1
|
Aoki I, Golinelli L, Dunkel E, Bhat S, Bassam E, Beets I, Gottschalk A. Hierarchical regulation of functionally antagonistic neuropeptides expressed in a single neuron pair. Nat Commun 2024; 15:9504. [PMID: 39489735 PMCID: PMC11532408 DOI: 10.1038/s41467-024-53899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Neuronal communication involves small-molecule transmitters, gap junctions, and neuropeptides. While neurons often express multiple neuropeptides, our understanding of the coordination of their actions and their mutual interactions remains limited. Here, we demonstrate that two neuropeptides, NLP-10 and FLP-1, released from the same interneuron pair, AVKL/R, exert antagonistic effects on locomotion speed in Caenorhabditis elegans. NLP-10 accelerates locomotion by activating the G protein-coupled receptor NPR-35 on premotor interneurons that promote forward movement. Notably, we establish that NLP-10 is crucial for the aversive response to mechanical and noxious light stimuli. Conversely, AVK-derived FLP-1 slows down locomotion by suppressing the secretion of NLP-10 from AVK, through autocrine feedback via activation of its receptor DMSR-7 in AVK neurons. Our findings suggest that peptidergic autocrine motifs, exemplified by the interaction between NLP-10 and FLP-1, might represent a widespread mechanism in nervous systems across species. These mutual functional interactions among peptidergic co-transmitters could fine-tune brain activity.
Collapse
Affiliation(s)
- Ichiro Aoki
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany.
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.
| | | | - Eva Dunkel
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Shripriya Bhat
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany
| | - Erschad Bassam
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany.
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.
| |
Collapse
|
2
|
Detection of the role of intestinal flora and tryptophan metabolism involved in antidepressant-like actions of crocetin based on a multi-omics approach. Psychopharmacology (Berl) 2022; 239:3657-3677. [PMID: 36169685 DOI: 10.1007/s00213-022-06239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
RATIONALE Depression is a serious mood disorder, and crocetin has a variety of pharmacological activities, including antidepressant effect. The alterations of intestinal flora have a significant correlation with depression, and crocetin can alter the composition of intestinal flora in mice with depression-like behaviors. OBJECTIVE This study investigated the underlying antidepressant mechanisms of crocetin through multi-omics coupled with biochemical technique validation. METHODS Chronic unpredictable stress (CUMS) was used to induce mice model of depression to evaluate the antidepressant effect of crocetin through behavioral tests, and the metagenomic and metabolomic were used to explore the potential mechanisms involved. In order to verify its underlying mechanism, western blot (WB), Elisa, immune histological and HPLC techniques were used to detect the level of inflammatory cytokines and the level of metabolites/proteins related to tryptophan metabolism in crocetin-treated mice. RESULTS Crocetin ameliorated depression-like behaviors and increased mobility in depressive mice induced by CUMS. Metagenomic results showed that crocetin regulated the structure of intestinal flora, as well as significantly regulated the function gene related to derangements in energy metabolism and amino acid metabolism in mice with depression-like behaviors. Metabolomic results showed that the tryptophan metabolism, arginine metabolism and arachidonic acid metabolism played an essential role in exerting antidepressant-like effect of crocetin. According to multi-omics approaches and validation results, tryptophan metabolism and inflammation were identified and validated as valuable biological processes involved in the antidepressant effects of crocetin. Crocetin regulated the tryptophan metabolism in mice with depression-like behaviors, including increased aryl hydrocarbon receptor (AhR) expression, reduced indoleamine 2,3-dioxygenase 1 (IDO1) and serotonin transporter (SERT) expression in the hippocampus, elevated the content of 5-HT, kynurenic acid in serum and 5-HT, tryptophan in hippocampus. In addition, crocetin also attenuated inflammation in mice with depression-like behaviors, which presented with reducing the production of inflammatory cytokines in serum and colon. Meanwhile, crocetin up-regulated the expression of zonula occludens 1 (ZO-1) and occludin in ileum and colon to repair the intestinal barrier for preventing inflammation transfer. CONCLUSION Our findings clarify that crocetin exerted antidepressant effects through its anti-inflammation, repairment of intestinal barrier, modulatory on the intestinal flora and metabolic disorders, which further regulated tryptophan metabolism and impacted mitogen-activated protein kinase (MAPK) signaling pathway to enhance neural plasticity, thereby protect neural.
Collapse
|
3
|
Kron NS, Schmale MC, Fieber LA. Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons. Front Aging Neurosci 2020; 12:573764. [PMID: 33101008 PMCID: PMC7522570 DOI: 10.3389/fnagi.2020.573764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022] Open
Abstract
Aging is associated with cognitive declines that originate in impairments of function in the neurons that make up the nervous system. The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. This study describes the molecular processes associated with aging in two populations of sensory neurons in Aplysia by applying RNA sequencing technology across the aging process (age 6-12 months). Differentially expressed genes clustered into four to five coherent expression patterns across the aging time series in the two neuron populations. Enrichment analysis of functional annotations in these neuron clusters revealed decreased expression of pathways involved in energy metabolism and neuronal signaling, suggesting that metabolic and signaling pathways are intertwined. Furthermore, increased expression of pathways involved in protein processing and translation suggests that proteostatic stress also occurs in aging. Temporal overlap of enrichment for energy metabolism, proteostasis, and neuronal function suggests that cognitive impairments observed in advanced age result from the ramifications of broad declines in energy metabolism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Michael C Schmale
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| |
Collapse
|
4
|
Specificity of synapse formation in Aplysia: paracrine and autocrine signaling regulates bidirectional molecular interactions between sensory and non-target motor neurons. Sci Rep 2020; 10:5222. [PMID: 32251363 PMCID: PMC7089980 DOI: 10.1038/s41598-020-62099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/02/2020] [Indexed: 12/01/2022] Open
Abstract
The formation of appropriate neural connections during development is critical for the proper wiring and functioning of the brain. Although considerable research suggests that the specificity of synapse formation is supported by complex intercellular signaling between potential presynaptic and postsynaptic partners, the extracellular factors and the intracellular signal transduction pathways engaged in this process remain largely unknown. Using the sensory-motor neural circuit that contributes to learning in defensive withdrawal reflexes in Aplysia californica, we investigated the molecular processes governing the interactions between sensory neurons and both target and non-target motor neurons during synapse formation in culture. We found that evolutionarily-conserved intercellular and intracellular signaling mechanisms critical for learning-related plasticity are also engaged during synaptogenesis in this in vitro model system. Our results reveal a surprising bidirectional regulation of molecular signaling between sensory neurons and non-target motor neurons. This regulation is mediated by signaling via both paracrine and autocrine diffusible factors that induce differential effects on transcription and on protein expression/activation in sensory neurons and in target and non-target motor neurons. Collectively, our data reveal novel molecular mechanisms that could underlie the repression of inappropriate synapse formation, and suggest mechanistic similarities between developmental and learning-related plasticity.
Collapse
|
5
|
Alexandrescu A, Carew TJ. Postsynaptic effects of Aplysia cysteine-rich neurotrophic factor in the induction of activity-dependent long-term facilitation in Aplysia californica. ACTA ACUST UNITED AC 2020; 27:124-129. [PMID: 32179654 PMCID: PMC7079570 DOI: 10.1101/lm.051011.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022]
Abstract
The spatial and temporal coordination of growth factor signaling is critical for both presynaptic and postsynaptic plasticity underlying long-term memory formation. We investigated the spatiotemporal dynamics of Aplysia cysteine-rich neurotrophic factor (ApCRNF) signaling during the induction of activity-dependent long-term facilitation (AD-LTF) at sensory-to-motor neuron synapses that mediate defensive reflexes in Aplysia We found that ApCRNF signaling is required for the induction of AD-LTF, and for training-induced early protein kinase activation and late forms of gene expression, exclusively in postsynaptic neurons. These results support the view that ApCRNF is critically involved in AD-LTF at least in part through postsynaptic mechanisms.
Collapse
Affiliation(s)
- Anamaria Alexandrescu
- Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Thomas J Carew
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
6
|
Smolen P, Baxter DA, Byrne JH. How can memories last for days, years, or a lifetime? Proposed mechanisms for maintaining synaptic potentiation and memory. ACTA ACUST UNITED AC 2019; 26:133-150. [PMID: 30992383 PMCID: PMC6478248 DOI: 10.1101/lm.049395.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/12/2019] [Indexed: 01/24/2023]
Abstract
With memory encoding reliant on persistent changes in the properties of synapses, a key question is how can memories be maintained from days to months or a lifetime given molecular turnover? It is likely that positive feedback loops are necessary to persistently maintain the strength of synapses that participate in encoding. Such feedback may occur within signal-transduction cascades and/or the regulation of translation, and it may occur within specific subcellular compartments or within neuronal networks. Not surprisingly, numerous positive feedback loops have been proposed. Some posited loops operate at the level of biochemical signal-transduction cascades, such as persistent activation of Ca2+/calmodulin kinase II (CaMKII) or protein kinase Mζ. Another level consists of feedback loops involving transcriptional, epigenetic and translational pathways, and autocrine actions of growth factors such as BDNF. Finally, at the neuronal network level, recurrent reactivation of cell assemblies encoding memories is likely to be essential for late maintenance of memory. These levels are not isolated, but linked by shared components of feedback loops. Here, we review characteristics of some commonly discussed feedback loops proposed to underlie the maintenance of memory and long-term synaptic plasticity, assess evidence for and against their necessity, and suggest experiments that could further delineate the dynamics of these feedback loops. We also discuss crosstalk between proposed loops, and ways in which such interaction can facilitate the rapidity and robustness of memory formation and storage.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Autocrine signaling by an Aplysia neurotrophin forms a presynaptic positive feedback loop. Proc Natl Acad Sci U S A 2018; 115:E11168-E11177. [PMID: 30397154 DOI: 10.1073/pnas.1810649115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Whereas short-term plasticity is often initiated on one side of the synapse, long-term plasticity involves coordinated changes on both sides, implying extracellular signaling. We have investigated the possible signaling role of an Aplysia neurotrophin (ApNT) in facilitation induced by serotonin (5HT) at sensory-to-motor neuron synapses in culture. ApNT is an ortholog of mammalian BDNF, which has been reported to act as either an anterograde, retrograde, or autocrine signal, so that its pre- and postsynaptic sources and targets remain unclear. We now report that ApNT acts as a presynaptic autocrine signal that forms part of a positive feedback loop with ApTrk and PKA. That loop stimulates spontaneous transmitter release, which recruits postsynaptic mechanisms, and presynaptic protein synthesis during the transition from short- to intermediate-term facilitation and may also initiate gene regulation to trigger the transition to long-term facilitation. These results suggest that a presynaptic ApNT feedback loop plays several key roles during consolidation of learning-related synaptic plasticity.
