1
|
Ankri L, Riccitelli S, Rivlin-Etzion M. A new role for excitation in the retinal direction-selective circuit. J Physiol 2024. [PMID: 39462912 DOI: 10.1113/jp286581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
A key feature of the receptive field of neurons in the visual system is their centre-surround antagonism, whereby the centre and the surround exhibit responses of opposite polarity. This organization is thought to enhance visual acuity, but whether and how such antagonism plays a role in more complex processing remains poorly understood. Here, we investigate the role of centre and surround receptive fields in retinal direction selectivity by exposing posterior-preferring On-Off direction-selective ganglion cells (pDSGCs) to adaptive light and recording their response to globally moving objects. We reveal that light adaptation leads to surround expansion in pDSGCs. The pDSGCs maintain their original directional tuning in the centre receptive field, but present the oppositely tuned response in their surround. Notably, although inhibition is the main substrate for retinal direction selectivity, we found that following light adaptation, both the centre- and surround-mediated responses originate from directionally tuned excitatory inputs. Multi-electrode array recordings show similar oppositely tuned responses in other DSGC subtypes. Together, these data attribute a new role for excitation in the direction-selective circuit. This excitation carries an antagonistic centre-surround property, possibly designed to sharpen the detection of motion direction in the retina. KEY POINTS: Receptive fields of direction-selective retinal ganglion cells expand asymmetrically following light adaptation. The increase in the surround receptive field generates a delayed spiking phase that is tuned to the null direction and is mediated by excitation. Following light adaptation, excitation rules the computation in the centre receptive field and is tuned to the preferred direction. GABAergic and glycinergic inputs modulate the null-tuned delayed response differentially. Null-tuned delayed spiking phases can be detected in all types of direction-selective retinal ganglion cells. Light adaptation exposes a hidden directional excitation in the circuit, which is tuned to opposite directions in the centre and surround receptive fields.
Collapse
Affiliation(s)
- Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Serena Riccitelli
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
2
|
Gangi M, Maruyama T, Ishii T, Kaneda M. ON and OFF starburst amacrine cells are controlled by distinct cholinergic pathways. J Gen Physiol 2024; 156:e202413550. [PMID: 38836782 PMCID: PMC11153316 DOI: 10.1085/jgp.202413550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Cholinergic signaling in the retina is mediated by acetylcholine (ACh) released from starburst amacrine cells (SACs), which are key neurons for motion detection. SACs comprise ON and OFF subtypes, which morphologically show mirror symmetry to each other. Although many physiological studies on SACs have targeted ON cells only, the synaptic computation of ON and OFF SACs is assumed to be similar. Recent studies demonstrated that gene expression patterns and receptor types differed between ON and OFF SACs, suggesting differences in their functions. Here, we compared cholinergic signaling pathways between ON and OFF SACs in the mouse retina using the patch clamp technique. The application of ACh increased GABAergic feedback, observed as postsynaptic currents to SACs, in both ON and OFF SACs; however, the mode of GABAergic feedback differed. Nicotinic receptors mediated GABAergic feedback in both ON and OFF SACs, while muscarinic receptors mediated GABAergic feedback in ON SACs only in adults. Neither tetrodotoxin, which blocked action potentials, nor LY354740, which blocked neurotransmitter release from SACs, eliminated ACh-induced GABAergic feedback in SACs. These results suggest that ACh-induced GABAergic feedback in ON and OFF SACs is regulated by different feedback mechanisms in adults and mediated by non-spiking amacrine cells other than SACs.
