/21/2022] Open
Abstract
AIM To examine the genetic differences between subjects with statin-associated muscle symptoms and statin-tolerant controls. MATERIALS & METHODS Next-generation sequencing was used to characterize the exomes of 76 subjects with severe statin-associated muscle symptoms and 50 statin-tolerant controls. RESULTS 12 probably pathogenic variants were found within the RYR1 and CACNA1S genes in 16% of cases with severe statin-induced myopathy representing a fourfold increase over variants found in statin-tolerant controls. Subjects with probably pathogenic RYR1 or CACNA1S variants had plasma CK 5X to more than 400X the upper limit of normal in addition to having muscle symptoms. CONCLUSIONS Genetic variants within the RYR1 and CACNA1S genes are likely to be a major contributor to the susceptibility to statin-associated muscle symptoms.
Collapse
Affiliation(s)
- Paul J Isackson
- Department of Pediatrics, State University of New York at Buffalo, NY 14203, USA
| | - Jianxin Wang
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Mohammad Zia
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Paul Spurgeon
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Adrian Levesque
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Jonathan Bard
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Smitha James
- New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Norma Nowak
- New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Tae Keun Lee
- Department of Pediatrics, State University of New York at Buffalo, NY 14203, USA
| | - Georgirene D Vladutiu
- Department of Pediatrics, State University of New York at Buffalo, NY 14203, USA
- Departments of Neurology & Pathology & Anatomical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
17
|
Nelson TE. Malignant Hyperthermia: From the OR to the Sidelines. Curr Sports Med Rep 2018; 17:254-255. [PMID: 30095544 DOI: 10.1249/jsr.0000000000000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Thomas E Nelson
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC
| |
Collapse
|
18
|
Witting N, Laforêt P, Voermans NC, Roux-Buisson N, Bompaire F, Rendu J, Duno M, Feillet F, Kamsteeg EJ, Poulsen NS, Dahlqvist JR, Romero NB, Fauré J, Vissing J, Behin A. Phenotype and genotype of muscle ryanodine receptor rhabdomyolysis-myalgia syndrome. Acta Neurol Scand 2018; 137:452-461. [PMID: 29635721 DOI: 10.1111/ane.12885] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Rhabdomyolysis and myalgia are common conditions, and mutation in the ryanodine receptor 1 gene (RYR1) is suggested to be a common cause. Due to the large size of RYR1, however, sequencing has not been widely accessible before the recent advent of next-generation sequencing technology and limited phenotypic descriptions are therefore available. MATERIAL & METHODS We present the medical history, clinical and ancillary findings of patients with RYR1 mutations and rhabdomyolysis and myalgia identified in Denmark, France and The Netherlands. RESULTS Twenty-two patients with recurrent rhabdomyolysis (CK > 10 000) or myalgia with hyperCKemia (>1.5 × ULN) and a RYR1 mutation were identified. One had mild wasting of the quadriceps muscle, but none had fixed weakness. Symptoms varied from being restricted to intense exercise to limiting ADL function. One patient developed transient kidney failure during rhabdomyolysis. Two received immunosuppressants on suspicion of myositis. None had episodes of malignant hyperthermia. Muscle biopsies were normal, but CT/MRI showed muscle hypertrophy in most. Delay from first symptom to diagnosis was 12 years on average. Fifteen different dominantly inherited mutations were identified. Ten were previously described as pathogenic and 5 were novel, but rare/absent from the background population, and predicted to be pathogenic by in silico analyses. Ten of the mutations were reported to give malignant hyperthermia susceptibility. CONCLUSION Mutations in RYR1 should be considered as a significant cause of rhabdomyolysis and myalgia syndrome in patients with the characteristic combination of rhabdomyolysis, myalgia and cramps, creatine kinase elevation, no weakness and often muscle hypertrophy.
Collapse
Affiliation(s)
- N. Witting
- Department of Neurology; Copenhagen Neuromuscular Centre; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - P. Laforêt
- Centre de Référence de Pathologie Neuromusculaire Paris-Est; Groupe Hospitalier Pitié-Salpêtrière; Institut de Myologie; AP-HP; Paris Cedex France
| | - N. C. Voermans
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| | - N. Roux-Buisson
- INSERM U121; Equipe CMyPath; Institut des Neurosciences; Grenoble France
- Biochimie Génétique et Moléculaire; Institut de Biologie et Pathologie; CHU; Grenoble France
| | - F. Bompaire
- Neurologie; Hopital d'instruction des Armées Percy; Clamart France
| | - J. Rendu
- INSERM U121; Equipe CMyPath; Institut des Neurosciences; Grenoble France
- Biochimie Génétique et Moléculaire; Institut de Biologie et Pathologie; CHU; Grenoble France
| | - M. Duno
- Department of Clinical Genetics; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - F. Feillet
- Service de Médecine Infantile 1; Centre de Référence des Maladies Héréditaires du Métabolisme; Centre Hospitalier Universitaire Brabois-Enfants; Vandœuvre-lès-Nancy France
| | - E.-J. Kamsteeg
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen The Netherlands
| | - N. S. Poulsen
- Department of Neurology; Copenhagen Neuromuscular Centre; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - J. R. Dahlqvist
- Department of Neurology; Copenhagen Neuromuscular Centre; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - N. B. Romero
- Laboratoire de Pathologie Musculaire Risler; Groupe Hospitalier Pitié-Salpêtrière; Paris France
| | - J. Fauré
- INSERM U121; Equipe CMyPath; Institut des Neurosciences; Grenoble France
- Biochimie Génétique et Moléculaire; Institut de Biologie et Pathologie; CHU; Grenoble France
| | - J. Vissing
- Department of Neurology; Copenhagen Neuromuscular Centre; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - A. Behin
- Centre de Référence de Pathologie Neuromusculaire Paris-Est; Groupe Hospitalier Pitié-Salpêtrière; Institut de Myologie; AP-HP; Paris Cedex France
| |
Collapse
|
19
|
Abstract
This article reviews advancements in the genetics of malignant hyperthermia, new technologies and approaches for its diagnosis, and the existing limitations of genetic testing for malignant hyperthermia. It also reviews the various RYR1-related disorders and phenotypes, such as myopathies, exertional rhabdomyolysis, and bleeding disorders, and examines the connection between these disorders and malignant hyperthermia.