Collapse
|
8
|
Hu J, Ferguson L, Adler K, Farah CA, Hastings MH, Sossin WS, Schacher S. Selective Erasure of Distinct Forms of Long-Term Synaptic Plasticity Underlying Different Forms of Memory in the Same Postsynaptic Neuron. Curr Biol 2017. [PMID: 28648820 DOI: 10.1016/j.cub.2017.05.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Generalization of fear responses to non-threatening stimuli is a feature of anxiety disorders. It has been challenging to target maladaptive generalized memories without affecting adaptive memories. Synapse-specific long-term plasticity underlying memory involves the targeting of plasticity-related proteins (PRPs) to activated synapses. If distinct tags and PRPs are used for different forms of plasticity, one could selectively remove distinct forms of memory. Using a stimulation paradigm in which associative long-term facilitation (LTF) occurs at one input and non-associative LTF at another input to the same postsynaptic neuron in an Aplysia sensorimotor preparation, we found that each form of LTF is reversed by inhibiting distinct isoforms of protein kinase M (PKM), putative PRPs, in the postsynaptic neuron. A dominant-negative (dn) atypical PKM selectively reversed associative LTF, while a dn classical PKM selectively reversed non-associative LTF. Although both PKMs are formed from calpain-mediated cleavage of protein kinase C (PKC) isoforms, each form of LTF is sensitive to a distinct dn calpain expressed in the postsynaptic neuron. Associative LTF is blocked by dn classical calpain, whereas non-associative LTF is blocked by dn small optic lobe (SOL) calpain. Interfering with a putative synaptic tag, the adaptor protein KIBRA, which protects the atypical PKM from degradation, selectively erases associative LTF. Thus, the activity of distinct PRPs and tags in a postsynaptic neuron contribute to the maintenance of different forms of synaptic plasticity at separate inputs, allowing for selective reversal of synaptic plasticity and providing a cellular basis for developing therapeutic strategies for selectively reversing maladaptive memories.
Collapse
Affiliation(s)
- Jiangyuan Hu
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Larissa Ferguson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Kerry Adler
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Margaret H Hastings
- Department of Psychology, McGill University, Montreal Neurological Institute, Montreal, QC H3A 1B1, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Department of Psychology, McGill University, Montreal Neurological Institute, Montreal, QC H3A 1B1, Canada
| | - Samuel Schacher
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
9
|
McCamphill PK, Ferguson L, Sossin WS. A decrease in eukaryotic elongation factor 2 phosphorylation is required for local translation of sensorin and long-term facilitation in Aplysia. J Neurochem 2017; 142:246-259. [PMID: 28345161 DOI: 10.1111/jnc.14030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1)-dependent protein synthesis is required for many forms of synaptic plasticity and memory, but the downstream pathways important for synaptic plasticity are poorly understood. Long-term facilitation (LTF) in Aplysia is a form of synaptic plasticity that is closely linked to behavioral memory and an attractive model system for examining the important downstream targets for mTORC1 in regulating synaptic plasticity. Although mTORC1-regulated protein synthesis has been strongly linked to translation initiation, translation elongation is also regulated by mTORC1 and LTF leads to an mTORC1-dependent decrease in eukaryotic elongation factor 2 (eEF2) phosphorylation. The purpose of this study is to test the hypothesis that the decrease in eEF2 phosphorylation is required for mTORC1-dependent translation and plasticity. We show that the LTF-induced decrease in eEF2 phosphorylation is blocked by expression of an eEF2 kinase (eEF2K) modified to be resistant to mTORC1 regulation. We found that expression of this modified kinase blocked LTF. LTF requires local protein synthesis of the neuropeptide sensorin and importantly, local sensorin synthesis can be measured using a dendra fluorescent protein containing the 5' and 3' untranslated regions (UTRs) of sensorin. Using this construct, we show that blocking eEF2 dephosphorylation also blocks the increase in local sensorin synthesis. These results identify decreases in eEF2 phosphorylation as a critical downstream effector of mTOR required for long-term plasticity and identify an important translational target regulated by decreases in eEF2 phosphorylation.
Collapse
Affiliation(s)
- Patrick K McCamphill
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Larissa Ferguson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Hu J, Adler K, Farah CA, Hastings MH, Sossin WS, Schacher S. Cell-Specific PKM Isoforms Contribute to the Maintenance of Different Forms of Persistent Long-Term Synaptic Plasticity. J Neurosci 2017; 37:2746-2763. [PMID: 28179558 PMCID: PMC5354326 DOI: 10.1523/jneurosci.2805-16.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/28/2016] [Accepted: 01/31/2017] [Indexed: 11/21/2022] Open
Abstract
Multiple kinase activations contribute to long-term synaptic plasticity, a cellular mechanism mediating long-term memory. The sensorimotor synapse of Aplysia expresses different forms of long-term facilitation (LTF)-nonassociative and associative LTF-that require the timely activation of kinases, including protein kinase C (PKC). It is not known which PKC isoforms in the sensory neuron or motor neuron L7 are required to sustain each form of LTF. We show that different PKMs, the constitutively active isoforms of PKCs generated by calpain cleavage, in the sensory neuron and L7 are required to maintain each form of LTF. Different PKMs or calpain isoforms were blocked by overexpressing specific dominant-negative constructs in either presynaptic or postsynaptic neurons. Blocking either PKM Apl I in L7, or PKM Apl II or PKM Apl III in the sensory neuron 2 d after 5-hydroxytryptamine (5-HT) treatment reversed persistent nonassociative LTF. In contrast, blocking either PKM Apl II or PKM Apl III in L7, or PKM Apl II in the sensory neuron 2 d after paired stimuli reversed persistent associative LTF. Blocking either classical calpain or atypical small optic lobe (SOL) calpain 2 d after 5-HT treatment or paired stimuli did not disrupt the maintenance of persistent LTF. Soon after 5-HT treatment or paired stimuli, however, blocking classical calpain inhibited the expression of persistent associative LTF, while blocking SOL calpain inhibited the expression of persistent nonassociative LTF. Our data suggest that different stimuli activate different calpains that generate specific sets of PKMs in each neuron whose constitutive activities sustain long-term synaptic plasticity.SIGNIFICANCE STATEMENT Persistent synaptic plasticity contributes to the maintenance of long-term memory. Although various kinases such as protein kinase C (PKC) contribute to the expression of long-term plasticity, little is known about how constitutive activation of specific kinase isoforms sustains long-term plasticity. This study provides evidence that the cell-specific activities of different PKM isoforms generated from PKCs by calpain-mediated cleavage maintain two forms of persistent synaptic plasticity, which are the cellular analogs of two forms of long-term memory. Moreover, we found that the activation of specific calpains depends on the features of the stimuli evoking the different forms of synaptic plasticity. Given the recent controversy over the role of PKMζ maintaining memory, these findings are significant in identifying roles of multiple PKMs in the retention of memory.
Collapse
Affiliation(s)
- Jiangyuan Hu
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, New York, New York 10032,
| | - Kerry Adler
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, New York, New York 10032
| | - Carole Abi Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Margaret H Hastings
- Department of Psychology, McGill University, Montreal Neurological Institute, Montreal, Quebec H3A 1B1, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada, and
- Department of Psychology, McGill University, Montreal Neurological Institute, Montreal, Quebec H3A 1B1, Canada
| | - Samuel Schacher
- Department of Neuroscience, Columbia University Medical Center, New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
11
|
Biphasic Regulation of p38 MAPK by Serotonin Contributes to the Efficacy of Stimulus Protocols That Induce Long-Term Synaptic Facilitation. eNeuro 2017; 4:eN-NWR-0373-16. [PMID: 28197555 PMCID: PMC5307297 DOI: 10.1523/eneuro.0373-16.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/24/2022] Open
Abstract
The MAPK isoforms ERK and p38 MAPK are believed to play opposing roles in long-term synaptic facilitation (LTF) induced by serotonin (5-HT) in Aplysia. To fully understand their roles, however, it is necessary to consider the dynamics of ERK and p38 MAPK activation. Previous studies determined that activation of ERK occurred ∼45 min after a 5-min pulse of 5-HT treatment. The dynamics of p38 MAPK activation following 5-HT are yet to be elucidated. Here, the activity of p38 MAPK was examined at different times after 5-HT, and the interaction between the ERK and p38 MAPK pathways was investigated. A 5-min pulse of 5-HT induced a transient inhibition of p38 MAPK, followed by a delayed activation between 25 and 45 min. This activation was blocked by a MAPK kinase inhibitor, suggesting that similar pathways are involved in activation of ERK and p38 MAPK. ERK activity decreased shortly after the activation of p38 MAPK. A p38 MAPK inhibitor blocked this decrease in ERK activity, suggesting a causal relationship. The p38 MAPK activity ∼45 min after different stimulus protocols was also characterized. These data were incorporated into a computational model for the induction of LTF. Simulations and empirical data suggest that p38 MAPK, together with ERK, contributes to the efficacy of spaced stimulus protocols to induce LTF, a correlate of long-term memory (LTM). For example, decreased p38 MAPK activity ∼45 min after the first of two sensitizing stimuli might be an important determinant of an optimal interstimulus interval (ISI) for LTF induction.