Collapse
Affiliation(s)
- Mie Gangi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takuma Maruyama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
3
|
Bergum N, Berezin CT, Vigh J. Dopamine enhances GABA A receptor-mediated current amplitude in a subset of intrinsically photosensitive retinal ganglion cells. J Neurophysiol 2024; 132:501-513. [PMID: 38958282 PMCID: PMC11427049 DOI: 10.1152/jn.00457.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Neuromodulation in the retina is crucial for effective processing of retinal signal at different levels of illuminance. Intrinsically photosensitive retinal ganglion cells (ipRGCs), the neurons that drive nonimage-forming visual functions, express a variety of neuromodulatory receptors that tune intrinsic excitability as well as synaptic inputs. Past research has examined actions of neuromodulators on light responsiveness of ipRGCs, but less is known about how neuromodulation affects synaptic currents in ipRGCs. To better understand how neuromodulators affect synaptic processing in ipRGC, we examine actions of opioid and dopamine agonists have on inhibitory synaptic currents in ipRGCs. Although µ-opioid receptor (MOR) activation had no effect on γ-aminobutyric acid (GABA) currents, dopamine [via the D1-type dopamine receptor (D1R)]) amplified GABAergic currents in a subset of ipRGCs. Furthermore, this D1R-mediated facilitation of the GABA conductance in ipRGCs was mediated by a cAMP/PKA-dependent mechanism. Taken together, these findings reinforce the idea that dopamine's modulatory role in retinal adaptation affects both nonimage-forming and image-forming visual functions.NEW & NOTEWORTHY Neuromodulators such as dopamine are important regulators of retinal function. Here, we demonstrate that dopamine increases inhibitory inputs to intrinsically photosensitive retinal ganglion cells (ipRGCs), in addition to its previously established effect on intrinsic light responsiveness. This indicates that dopamine, in addition to its ability to intrinsically modulate ipRGC activity, can also affect synaptic inputs to ipRGCs, thereby tuning retina circuits involved in nonimage-forming visual functions.
Collapse
Affiliation(s)
- Nikolas Bergum
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Casey-Tyler Berezin
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins,Colorado, United States
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins,Colorado, United States
| |
Collapse
|
4
|
Szarka G, Ganczer A, Balogh M, Tengölics ÁJ, Futácsi A, Kenyon G, Pan F, Kovács-Öller T, Völgyi B. Gap junctions fine-tune ganglion cell signals to equalize response kinetics within a given electrically coupled array. iScience 2024; 27:110099. [PMID: 38947503 PMCID: PMC11214328 DOI: 10.1016/j.isci.2024.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/06/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Retinal ganglion cells (RGCs) summate inputs and forward a spike train code to the brain in the form of either maintained spiking (sustained) or a quickly decaying brief spike burst (transient). We report diverse response transience values across the RGC population and, contrary to the conventional transient/sustained scheme, responses with intermediary characteristics are the most abundant. Pharmacological tests showed that besides GABAergic inhibition, gap junction (GJ)-mediated excitation also plays a pivotal role in shaping response transience and thus visual coding. More precisely GJs connecting RGCs to nearby amacrine and RGCs play a defining role in the process. These GJs equalize kinetic features, including the response transience of transient OFF alpha (tOFFα) RGCs across a coupled array. We propose that GJs in other coupled neuron ensembles in the brain are also critical in the harmonization of response kinetics to enhance the population code and suit a corresponding task.
Collapse
Affiliation(s)
- Gergely Szarka
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- University of Pécs, Department of Neurobiology, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
- SzKK Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- University of Pécs, Department of Neurobiology, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
| | - Márton Balogh
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- University of Pécs, Department of Neurobiology, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
| | - Ádám Jonatán Tengölics
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- University of Pécs, Department of Neurobiology, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
| | - Anett Futácsi
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
- SzKK Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | | | - Feng Pan
- The Hong Kong Polytechnic University, Hong Kong, China
| | - Tamás Kovács-Öller
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- University of Pécs, Department of Neurobiology, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
- SzKK Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Béla Völgyi
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- University of Pécs, Department of Neurobiology, Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
5
|
Chander PR, Hanson L, Chundekkad P, Awatramani GB. Neural Circuits Underlying Multifeature Extraction in the Retina. J Neurosci 2024; 44:e0910232023. [PMID: 37957014 PMCID: PMC10919202 DOI: 10.1523/jneurosci.0910-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Classic ON-OFF direction-selective ganglion cells (DSGCs) that encode the four cardinal directions were recently shown to also be orientation-selective. To clarify the mechanisms underlying orientation selectivity, we employed a variety of electrophysiological, optogenetic, and gene knock-out strategies to test the relative contributions of glutamate, GABA, and acetylcholine (ACh) input that are known to drive DSGCs, in male and female mouse retinas. Extracellular spike recordings revealed that DSGCs respond preferentially to either vertical or horizontal bars, those that are perpendicular to their preferred-null motion axes. By contrast, the glutamate input to all four DSGC types measured using whole-cell patch-clamp techniques was found to be tuned along the vertical axis. Tuned glutamatergic excitation was heavily reliant on type 5A bipolar cells, which appear to be electrically coupled via connexin 36 containing gap junctions to the vertically oriented processes of wide-field amacrine cells. Vertically tuned inputs are transformed by the GABAergic/cholinergic "starburst" amacrine cells (SACs), which are critical components of the direction-selective circuit, into distinct patterns of inhibition and excitation. Feed-forward SAC inhibition appears to "veto" preferred orientation glutamate excitation in dorsal/ventral (but not nasal/temporal) coding DSGCs "flipping" their orientation tuning by 90° and accounts for the apparent mismatch between glutamate input tuning and the DSGC's spiking response. Together, these results reveal how two distinct synaptic motifs interact to generate complex feature selectivity, shedding light on the intricate circuitry that underlies visual processing in the retina.