Collapse
|
20
|
Bruchim Y, Horowitz M, Aroch I. Pathophysiology of heatstroke in dogs - revisited. Temperature (Austin) 2017; 4:356-370. [PMID: 29435477 PMCID: PMC5800390 DOI: 10.1080/23328940.2017.1367457] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/09/2023] Open
Abstract
Heatstroke results from a failure to dissipate accumulated heat during exposure to hot environments, or during strenuous physical exercise under heat stress. It is characterized by core body temperatures > 41°C, with central nervous system dysfunction. Functional morphology and thermoregulatory effectors differences between dogs and humans may require special heatstroke protective adaptations in dogs, however, the risk factors for developing heatstroke are similar in both. In dogs, these include hot, especially highly humid environments, excessive physical activity, obesity, large (>15 kg) body weight, being of certain breed (e.g., Labrador retrievers and brachycephalic breeds), upper airway obstruction and prolonged seizures. Lack of acclimation to heat and physical fitness decreases the survival of heat stroked dogs. At the systemic level, blood pooling within the large internal organs (e.g., spleen, liver) is a major contributor to the development of shock and consequent intestinal ischemia, hypoxia and endothelial hyperpermeability, commonly occurring in heatstroke patients. Evoked serious complications include rhabdomyolysis, acute kidney injury, acute respiratory distress syndrome and ultimately, sepsis and disseminated intravascular coagulation. The most common clinical signs in dogs include acute collapse, tachypnea, spontaneous bleeding, shock signs and mental abnormalities, including depression, disorientation or delirium, seizures, stupor and coma. In such dogs, presence of peripheral blood nucleated red blood cells uniquely occurs, and is a highly sensitive diagnostic and prognostic biomarker. Despite early, appropriate body cooling, and intensive supportive treatment, with no available specific treatment to ameliorate the severe inflammatory and hemostatic derangements, the mortality rate is around 50%, similar to that of human heatstroke victims. This review discusses the pathophysiology of canine heatstroke from a veterinarian's point of view, integrating new and old studies and knowledge.
Collapse
Affiliation(s)
- Yaron Bruchim
- The Hebrew University Veterinary Teaching Hospital and Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| | - Itamar Aroch
- The Hebrew University Veterinary Teaching Hospital and Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| |
Collapse
|
21
|
Laughlin RS, Niu Z, Wieben E, Milone M. RYR1 causing distal myopathy. Mol Genet Genomic Med 2017; 5:800-804. [PMID: 29178655 PMCID: PMC5702567 DOI: 10.1002/mgg3.338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022] Open
Abstract
Background Congenital myopathies due to ryanodine receptor (RYR1) mutations are increasingly identified and correlate with a wide range of phenotypes, most commonly that of malignant hyperthermia susceptibility and central cores on muscle biopsy with rare reports of distal muscle weakness, but in the setting of early onset global weakness. Methods We report a case of a patient presenting with childhood onset hand stiffness and adult onset progressive hand weakness and jaw contractures discovered to have two variants in the RYR1 gene. Results The patient manifested with distal upper limb weakness which progressed to involve the distal lower limb, proximal upper limb, as well as the face in addition to limited jaw opening. Creatine kinase was mildly elevated with EMG findings supporting a myopathy. Muscle biopsy showed features consistent with centronuclear myopathy. Whole exome sequencing revealed a novel heterozygous pathogenic variant in RYR1 (c.12315_12328delAGAAATCCAGTTCC, p.Glu4106Alafs*8), and a heterozygous missense variant (c.10648C>T, p.Arg3550Trp) of unknown significance in compound heterozygous state. Conclusion We expand the spectrum of RYR1‐related myopathy with the description of a novel phenotype in an adult patient presenting with hand weakness and suggest considering RYR1 analysis in the diagnosis of distal myopathies.
Collapse
Affiliation(s)
| | - Zhiyv Niu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Eric Wieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
22
|
Kraeva N, Sapa A, Dowling JJ, Riazi S. Malignant hyperthermia susceptibility in patients with exertional rhabdomyolysis: a retrospective cohort study and updated systematic review. Can J Anaesth 2017; 64:736-743. [DOI: 10.1007/s12630-017-0865-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 03/13/2017] [Indexed: 01/24/2023] Open
|