Collapse
|
12
|
Pearce K, Cai D, Roberts AC, Glanzman DL. Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. eLife 2017; 6. [PMID: 28067617 PMCID: PMC5310836 DOI: 10.7554/elife.18299] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022] Open
Abstract
Previously, we reported that long-term memory (LTM) in Aplysia can be reinstated by truncated (partial) training following its disruption by reconsolidation blockade and inhibition of PKM (Chen et al., 2014). Here, we report that LTM can be induced by partial training after disruption of original consolidation by protein synthesis inhibition (PSI) begun shortly after training. But when PSI occurs during training, partial training cannot subsequently establish LTM. Furthermore, we find that inhibition of DNA methyltransferase (DNMT), whether during training or shortly afterwards, blocks consolidation of LTM and prevents its subsequent induction by truncated training; moreover, later inhibition of DNMT eliminates consolidated LTM. Thus, the consolidation of LTM depends on two functionally distinct phases of protein synthesis: an early phase that appears to prime LTM; and a later phase whose successful completion is necessary for the normal expression of LTM. Both the consolidation and maintenance of LTM depend on DNA methylation.
Collapse
Affiliation(s)
- Kaycey Pearce
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, United States
| | - Diancai Cai
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, United States
| | - Adam C Roberts
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, United States
| | - David L Glanzman
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, United States.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, United States.,Integrative Center for Learning and Memory, Brain Research Institute, UCLA, Los Angeles, United States
| |
Collapse
|
13
|
Burrell BD. Comparative biology of pain: What invertebrates can tell us about how nociception works. J Neurophysiol 2017; 117:1461-1473. [PMID: 28053241 DOI: 10.1152/jn.00600.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
The inability to adequately treat chronic pain is a worldwide health care crisis. Pain has both an emotional and a sensory component, and this latter component, nociception, refers specifically to the detection of damaging or potentially damaging stimuli. Nociception represents a critical interaction between an animal and its environment and exhibits considerable evolutionary conservation across species. Using comparative approaches to understand the basic biology of nociception could promote the development of novel therapeutic strategies to treat pain, and studies of nociception in invertebrates can provide especially useful insights toward this goal. Both vertebrates and invertebrates exhibit segregated sensory pathways for nociceptive and nonnociceptive information, injury-induced sensitization to nociceptive and nonnociceptive stimuli, and even similar antinociceptive modulatory processes. In a number of invertebrate species, the central nervous system is understood in considerable detail, and it is often possible to record from and/or manipulate single identifiable neurons through either molecular genetic or physiological approaches. Invertebrates also provide an opportunity to study nociception in an ethologically relevant context that can provide novel insights into the nature of how injury-inducing stimuli produce persistent changes in behavior. Despite these advantages, invertebrates have been underutilized in nociception research. In this review, findings from invertebrate nociception studies are summarized, and proposals for how research using invertebrates can address questions about the fundamental mechanisms of nociception are presented.
Collapse
Affiliation(s)
- Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
14
|
Effect of Systemic Application of 5-Hydroxytryptamine on Hypoglossal Nerve Discharge in Anesthetized Rats. J Mol Neurosci 2015; 57:435-45. [DOI: 10.1007/s12031-015-0590-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/25/2015] [Indexed: 01/12/2023]
|
15
|
Yamazoe-Umemoto A, Fujita K, Iino Y, Iwasaki Y, Kimura KD. Modulation of different behavioral components by neuropeptide and dopamine signalings in non-associative odor learning of Caenorhabditis elegans. Neurosci Res 2015; 99:22-33. [PMID: 26068898 DOI: 10.1016/j.neures.2015.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/20/2022]
Abstract
An animal's behavior is modulated by learning; however, the behavioral component modulated by learning and the mechanisms of this modulation have not been fully understood. We show here that two types of neural signalings are required for the modulation of different behavioral components in non-associative odor learning in the nematode Caenorhabditis elegans. We have previously found that C. elegans avoid the repulsive odor 2-nonanone, and preexposure to the odor for 1h enhances the avoidance behavior as a type of non-associative learning. Systematic quantitative analyses of behavioral components revealed that the odor preexposure caused increases in average duration of straight migration ("runs") only when the animals were migrating away from the odor source within a certain range of bearing, which likely corresponds to odor decrement. Further, genetic analyses revealed that the genes for neuropeptide or dopamine signalings are both required for the enhanced odor avoidance. Neuropeptide signaling genes were required for the preexposure-dependent increase in run duration. In contrast, dopamine signaling genes were required not for the increase in run duration but likely for maintenance of run direction. Our results suggests that multiple behavioral components are regulated by different neuromodulators even in non-associative learning in C. elegans.
Collapse
Affiliation(s)
- Akiko Yamazoe-Umemoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kosuke Fujita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuishi Iwasaki
- Department of Intelligent System Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Koutarou D Kimura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
16
|
Doxorubicin attenuates serotonin-induced long-term synaptic facilitation by phosphorylation of p38 mitogen-activated protein kinase. J Neurosci 2015; 34:13289-300. [PMID: 25274809 DOI: 10.1523/jneurosci.0538-14.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline used widely for cancer chemotherapy. Its primary mode of action appears to be topoisomerase II inhibition, DNA cleavage, and free radical generation. However, in non-neuronal cells, DOX also inhibits the expression of dual-specificity phosphatases (also referred to as MAPK phosphatases) and thereby inhibits the dephosphorylation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK), two MAPK isoforms important for long-term memory (LTM) formation. Activation of these kinases by DOX in neurons, if present, could have secondary effects on cognitive functions, such as learning and memory. The present study used cultures of rat cortical neurons and sensory neurons (SNs) of Aplysia to examine the effects of DOX on levels of phosphorylated ERK (pERK) and phosphorylated p38 (p-p38) MAPK. In addition, Aplysia neurons were used to examine the effects of DOX on long-term enhanced excitability, long-term synaptic facilitation (LTF), and long-term synaptic depression (LTD). DOX treatment led to elevated levels of pERK and p-p38 MAPK in SNs and cortical neurons. In addition, it increased phosphorylation of the downstream transcriptional repressor cAMP response element-binding protein 2 in SNs. DOX treatment blocked serotonin-induced LTF and enhanced LTD induced by the neuropeptide Phe-Met-Arg-Phe-NH2. The block of LTF appeared to be attributable to overriding inhibitory effects of p-p38 MAPK, because LTF was rescued in the presence of an inhibitor (SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole]) of p38 MAPK. These results suggest that acute application of DOX might impair the formation of LTM via the p38 MAPK pathway.
Collapse
|
17
|
Spontaneous and Partial Repair of Ribbon Synapse in Cochlear Inner Hair Cells After Ototoxic Withdrawal. Mol Neurobiol 2014; 52:1680-1689. [PMID: 25377793 DOI: 10.1007/s12035-014-8951-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
Ototoxicity is one of the major causes of sensorineural deafness. However, it remains unclear whether sensorineural deafness is reversible after ototoxic withdrawal. Here, we report that the ribbon synapses between the inner hair cells (IHCs) and spiral ganglion nerve (SGN) fibers can be restored after ototoxic trauma. This corresponds with hearing restoration after ototoxic withdrawal. In this study, adult mice were injected daily with a low dose of gentamicin for 14 consecutive days. Immunostaining for RIBEYE/CtBP2 was used to estimate the number and size of synaptic ribbons in the cochlea. Hearing thresholds were assessed using auditory brainstem responses. Auditory temporal processing between IHCs and SGNs was evaluated by compound action potentials. We found automatic hearing restoration after ototoxicity withdrawal, which corresponded to the number and size recovery of synaptic ribbons, although both hearing and synaptic recovery were not complete. Thus, our study indicates that sensorineural deafness in mice can be reversible after ototoxic withdrawal due to an intrinsic repair of ribbon synapse in the cochlea.
Collapse
|
18
|
Hu JY, Schacher S. Persistent long-term facilitation at an identified synapse becomes labile with activation of short-term heterosynaptic plasticity. J Neurosci 2014; 34:4776-85. [PMID: 24695698 PMCID: PMC3972711 DOI: 10.1523/jneurosci.0098-14.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 01/03/2023] Open
Abstract
Short-term and long-term synaptic plasticity are cellular correlates of learning and memory of different durations. Little is known, however, how these two forms of plasticity interact at the same synaptic connection. We examined the reciprocal impact of short-term heterosynaptic or homosynaptic plasticity at sensorimotor synapses of Aplysia in cell culture when expressing persistent long-term facilitation (P-LTF) evoked by serotonin [5-hydroxytryptamine (5-HT)]. Short-term heterosynaptic plasticity induced by 5-HT (facilitation) or the neuropeptide FMRFa (depression) and short-term homosynaptic plasticity induced by tetanus [post-tetanic potentiation (PTP)] or low-frequency stimulation [homosynaptic depression (HSD)] of the sensory neuron were expressed in both control synapses and synapses expressing P-LTF in the absence or presence of protein synthesis inhibitors. All forms of short-term plasticity failed to significantly affect ongoing P-LTF in the absence of protein synthesis inhibitors. However, P-LTF reversed to control levels when either 5-HT or FMRFa was applied in the presence of rapamycin. In contrast, P-LTF was unaffected when either PTP or HSD was evoked in the presence of either rapamycin or anisomycin. These results indicate that synapses expressing persistent plasticity acquire a "new" baseline and functionally express short-term changes as naive synapses, but the new baseline becomes labile following selective activations-heterosynaptic stimuli that evoke opposite forms of plasticity-such that when presented in the presence of protein synthesis inhibitors produce a rapid reversal of the persistent plasticity. Activity-selective induction of a labile state at synapses expressing persistent plasticity may facilitate the development of therapies for reversing inappropriate memories.