Collapse
Affiliation(s)
| | - Laura Hanson
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 4A4, Canada
| | - Pavitra Chundekkad
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 4A4, Canada
| | | |
Collapse
|
6
|
Bergum N, Berezin CT, Vigh J. Dopamine enhances GABA A receptor-mediated current amplitude in a subset of intrinsically photosensitive retinal ganglion cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571141. [PMID: 38168350 PMCID: PMC10760026 DOI: 10.1101/2023.12.11.571141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neuromodulation in the retina is crucial for effective processing of retinal signal at different levels of illuminance. Intrinsically photosensitive retinal ganglion cells (ipRGCs), the neurons that drive non-image forming visual functions, express a variety of neuromodulatory receptors that tune intrinsic excitability as well as synaptic inputs. Past research has examined actions of neuromodulators on light responsiveness of ipRGCs, but less is known about how neuromodulation affects synaptic currents in ipRGCs. To better understand how neuromodulators affect synaptic processing in ipRGC, we examine actions of opioid and dopamine agonists have on inhibitory synaptic currents in ipRGCs. Although μ-opioid receptor (MOR) activation had no effect on γ-aminobutyric acid (GABA) currents, dopamine (via the D1R) amplified GABAergic currents in a subset of ipRGCs. Furthermore, this D1R-mediated facilitation of the GABA conductance in ipRGCs was mediated by a cAMP/PKA-dependent mechanism. Taken together, these findings reinforce the idea that dopamine's modulatory role in retinal adaptation affects both non-image forming as well as image forming visual functions.
Collapse
Affiliation(s)
- Nikolas Bergum
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Casey-Tyler Berezin
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Matsumoto A, Yonehara K. Emerging computational motifs: Lessons from the retina. Neurosci Res 2023; 196:11-22. [PMID: 37352934 DOI: 10.1016/j.neures.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
The retinal neuronal circuit is the first stage of visual processing in the central nervous system. The efforts of scientists over the last few decades indicate that the retina is not merely an array of photosensitive cells, but also a processor that performs various computations. Within a thickness of only ∼200 µm, the retina consists of diverse forms of neuronal circuits, each of which encodes different visual features. Since the discovery of direction-selective cells by Horace Barlow and Richard Hill, the mechanisms that generate direction selectivity in the retina have remained a fascinating research topic. This review provides an overview of recent advances in our understanding of direction-selectivity circuits. Beyond the conventional wisdom of direction selectivity, emerging findings indicate that the retina utilizes complicated and sophisticated mechanisms in which excitatory and inhibitory pathways are involved in the efficient encoding of motion information. As will become evident, the discovery of computational motifs in the retina facilitates an understanding of how sensory systems establish feature selectivity.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan.
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
8
|
Chen J, Gish CM, Fransen JW, Salazar-Gatzimas E, Clark DA, Borghuis BG. Direct comparison reveals algorithmic similarities in fly and mouse visual motion detection. iScience 2023; 26:107928. [PMID: 37810236 PMCID: PMC10550730 DOI: 10.1016/j.isci.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Evolution has equipped vertebrates and invertebrates with neural circuits that selectively encode visual motion. While similarities in the computations performed by these circuits in mouse and fruit fly have been noted, direct experimental comparisons have been lacking. Because molecular mechanisms and neuronal morphology in the two species are distinct, we directly compared motion encoding in these two species at the algorithmic level, using matched stimuli and focusing on a pair of analogous neurons, the mouse ON starburst amacrine cell (ON SAC) and Drosophila T4 neurons. We find that the cells share similar spatiotemporal receptive field structures, sensitivity to spatiotemporal correlations, and tuning to sinusoidal drifting gratings, but differ in their responses to apparent motion stimuli. Both neuron types showed a response to summed sinusoids that deviates from models for motion processing in these cells, underscoring the similarities in their processing and identifying response features that remain to be explained.