Collapse
Affiliation(s)
- Jiang-Yuan Hu
- Department of Neuroscience, Columbia University College of Physicians and Surgeons, and New York State Psychiatric Institute, New York, New York 10032
| | - Samuel Schacher
- Department of Neuroscience, Columbia University College of Physicians and Surgeons, and New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
19
|
A novel cysteine-rich neurotrophic factor in Aplysia facilitates growth, MAPK activation, and long-term synaptic facilitation. Learn Mem 2014; 21:215-22. [PMID: 24639488 PMCID: PMC3966541 DOI: 10.1101/lm.033662.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurotrophins are critically involved in developmental processes such as neuronal cell survival, growth, and differentiation, as well as in adult synaptic plasticity contributing to learning and memory. Our previous studies examining neurotrophins and memory formation in Aplysia showed that a TrkB ligand is required for MAPK activation, long-term synaptic facilitation (LTF), and long-term memory (LTM) for sensitization. These studies indicate that neurotrophin-like molecules in Aplysia can act as key elements in a functionally conserved TrkB signaling pathway. Here we report that we have cloned and characterized a novel neurotrophic factor, Aplysia cysteine-rich neurotrophic factor (apCRNF), which shares classical structural and functional characteristics with mammalian neurotrophins. We show that apCRNF (1) is highly enriched in the CNS, (2) enhances neurite elongation and branching, (3) interacts with mammalian TrkB and p75NTR, (4) is released from Aplysia CNS in an activity-dependent fashion, (5) facilitates MAPK activation in a tyrosine kinase dependent manner in response to sensitizing stimuli, and (6) facilitates the induction of LTF. These results show that apCRNF is a native neurotrophic factor in Aplysia that can engage the molecular and synaptic mechanisms underlying memory formation.
Collapse
|
20
|
Schacher S, Hu JY. The less things change, the more they are different: contributions of long-term synaptic plasticity and homeostasis to memory. Learn Mem 2014; 21:128-34. [PMID: 24532836 PMCID: PMC3929853 DOI: 10.1101/lm.027326.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An important cellular mechanism contributing to the strength and duration of memories is activity-dependent alterations in the strength of synaptic connections within the neural circuit encoding the memory. Reversal of the memory is typically correlated with a reversal of the cellular changes to levels expressed prior to the stimulation. Thus, for stimulus-induced changes in synapse strength and their reversals to be functionally relevant, cellular mechanisms must regulate and maintain synapse strength both prior to and after the stimuli inducing learning and memory. The strengths of synapses within a neural circuit at any given moment are determined by cellular and molecular processes initiated during development and those subsequently regulated by the history of direct activation of the neural circuit and system-wide stimuli such as stress or motivational state. The cumulative actions of stimuli and other factors on an already modified neural circuit are attenuated by homeostatic mechanisms that prevent changes in overall synaptic inputs and excitability above or below specific set points (synaptic scaling). The mechanisms mediating synaptic scaling prevent potential excitotoxic alterations in the circuit but also may attenuate additional cellular changes required for learning and memory, thereby apparently limiting information storage. What cellular and molecular processes control synaptic strengths before and after experience/activity and its reversals? In this review we will explore the synapse-, whole cell-, and circuit level-specific processes that contribute to an overall zero sum-like set of changes and long-term maintenance of synapse strengths as a consequence of the accommodative interactions between long-term synaptic plasticity and homeostasis.
Collapse
Affiliation(s)
- Samuel Schacher
- Department of Neuroscience, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York 10032, USA
| | | |
Collapse
|
21
|
Philips GT, Ye X, Kopec AM, Carew TJ. MAPK establishes a molecular context that defines effective training patterns for long-term memory formation. J Neurosci 2013; 33:7565-73. [PMID: 23616561 PMCID: PMC3865502 DOI: 10.1523/jneurosci.5561-12.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 12/23/2022] Open
Abstract
Although the importance of spaced training trials in the formation of long-term memory (LTM) is widely appreciated, surprisingly little is known about the molecular mechanisms that support interactions between individual trials. The intertrial dynamics of ERK/MAPK activation have recently been correlated with effective training patterns for LTM. However, whether and how MAPK is required to mediate intertrial interactions remains unknown. Using a novel two-trial training pattern which induces LTM in Aplysia, we show that the first of two training trials recruits delayed protein synthesis-dependent nuclear MAPK activity that establishes a unique molecular context involving the recruitment of CREB kinase and ApC/EBP and is an essential intertrial signaling mechanism for LTM induction. These findings provide the first demonstration of a requirement for MAPK in the intertrial interactions during memory formation and suggest that the kinetics of MAPK activation following individual experiences determines effective training intervals for LTM formation.
Collapse
Affiliation(s)
- Gary T. Philips
- Center for Neural Science, New York University, New York, New York 10003
| | - Xiaojing Ye
- Center for Neural Science, New York University, New York, New York 10003
| | - Ashley M. Kopec
- Center for Neural Science, New York University, New York, New York 10003
| | - Thomas J. Carew
- Center for Neural Science, New York University, New York, New York 10003
| |
Collapse
|
22
|
A single Aplysia neurotrophin mediates synaptic facilitation via differentially processed isoforms. Cell Rep 2013; 3:1213-27. [PMID: 23562154 PMCID: PMC4045214 DOI: 10.1016/j.celrep.2013.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 12/28/2012] [Accepted: 03/06/2013] [Indexed: 11/22/2022] Open
Abstract
Neurotrophins control the development and adult plasticity of the vertebrate nervous system. Failure to identify invertebrate neurotrophin orthologs, however, has precluded studies in invertebrate models, limiting our understanding of fundamental aspects of neurotrophin biology and function. We identified a neurotrophin (ApNT) and Trk receptor (ApTrk) in the mollusk Aplysia and found that they play a central role in learning-related synaptic plasticity. Blocking ApTrk signaling impairs long-term facilitation, whereas augmenting ApNT expression enhances it and induces the growth of new synaptic varicosities at the monosynaptic connection between sensory and motor neurons of the gill-withdrawal reflex. Unlike vertebrate neurotrophins, ApNT has multiple coding exons and exerts distinct synaptic effects through differentially processed and secreted splice isoforms. Our findings demonstrate the existence of bona fide neurotrophin signaling in invertebrates and reveal a posttranscriptional mechanism that regulates neurotrophin processing and the release of proneurotrophins and mature neurotrophins that differentially modulate synaptic plasticity.
Collapse
|
23
|
Levitan D, Saada-Madar R, Teplinsky A, Susswein AJ. Localization of molecular correlates of memory consolidation to buccal ganglia mechanoafferent neurons after learning that food is inedible in Aplysia. Learn Mem 2012; 19:503-12. [DOI: 10.1101/lm.026393.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
|
25
|
Owen GR, Brenner EA. Mapping molecular memory: navigating the cellular pathways of learning. Cell Mol Neurobiol 2012; 32:919-41. [PMID: 22488526 DOI: 10.1007/s10571-012-9836-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/21/2012] [Indexed: 01/25/2023]
Abstract
A consolidated map of the signalling pathways that function in the formation of short- and long-term cellular memory could be considered the ultimate means of defining the molecular basis of learning. Research has established that experience-dependent activation of these complex cellular cascades leads to many changes in the composition and functioning of a neuron's proteome, resulting in the modulation of its synaptic strength and structure. However, although generally accepted that synaptic plasticity is the mechanism whereby memories are stored in the brain, there is much controversy over whether the site of this neuronal memory expression is predominantly pre- or postsynaptic. Much of the early research into the neuromolecular mechanisms of memory performed using the model organism, the marine snail Aplysia, has focused on the associated presynaptic events. Recently however, postsynaptic mechanisms have been shown to contribute definitively to long term memory processes, and are in fact critical for persistent learning-induced synaptic changes. In this review, in which we aimed to integrate many of the early and recent advances concerning coordinated neuronal signaling in both the pre- and postsynaptic neurons, we have provided a detailed account of the diverse cellular events that lead to modifications in synaptic strength. Thus, a comprehensive synaptic model is presented that could explain a few of the shortcomings that arise when the presynaptic and postsynaptic changes are considered separately. Although it is clear that there is still much to be learnt and that the exact nature of many of the signalling cascades and their components are yet to be fully understood, this still incomplete but integrated illustrative map of the cellular pathways involved provides an overview which expands understanding of the neuromolecular mechanisms of learning and memory.
Collapse
|
26
|
Nitric oxide as a regulator of behavior: new ideas from Aplysia feeding. Prog Neurobiol 2012; 97:304-17. [PMID: 22575157 DOI: 10.1016/j.pneurobio.2012.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/28/2011] [Accepted: 03/12/2012] [Indexed: 12/29/2022]
Abstract
Nitric oxide (NO) regulates Aplysia feeding by novel mechanisms, suggesting new roles for NO in controlling the behavior of higher animals. In Aplysia, (1) NO helps maintain arousal when produced by neurons responding to attempts to swallow food; (2) NO biases the motor system to reject and reposition food that resists swallowing; (3) if mechanically resistant food is not successfully swallowed, NO mediates the formation and expression of memories of food inedibility; (4) NO production at rest inhibits feeding, countering the effects of food stimuli exciting feeding. At a cellular level, NO-dependent channels contribute to the resting potential of neurons controlling food finding and food consumption. Increases in L-arginine after animals eat act as a post-feeding inhibitory signal, presumably by modulating NO production at rest. NO also signals non-feeding behaviors that are associated with feeding inhibition. Thus, depending on context, NO may enhance or inhibit feeding behavior. The different functions of NO may reflect the evolution of NO signaling from a response to tissue damage that was then elaborated and used for additional functions. These results suggest that in higher animals (1) elicited and background transmitter release may have similar effects; (2) NO may be produced by neurons without firing, influencing adjacent neurons; (3) background NO production may contribute to a neuron's resting potential; (4) circulating factors affecting background NO production may regulate spatially separated neurons; (5) L-arginine can be used to regulate neural activity; (6) L-arginine may be an effective post-ingestion metabolic signal to regulate feeding.
Collapse
|
27
|
Identification of a cis-acting element that localizes mRNA to synapses. Proc Natl Acad Sci U S A 2012; 109:4639-44. [PMID: 22383561 DOI: 10.1073/pnas.1116269109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Messenger RNA (mRNA) localization and regulated translation can spatially restrict gene expression to each of the thousands of synaptic compartments formed by a single neuron. Although cis-acting RNA elements have been shown to direct localization of mRNAs from the soma into neuronal processes, less is known about signals that target transcripts specifically to synapses. In Aplysia sensory-motor neuronal cultures, synapse formation rapidly redistributes the mRNA encoding the peptide neurotransmitter sensorin from neuritic shafts into synapses. We find that the export of sensorin mRNA from soma to neurite and the localization to synapse are controlled by distinct signals. The 3' UTR is sufficient for export into distal neurites, whereas the 5' UTR is required for concentration of reporter mRNA at synapses. We have identified a 66-nt element in the 5' UTR of sensorin that is necessary and sufficient for synaptic mRNA localization. Mutational and chemical probing analyses are consistent with a role for secondary structure in this process.
Collapse
|
28
|
Persistent long-term synaptic plasticity requires activation of a new signaling pathway by additional stimuli. J Neurosci 2011; 31:8841-50. [PMID: 21677168 DOI: 10.1523/jneurosci.1358-11.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most memories are strengthened by additional stimuli, but it is unclear how additional stimulation or training reinforces long-term memory. To address this we examined whether long-term facilitation (LTF) of Aplysia sensorimotor synapses in cell culture-a cellular correlate of long-term sensitization of defensive withdrawal reflexes in Aplysia californica-can be prolonged by additional stimulation. We found that 1 d treatment with serotonin (5-HT; five brief applications at 20 min intervals) produced LTF lasting ∼3 d, whereas 2 d of such 5-HT treatments induced a persistent LTF lasting >7 d. Incubation with the protein synthesis inhibitor rapamycin during the second set of 5-HT treatments abolished all facilitation, and synapse strength returned prematurely to baseline. Persistent LTF required more persistent elevation in the expression of the neurotrophin-like peptide sensorin and its secretion. Activation of protein kinase C (PKC) during the second day of 5-HT treatments, not required for LTF or changes in sensorin expression during the first set of 5-HT treatments, is critical for persistent LTF and replaces phosphoinositide 3 kinase (PI3K) activity in mediating the increase in sensorin expression. In contrast, activations of PKC during the first day of 5-HT treatments and PI3K during the second day of 5-HT treatments are unnecessary for persistent LTF or the increases in sensorin expression. Thus, additional stimuli make preexisting plasticity labile as they recruit a new signaling cascade to regulate the synthesis of a neurotrophin-like peptide required for persistent alterations in synaptic efficacy.
Collapse
|
29
|
Liu J, Wei X, Zhao C, Hu S, Duan J, Ju G, Wong-Riley MTT, Liu Y. 5-HT induces enhanced phrenic nerve activity via 5-HT(2A) receptor/PKC mechanism in anesthetized rats. Eur J Pharmacol 2011; 657:67-75. [PMID: 21296069 DOI: 10.1016/j.ejphar.2011.01.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/06/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
Respiratory behavior expresses diverse forms of plasticity by altering breathing patterns. Failure of respiratory neuroplasticity often leads to malfunctions. Long-term facilitation (LTF), the most frequently studied model induced by episodic hypoxia to produce long-lasting enhancement of phrenic motor output, is thought to be serotonin 2A (5-HT(2A)) receptor-dependent. Previous studies have described 5-HT-induced prompt apnea in intact animals. However, the role of exogenous 5-HT in mediating respiratory neuroplasticity is less attended in vivo study. We hypothesized that an in vivo 5-HT challenge contributes to respiratory neuroplasticity. Here, we found that systemic bolus administration of 5-HT exerted an initial transient inhibition followed by marked facilitation, forming a biphasic pattern of phrenic nerve activity in artificially ventilated, midcervically vagotomized, and anesthetized adult rats. The facilitatory phase corresponded to the enhanced phrenic nerve activity that lasted for at least one hour after drug exposure, characterized as phrenic LTF (pLTF). The 5-HT-induced biphasic pattern and pLTF were 5-HT(2A) receptor-dependent and coupled to protein kinase C (PKC) activation. The initial inhibition of phrenic nerve activity was found to be nodose ganglion-associated, whereas the subsequent facilitation was carotid body-associated, establishing a peripheral inhibitory-facilitatory afferent balance. Immunoreactive expressions of 5-HT/5-HT(2A) receptors and phospho-PKC isoforms/PKC substrate provide morphological evidence of existence of a 5-HT/5-HT(2A) receptor/PKC mechanism in the nodose ganglion and the carotid body. We speculate that 5-HT challenge in vivo may contribute to respiratory neuroplasticity, to yield pLTF or augmented pLTF in animals with reduced or absent peripheral inhibitory inputs.
Collapse
Affiliation(s)
- Jinping Liu
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Michel M, Green CL, Eskin A, Lyons LC. PKG-mediated MAPK signaling is necessary for long-term operant memory in Aplysia. Learn Mem 2011; 18:108-17. [PMID: 21245212 DOI: 10.1101/lm.2063611] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Signaling pathways necessary for memory formation, such as the mitogen-activated protein kinase (MAPK) pathway, appear highly conserved across species and paradigms. Learning that food is inedible (LFI) represents a robust form of associative, operant learning that induces short- (STM) and long-term memory (LTM) in Aplysia. We investigated the role of MAPK signaling in LFI memory in vivo. Inhibition of MAPK activation in animals prior to training blocked STM and LTM. Discontinuing MAPK signaling immediately after training inhibited LTM with no impact on STM. Therefore, MAPK signaling appears necessary early in memory formation for STM and LTM, with prolonged MAPK activity required for LTM. We found that LFI training significantly increased phospho-MAPK levels in the buccal ganglia. Increased MAPK activation was apparent immediately after training with greater than basal levels persisting for 2 h. We examined the mechanisms underlying training-induced MAPK activation and found that PKG activity was necessary for the prolonged phase of MAPK activation, but not for the early MAPK phase required for STM. Furthermore, we found that neither the immediate nor the prolonged phase of MAPK activation was dependent upon nitric oxide (NO) signaling, although expression of memory was dependent on NO as previously reported. These studies emphasize the role of MAPK and PKG in negatively reinforced operant memory and demonstrate a role for PKG-dependent MAPK signaling in invertebrate associative memory.
Collapse
Affiliation(s)
- Maximilian Michel
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
31
|
Aplysia cell adhesion molecule and a novel protein kinase C activity in the postsynaptic neuron are required for presynaptic growth and initial formation of specific synapses. J Neurosci 2010; 30:8353-66. [PMID: 20573882 DOI: 10.1523/jneurosci.0546-10.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To explore the role of both Aplysia cell adhesion molecule (ApCAM) and activity of specific protein kinase C (PKC) isoforms in the initial formation of sensory neuron synapses with specific postsynaptic targets (L7 but not L11), we examined presynaptic growth, initial synapse formation, and the expression of the presynaptic neuropeptide sensorin following cell-specific reduction of ApCAM or of a novel PKC activity. Synapse formation between sensory neurons and L7 begins by 3 h after plating and is accompanied by a rapid accumulation of a novel PKC to sites of synaptic interaction. Reducing ApCAM expression specifically from the surface of L7 blocks presynaptic growth and initial synapse formation, target-induced increase of sensorin in sensory neuron cell bodies and the rapid accumulation of the novel PKC to sites of interaction. Selective blockade of the novel PKC activity in L7, but not in sensory neurons, with injection of a dominant negative construct that interferes with the novel PKC activity, produces the same actions as downregulating ApCAM; blockade of presynaptic growth and initial synapse formation, and the target-induced increase of sensorin in sensory neuron cell bodies. The results indicate that signals initiated by postsynaptic cell adhesion molecule ApCAM coupled with the activation of a novel PKC in the appropriate postsynaptic neuron produce the retrograde signals required for presynaptic growth associated with initial synapse formation, and the target-induced expression of a presynaptic neuropeptide critical for synapse maturation.
Collapse
|
32
|
Weatherill DB, Dyer J, Sossin WS. Ribosomal protein S6 kinase is a critical downstream effector of the target of rapamycin complex 1 for long-term facilitation in Aplysia. J Biol Chem 2010; 285:12255-67. [PMID: 20177060 DOI: 10.1074/jbc.m109.071142] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Long-term facilitation (LTF) in Aplysia is a leading cellular model for elucidating the biochemical mechanisms of synaptic plasticity underlying learning. In Aplysia, LTF requires translational control downstream of the target of rapamycin (TOR) complex 1 (TORC1). The major known downstream targets of TORC1 are 4E binding protein (4E-BP) and S6 kinase (S6K). By removing the site within these regulators required for their interaction with TORC1, we have generated dominant negative proteins that disrupt specific pathways downstream of TORC1. Expression of dominant negative S6K, but not dominant negative 4E-BP, in Aplysia sensory neurons (SNs) blocked 24-h LTF. TORC1 is directly activated by the small GTP-binding protein, Ras homologue enriched in brain (Rheb). To determine the effects of TORC1 activation on translation in Aplysia neurons, we have examined the effects of expressing a constitutively active form of the Aplysia orthologue of Rheb, ApRheb (ApRheb(Q63L)). Expression of ApRheb(Q63L) increased 4E-BP phosphorylation and the level of general, cap-dependent translation within the SN cell soma in a rapamycin-sensitive manner. This increase in cap-dependent translation was blocked neither by dominant negative 4E-BP nor dominant negative S6K. Thus, we demonstrate that S6K is an important downstream target of TORC1 in Aplysia and that it is necessary for 24-h LTF, but not for TORC1-mediated increases in somatic cap-dependent translation.
Collapse
Affiliation(s)
- Daniel B Weatherill
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | |
Collapse
|
33
|
Abstract
Activity-dependent long-term synaptic plasticity requires gene expression and protein synthesis. Identifying essential genes and studying their transcriptional and translational regulation are key steps to understanding how synaptic changes become long lasting. Recently, the enzyme poly-(ADP-ribose) polymerase 1 (PARP-1) was shown to be necessary for long-term memory (LTM) in Aplysia. Since PARP-1 decondenses chromatin, we hypothesize that this enzyme regulates the expression of specific genes essential for long-term synaptic plasticity that underlies LTM. We cloned Aplysia PARP-1 (ApPARP-1) and determined that its expression in sensory neurons is necessary for serotonin (5-HT)-mediated long-term facilitation (LTF) of sensorimotor neuron synapses. PARP enzymatic activity is also required, since transient application of PARP inhibitors blocked LTF. Differential display and RNA analysis of ganglia dissected from intact animals exposed to 5-HT identified the ribosomal RNA genes as PARP-dependent effector genes. The increase in the expression of rRNAs is long lasting and dynamic. Pulse-labeling RNA studies showed a PARP-dependent increase in rRNAs but not in the total RNA 24 h after 5-HT treatment. Moreover, the expression of both the AprpL27a (Aplysia ribosomal protein L27a) and the ApE2N (Aplysia ubiquitin-conjugating enzyme E2N) mRNAs also increased after 5-HT. Thus, our results suggest that 5-HT, in part by regulating PARP-1 activity, alters the expression of transcripts required for the synthesis of new ribosomes necessary for LTF.
Collapse
|
34
|
Role of protein kinase C in the induction and maintenance of serotonin-dependent enhancement of the glutamate response in isolated siphon motor neurons of Aplysia californica. J Neurosci 2009; 29:5100-7. [PMID: 19386905 DOI: 10.1523/jneurosci.4149-08.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Serotonin (5-HT) mediates learning-related facilitation of sensorimotor synapses in Aplysia californica. Under some circumstances 5-HT-dependent facilitation requires the activity of protein kinase C (PKC). One critical site of PKC's contribution to 5-HT-dependent synaptic facilitation is the presynaptic sensory neuron. Here, we provide evidence that postsynaptic PKC also contributes to synaptic facilitation. We investigated the contribution of PKC to enhancement of the glutamate-evoked potential (Glu-EP) in isolated siphon motor neurons in cell culture. A 10 min application of either 5-HT or phorbol ester, which activates PKC, produced persistent (> 50 min) enhancement of the Glu-EP. Chelerythrine and bisindolylmaleimide-1 (Bis), two inhibitors of PKC, both blocked the induction of 5-HT-dependent enhancement. An inhibitor of calpain, a calcium-dependent protease, also blocked 5-HT's effect. Interestingly, whereas chelerythrine blocked maintenance of the enhancement, Bis did not. Because Bis has greater selectivity for conventional and novel isoforms of PKC than for atypical isoforms, this result implicates an atypical isoform in the maintenance of 5-HT's effect. Although induction of enhancement of the Glu-EP requires protein synthesis (Villareal et al., 2007), we found that maintenance of the enhancement does not. Maintenance of 5-HT-dependent enhancement appears to be mediated by a PKM-type fragment generated by calpain-dependent proteolysis of atypical PKC. Together, our results suggest that 5-HT treatment triggers two phases of PKC activity within the motor neuron, an early phase that may involve conventional, novel or atypical isoforms of PKC, and a later phase that selectively involves an atypical isoform.
Collapse
|
35
|
Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron 2009; 61:10-26. [PMID: 19146809 DOI: 10.1016/j.neuron.2008.10.055] [Citation(s) in RCA: 737] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/10/2008] [Accepted: 10/17/2008] [Indexed: 01/07/2023]
Abstract
Long-lasting forms of synaptic plasticity and memory are dependent on new protein synthesis. Recent advances obtained from genetic, physiological, pharmacological, and biochemical studies provide strong evidence that translational control plays a key role in regulating long-term changes in neural circuits and thus long-term modifications in behavior. Translational control is important for regulating both general protein synthesis and synthesis of specific proteins in response to neuronal activity. In this review, we summarize and discuss recent progress in the field and highlight the prospects for better understanding of long-lasting changes in synaptic strength, learning, and memory and implications for neurological diseases.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal QCH3G1Y6, Canada.
| | | | | | | |
Collapse
|
36
|
Kunjilwar KK, Fishman HM, Englot DJ, O'Neil RG, Walters ET. Long-lasting hyperexcitability induced by depolarization in the absence of detectable Ca2+ signals. J Neurophysiol 2009; 101:1351-60. [PMID: 19144743 DOI: 10.1152/jn.91012.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Learning and memory depend on neuronal alterations induced by electrical activity. Most examples of activity-dependent plasticity, as well as adaptive responses to neuronal injury, have been linked explicitly or implicitly to induction by Ca(2+) signals produced by depolarization. Indeed, transient Ca(2+) signals are commonly assumed to be the only effective transducers of depolarization into adaptive neuronal responses. Nevertheless, Ca(2+)-independent depolarization-induced signals might also trigger plastic changes. Establishing the existence of such signals is a challenge because procedures that eliminate Ca(2+) transients also impair neuronal viability and tolerance to cellular stress. We have taken advantage of nociceptive sensory neurons in the marine snail Aplysia, which exhibit unusual tolerance to extreme reduction of extracellular and intracellular free Ca(2+) levels. The axons of these neurons exhibit a depolarization-induced memory-like hyperexcitability that lasts a day or longer and depends on local protein synthesis for induction. Here we show that transient localized depolarization of these axons in an excised nerve-ganglion preparation or in dissociated cell culture can induce short- and intermediate-term axonal hyperexcitability as well as long-term protein synthesis-dependent hyperexcitability under conditions in which Ca(2+) entry is prevented (by bathing in nominally Ca(2+) -free solutions containing EGTA) and detectable Ca(2+) transients are eliminated (by adding BAPTA-AM). Disruption of Ca(2+) release from intracellular stores by pretreatment with thapsigargin also failed to affect induction of axonal hyperexcitability. These findings suggest that unrecognized Ca(2+)-independent signals exist that can transduce intense depolarization into adaptive cellular responses during neuronal injury, prolonged high-frequency activity, or other sustained depolarizing events.
Collapse
Affiliation(s)
- Kumud K Kunjilwar
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX, USA
| | | | | | | | | |
Collapse
|
37
|
Nagakura I, Ormond J, Sossin WS. Mechanisms regulating ApTrkl, a Trk-like receptor in Aplysia sensory neurons. J Neurosci Res 2008; 86:2876-83. [PMID: 18521934 DOI: 10.1002/jnr.21741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An Aplysia Trk-like receptor (ApTrkl) was previously shown to be involved in cell wide long-term facilitation (LTF) and activation of ERK when serotonin (5-HT) is applied to the cell soma. The current study investigated the regulation of ApTrkl by overexpressing the receptor and several variants in Aplysia sensory neuron cultures. Kinase activity-dependent constitutive activation of ApTrkl was observed mainly on the plasma membrane. These studies revealed two modes of receptor internalization: (1) kinase activity-dependent internalization and (2) 5-HT-dependent, kinase activity-independent internalization. Both modes of internalization were ligand independent, and the action of 5-HT was mediated through G-protein-coupled receptors (GPCRs). On the other hand, methiothepin, an inverse agonist of 5-HT GPCRs activated endogenous ApTrkl to the same extent as 5-HT, suggesting a transactivation mechanism due to a novel coupling of GPCRs to receptor tyrosine kinase (RTK) activation that is also activated through inverse agonist binding. The neuropeptide sensorin could transiently activate ApTrkl but was not required for 5-HT-induced ApTrkl activation.
Collapse
Affiliation(s)
- Ikue Nagakura
- Department of Psychology, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | | | | |
Collapse
|
38
|
Postsynaptic regulation of long-term facilitation in Aplysia. Curr Biol 2008; 18:920-5. [PMID: 18571411 DOI: 10.1016/j.cub.2008.05.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/28/2008] [Accepted: 05/16/2008] [Indexed: 11/23/2022]
Abstract
Repeated exposure to serotonin (5-HT), an endogenous neurotransmitter that mediates behavioral sensitization in Aplysia[1-3], induces long-term facilitation (LTF) of the Aplysia sensorimotor synapse [4]. LTF, a prominent form of invertebrate synaptic plasticity, is believed to play a major role in long-term learning in Aplysia[5]. Until now, LTF has been thought to be due predominantly to cellular processes activated by 5-HT within the presynaptic sensory neuron [6]. Recent work indicates that LTF depends on the increased expression and release of a sensory neuron-specific neuropeptide, sensorin [7]. Sensorin released during LTF appears to bind to autoreceptors on the sensory neuron, thereby activating critical presynaptic signals, including mitogen-activated protein kinase (MAPK) [8, 9]. Here, we show that LTF depends on elevated postsynaptic Ca2+ and postsynaptic protein synthesis. Furthermore, we find that the increased expression of presynaptic sensorin resulting from 5-HT stimulation requires elevation of postsynaptic intracellular Ca2+. Our results represent perhaps the strongest evidence to date that the increased expression of a specific presynaptic neuropeptide during LTF is regulated by retrograde signals.
Collapse
|
39
|
Wang YY, Legendre P, Huang J, Wang W, Wu SX, Li YQ. The effect of serotonin on GABA synthesis in cultured rat spinal dorsal horn neurons. J Chem Neuroanat 2008; 36:150-9. [PMID: 18672053 DOI: 10.1016/j.jchemneu.2008.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 01/24/2023]
Abstract
The spinal dorsal horn (SDH) is the first step in the integration of primary nociceptive information, which is controlled by the descending serotonin (5-HT) system as well as the principal inhibitory neurotransmitter gamma-aminobutyric acid (GABA). However, the influence exerted by 5-HT on GABA synthesis remains poorly understood. The major pathway for GABA synthesis is the enzymatic decarboxylation of glutamate by glutamic acid decarboxylase (GAD) 65 and 67. In the present research, western blotting results show a time- and dose-dependent enhancement of GAD65 and GAD67 expression induced by 5-HT treatment and a concentration of 100nM 5-HT applied for 3 days is shown to be the optimal condition for maximal expression of GAD67 and a significant expression of GAD65. Under the stimulation of such 5-HT application the phosphorylation of Akt and p42/p44 mitogen-activated protein (MAP) kinase is activated and specifically blocked by inhibitors of phosphatidylinositol 3-kinase (PI3-K) (LY294002) or the p42/p44 MAP kinase (PD98059 and U0126) pathways. Moreover, LY294002, or PD98059, or U0126 partially inhibit 5-HT-stimulated increases in GAD67 or GAD65 expression. Further, 5-HT application has no effect on the number of GAD65/GAD67-immunopositive neuronal cells; but it can induce an increase in the total area, process length and number of primary neurites of GAD65/67-positive neurons, an increase that appears to involve LY294002 and PD98059. The results of this study provide an in vitro model of the regulation of 5-HT on synthesis of GABA in the SDH that is putatively thought to occur in vivo as a result of excitatory neural activity.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No. 17 West Changle Road, Xi'an 710032, PR China
| | | | | | | | | | | |
Collapse
|
40
|
Glanzman DL. New tricks for an old slug: the critical role of postsynaptic mechanisms in learning and memory in Aplysia. PROGRESS IN BRAIN RESEARCH 2008; 169:277-92. [PMID: 18394481 DOI: 10.1016/s0079-6123(07)00017-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The marine snail Aplysia has served for more than four decades as an important model system for neurobiological analyses of learning and memory. Until recently, it has been believed that learning and memory in Aplysia were due predominately, if not exclusively, to presynaptic mechanisms. For example, two nonassociative forms of learning exhibited by Aplysia, sensitization and dishabituation of its defensive withdrawal reflex, have been previously ascribed to presynaptic facilitation of the connections between sensory and motor neurons that mediate the reflex. Recent evidence, however, indicates that postsynaptic mechanisms play a far more important role in learning and memory in Aplysia than formerly appreciated. In particular, dishabituation and sensitization depend on a rise in intracellular Ca(2+) in the postsynaptic motor neuron, postsynaptic exocytosis, and modulation of the functional expression of postsynaptic AMPA-type glutamate receptors. In addition, the expression of the persistent presynaptic changes that occur during intermediate- and long-term dishabituation and sensitization appears to require retrograde signals that are triggered by elevated postsynaptic Ca(2+). The model for learning-related synaptic plasticity proposed here for Aplysia is similar to current mammalian models. This similarity suggests that the cellular mechanisms of learning and memory have been highly conserved during evolution.
Collapse
Affiliation(s)
- David L Glanzman
- Department of Physiological Science, UCLA College, Los Angeles, CA 90095-1606, USA.
| |
Collapse
|
41
|
|
42
|
Multifunctional role of protein kinase C in regulating the formation and maturation of specific synapses. J Neurosci 2007; 27:11712-24. [PMID: 17959813 DOI: 10.1523/jneurosci.3305-07.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Target-dependent increases in axon growth and varicosities accompany the formation of functional synapses between Aplysia sensory neurons and specific postsynaptic neurons (L7 and not L11). The enhanced growth is regulated in part by a target-dependent increase in the secretion of sensorin, the sensory neuron neuropeptide. We report here that protein kinase C (PKC) activity is required for synapse formation by sensory neurons with L7 and for the target-dependent increases in sensorin synthesis and secretion. Blocking PKC activity reversibly blocked synapse formation and axon growth of sensory neurons contacting L7, but did not affect axon growth of sensory neurons contacting L11 or axon growth of the postsynaptic targets. Blocking PKC activity also blocked the target-induced increase in sensorin synthesis and secretion. Sensorin then activates additional signaling pathways required for synapse maturation and synapse-associated growth. Exogenous anti-sensorin antibody blocked target-induced activation and translocation into sensory neuron nuclei of p42/44 mitogen-activated protein kinase (MAPK), attenuated synapse maturation, and curtailed growth of sensory neurons contacting L7, but not the growth of sensory neurons contacting L11. Inhibitors of MAPK or phosphoinositide 3-kinase also attenuated synapse maturation and curtailed growth and varicosity formation of sensory neurons contacting L7, but not growth of sensory neurons contacting L11. These results suggest that PKC activity regulated by specific cell-cell interactions initiates the formation of specific synapses and the subsequent synthesis and release of a neuropeptide to activate additional signaling pathways required for synapse maturation.
Collapse
|
43
|
Hu JY, Chen Y, Schacher S. Protein kinase C regulates local synthesis and secretion of a neuropeptide required for activity-dependent long-term synaptic plasticity. J Neurosci 2007; 27:8927-39. [PMID: 17699674 PMCID: PMC6672177 DOI: 10.1523/jneurosci.2322-07.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term facilitation (LTF) of sensory neuron synapses in Aplysia is produced by either nonassociative or associative stimuli. Nonassociative LTF can be produced by five spaced applications of serotonin (5-HT) and requires a phosphoinosotide 3-kinase (PI3K)-dependent and rapamycin-sensitive increase in the local synthesis of the sensory neuron neuropeptide sensorin and a protein kinase A (PKA)-dependent increase in the secretion of the newly synthesized sensorin. We report here that associative LTF produced by a single pairing of a brief tetanus with one application of 5-HT requires a rapid protein kinase C (PKC)-dependent and rapamycin-sensitive increase in local sensorin synthesis. This rapid increase in sensorin synthesis does not require PI3K activity or the presence of the sensory neuron cell body but does require the presence of the motor neuron. The secretion of newly synthesized sensorin by 2 h after stimulation requires both PKA and PKC activities to produce associative LTF because incubation with exogenous anti-sensorin antibody or the kinase inhibitors after tetanus plus 5-HT blocked LTF. The secreted sensorin leads to phosphorylation and translocation of p42/44 mitogen-activated protein kinase (MAPK) into the nuclei of the sensory neurons. Thus, different stimuli activating different signaling pathways converge by regulating the synthesis and release of a neuropeptide to produce long-term synaptic plasticity.
Collapse
Affiliation(s)
- Jiang-Yuan Hu
- Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York 10032
| | - Yang Chen
- Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York 10032
| | - Samuel Schacher
- Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
44
|
Romanova EV, McKay N, Weiss KR, Sweedler JV, Koester J. Autonomic control network active in Aplysia during locomotion includes neurons that express splice variants of R15-neuropeptides. J Neurophysiol 2007; 97:481-91. [PMID: 17228083 DOI: 10.1152/jn.00581.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Splice-variant products of the R15 neuropeptide gene are differentially expressed within the CNS of Aplysia. The goal of this study was to test whether the neurons in the abdominal ganglion that express the peptides encoded by this gene are part of a common circuit. Expression of R15 peptides had been demonstrated previously in neuron R15. Using a combination of immunocytochemical and analytical methods, this study demonstrated that R15 peptides are also expressed in heart exciter neuron RB(HE), the two L9(G) gill motoneurons, and L40--a newly identified interneuron. Mass spectrometric profiling of individual neurons that exhibit R15 peptide-like immunoreactivity confirmed the mutually exclusive expression of two splice-variant forms of R15 peptides in different neurons. The L9(G) cells were found to co-express pedal peptide in addition to the R15 peptides. The R15 peptide-expressing neurons examined here were shown to be part of an autonomic control circuit that is active during fictive locomotion. Activity in this circuit contributes to implementing a central command that may help to coordinate autonomic activity with escape locomotion. Chronic extracellular nerve recording was used to determine the activity patterns of a subset of neurons of this circuit in vivo. These results demonstrate the potential utility of using shared patterns of neuropeptide expression as a guide for neural circuit identification.
Collapse
Affiliation(s)
- Elena V Romanova
- Center for Neurobiology and Behavior, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, USA
| | | | | | | | | |
Collapse
|
45
|
Sharma SK, Sherff CM, Stough S, Hsuan V, Carew TJ. A tropomyosin-related kinase B ligand is required for ERK activation, long-term synaptic facilitation, and long-term memory in aplysia. Proc Natl Acad Sci U S A 2006; 103:14206-10. [PMID: 16963562 PMCID: PMC1599935 DOI: 10.1073/pnas.0603412103] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BDNF, which acts through tropomyosin-related kinase B (TrkB) receptors during mammalian development, also enhances long-term synaptic facilitation (LTF) in adult Aplysia. Because LTF is a substrate for long-term memory (LTM) in Aplysia, we examined the requirement of a secreted TrkB ligand in LTM formation at molecular, synaptic, and behavioral levels. Using an extracellular fusion protein that sequesters secreted TrkB ligands, we show that TrkB function is required for serotonin-induced activation of extracellular signal-regulated kinase, tail nerve shock-induced LTF in the CNS, and tail shock-induced LTM but is not necessary for short-term synaptic facilitation or short-term memory. These results show that a secreted growth factor, acting through a TrkB signaling cascade, is critical for the induction of long-lasting plasticity and memory formation in Aplysia.
Collapse
Affiliation(s)
- Shiv K. Sharma
- *Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697; and
- National Brain Research Centre, Manesar, Haryana 122 050, India
| | - Carolyn M. Sherff
- *Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697; and
| | - Shara Stough
- *Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697; and
| | - Vickie Hsuan
- *Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697; and
| | - Thomas J. Carew
- *Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Lyons LC, Collado MS, Khabour O, Green CL, Eskin A. The circadian clock modulates core steps in long-term memory formation in Aplysia. J Neurosci 2006; 26:8662-71. [PMID: 16928854 PMCID: PMC6674367 DOI: 10.1523/jneurosci.2307-06.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 07/14/2006] [Accepted: 07/15/2006] [Indexed: 11/21/2022] Open
Abstract
The circadian clock modulates the induction of long-term sensitization (LTS) in Aplysia such that long-term memory formation is significantly suppressed when animals are trained at night. We investigated whether the circadian clock modulated core molecular processes necessary for memory formation in vivo by analyzing circadian regulation of basal and LTS-induced levels of phosphorylated mitogen-activated protein kinase (P-MAPK) and Aplysia CCAAT/enhancer binding protein (ApC/EBP). No basal circadian regulation occurred for P-MAPK or total MAPK in pleural ganglia. In contrast, the circadian clock regulated basal levels of ApC/EBP protein with peak levels at night, antiphase to the rhythm in LTS. Importantly, LTS training during the (subjective) day produced greater increases in P-MAPK and ApC/EBP than training at night. Thus, circadian modulation of LTS occurs, at least in part, by suppressing changes in key proteins at night. Rescue of long-term memory formation at night required both facilitation of MAPK and transcription in conjunction with LTS training, confirming that the circadian clock at night actively suppresses MAPK activation and transcription involved in memory formation. The circadian clock appears to modulate LTS at multiple levels. 5-HT levels are increased more when animals receive LTS training during the (subjective) day compared with the night, suggesting circadian modulation of 5-HT release. Circadian modulation also occurred downstream of 5-HT release because animals treated with 5-HT to induce LTS exhibited significantly greater LTS when treated during the (subjective) day compared with the night. Together, our studies suggest that the circadian clock modulates LTS at multiple steps and locations during the formation of long-term memory.
Collapse
Affiliation(s)
- Lisa C. Lyons
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001
| | - Maria Sol Collado
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001
| | - Omar Khabour
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001
| | - Charity L. Green
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001
| | - Arnold Eskin
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001
| |
Collapse
|
47
|
Sossin WS. Tracing the evolution and function of the Trk superfamily of receptor tyrosine kinases. BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:145-56. [PMID: 16912468 DOI: 10.1159/000094084] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Most growth factors and their receptors have been strongly conserved during evolution. In contrast, Trks (Tropomyosin-related kinases) and related receptors in the Trk superfamily, Rors (receptor tyrosine kinase-like orphan receptors), Musks (muscle specific kinases) and Ddrs (discoidin domain receptor family), appear to be ancient, but their function has been lost in multiple lineages and the roles for the receptors have been modified over time. We will trace the evolution of the Trk superfamily and discuss possible conserved functional roles, including a unifying theme of target recognition by growing axons. We present an analogy between the evolution of G-protein-coupled receptors and receptor tyrosine kinases (RTKs), proposing that an important driving force for the divergence of receptors is the ease of divergence of their ligands.
Collapse
Affiliation(s)
- Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada.
| |
Collapse
|
48
|
Sung YJ, Wu F, Schacher S, Ambron RT. Synaptogenesis regulates axotomy-induced activation of c-Jun-activator protein-1 transcription. J Neurosci 2006; 26:6439-49. [PMID: 16775131 PMCID: PMC6674025 DOI: 10.1523/jneurosci.1844-06.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The activator protein-1 (AP1) transcription complex remains active for long periods after axotomy, but its activity diminishes during target contact. This raises the possibility that the function of this complex is regulated by the synaptic connections. Using Aplysia californica, we found that crushing peripheral nerves in vivo enhanced AP1 binding in the sensory neurons that lasted for weeks and then declined as regeneration was completed. The AP1 complex in Aplysia is a c-Jun homodimer. Its activation, after axotomy, is mediated by Aplysia c-Jun-N-terminal kinase (apJNK), which enters the nucleus of sensory neurons and phosphorylates c-Jun at Ser-73 (p73-c-Jun). Active AP1 in the sensory neurons did not mediate apoptosis and was not involved in the appearance of the long-term hyperexcitability that develops in these cells after axotomy, and blocking the activation of apJNK in vitro did not influence neurite outgrowth. In contrast, the levels of activated apJNK and p73-c-Jun declined markedly when sensory neurons formed synapses with motor neuron L7 in vitro. Furthermore, inhibiting the pathway accelerated synaptogenesis between sensory neurons and L7. These data suggest that positive and negative modulation of the JNK-c-Jun-AP1 pathway functions in alerting the nucleus to the loss and gain of synapses, respectively.
Collapse
Affiliation(s)
- Ying-Ju Sung
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
49
|
De Regge N, Nauwynck HJ, Geenen K, Krummenacher C, Cohen GH, Eisenberg RJ, Mettenleiter TC, Favoreel HW. Alpha-herpesvirus glycoprotein D interaction with sensory neurons triggers formation of varicosities that serve as virus exit sites. ACTA ACUST UNITED AC 2006; 174:267-75. [PMID: 16831884 PMCID: PMC2064186 DOI: 10.1083/jcb.200510156] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
α-Herpesviruses constitute closely related neurotropic viruses, including herpes simplex virus in man and pseudorabies virus (PRV) in pigs. Peripheral sensory neurons, such as trigeminal ganglion (TG) neurons, are predominant target cells for virus spread and lifelong latent infections. We report that in vitro infection of swine TG neurons with the homologous swine α-herpesvirus PRV results in the appearance of numerous synaptophysin-positive synaptic boutons (varicosities) along the axons. Nonneuronal cells that were juxtaposed to these varicosities became preferentially infected with PRV, suggesting that varicosities serve as axonal exit sites for the virus. Viral envelope glycoprotein D (gD) was found to be necessary and sufficient for the induction of varicosities. Inhibition of Cdc42 Rho GTPase and p38 mitogen-activated protein kinase signaling pathways strongly suppressed gD-induced varicosity formation. These data represent a novel aspect of the cell biology of α-herpesvirus infections of sensory neurons, demonstrating that virus attachment/entry is associated with signaling events and neuronal changes that may prepare efficient egress of progeny virus.
Collapse
Affiliation(s)
- Nick De Regge
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Guan X, Clark GA. Essential role of somatic and synaptic protein synthesis and axonal transport in long-term synapse-specific facilitation at distal sensorimotor connections in Aplysia. THE BIOLOGICAL BULLETIN 2006; 210:238-54. [PMID: 16801498 DOI: 10.2307/4134561] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To investigate further the cellular mechanisms underlying long-term facilitation (LTF) and long-term synapse-specific facilitation (LTSSF), we studied the role of axonal transport and somatic and synaptic protein synthesis at proximal and distal synapses of Aplysia siphon sensory neurons (SNs). The long soma-synapse distances (2.5 to 3 cm) of the SN distal synapses impose important temporal and mechanistic constraints on long-term facilitation and on intracellular signaling. Excitatory postsynaptic potentials (EPSPs) evoked by SNs in central and peripheral siphon motor neurons were used to assay LTF 24-30 h after various pharmacological treatments. Inhibition of protein synthesis via anisomycin application at either the SN soma or distal synapses blocked the induction of LTF and LTSSF normally produced by synaptic application of the facilitating transmitter serotonin (5-hydroxytryptamine). Further, disruption of axonal transport by application of nocodazole to the isolated siphon nerve completely blocked LTF at distal synapses. These results indicate an essential role for somatic and synaptic protein synthesis and active axonal transport in LTSSF at distal synapses, and raise intriguing questions for current synaptic marking/capture models of synapse specificity and LTF.
Collapse
Affiliation(s)
- Xin Guan
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|