Collapse
Affiliation(s)
- Juyue Chen
- Interdepartmental Neurosciences Program, Yale University, New Haven, CT 06511, USA
| | - Caitlin M Gish
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - James W Fransen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | | | - Damon A Clark
- Interdepartmental Neurosciences Program, Yale University, New Haven, CT 06511, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular, Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
9
|
Wang B, Zhang Y. Asymmetric connections with starburst amacrine cells underlie the upward motion selectivity of J-type retinal ganglion cells. PLoS Biol 2023; 21:e3002301. [PMID: 37721959 PMCID: PMC10538761 DOI: 10.1371/journal.pbio.3002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/28/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023] Open
Abstract
Motion is an important aspect of visual information. The directions of visual motion are encoded in the retina by direction-selective ganglion cells (DSGCs). ON-OFF DSGCs and ON DSGCs co-stratify with starburst amacrine cells (SACs) in the inner plexiform layer and depend on SACs for their direction selectivity. J-type retinal ganglion cells (J-RGCs), a type of OFF DSGCs in the mouse retina, on the other hand, do not co-stratify with SACs, and how direction selectivity in J-RGCs emerges has not been understood. Here, we report that both the excitatory and inhibitory synaptic inputs to J-RGCs are direction-selective (DS), with the inhibitory inputs playing a more important role for direction selectivity. The DS inhibitory inputs come from SACs, and the functional connections between J-RGCs and SACs are spatially asymmetric. Thus, J-RGCs and SACs form functionally important synaptic contacts even though their dendritic arbors show little overlap. These findings underscore the need to look beyond the neurons' stratification patterns in retinal circuit studies. Our results also highlight the critical role of SACs for retinal direction selectivity.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yifeng Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Wu J, Kim YJ, Dacey DM, Troy JB, Smith RG. Two mechanisms for direction selectivity in a model of the primate starburst amacrine cell. Vis Neurosci 2023; 40:E003. [PMID: 37218623 PMCID: PMC10207453 DOI: 10.1017/s0952523823000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a "morphological" mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a "space-time" mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion. To explore the contributions of these two mechanisms in the primate, we developed a realistic computational model based on connectomic reconstruction of a macaque starburst cell and the distribution of its synaptic inputs from sustained and transient bipolar cell types. Our model suggests that both mechanisms can initiate direction selectivity in starburst dendrites, but their contributions differ depending on the spatiotemporal properties of the stimulus. Specifically, the morphological mechanism dominates when small visual objects are moving at high velocities, and the space-time mechanism contributes most for large visual objects moving at low velocities.
Collapse
Affiliation(s)
- Jiajia Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Yeon Jin Kim
- Department of Biological Structure, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Dennis M. Dacey
- Department of Biological Structure, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - John B. Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Robert G. Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Strauss S, Korympidou MM, Ran Y, Franke K, Schubert T, Baden T, Berens P, Euler T, Vlasits AL. Center-surround interactions underlie bipolar cell motion sensitivity in the mouse retina. Nat Commun 2022; 13:5574. [PMID: 36163124 PMCID: PMC9513071 DOI: 10.1038/s41467-022-32762-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Motion sensing is a critical aspect of vision. We studied the representation of motion in mouse retinal bipolar cells and found that some bipolar cells are radially direction selective, preferring the origin of small object motion trajectories. Using a glutamate sensor, we directly observed bipolar cells synaptic output and found that there are radial direction selective and non-selective bipolar cell types, the majority being selective, and that radial direction selectivity relies on properties of the center-surround receptive field. We used these bipolar cell receptive fields along with connectomics to design biophysical models of downstream cells. The models and additional experiments demonstrated that bipolar cells pass radial direction selective excitation to starburst amacrine cells, which contributes to their directional tuning. As bipolar cells provide excitation to most amacrine and ganglion cells, their radial direction selectivity may contribute to motion processing throughout the visual system.
Collapse
Affiliation(s)
- Sarah Strauss
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| | - Anna L Vlasits
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
12
|
Summers MT, Feller MB. Distinct inhibitory pathways control velocity and directional tuning in the mouse retina. Curr Biol 2022; 32:2130-2143.e3. [PMID: 35395192 PMCID: PMC9133153 DOI: 10.1016/j.cub.2022.03.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
The sensory periphery is responsible for detecting ethologically relevant features of the external world, using compact, predominantly feedforward circuits. Visual motion is a particularly prevalent sensory feature, the presence of which can be a signal to enact diverse behaviors ranging from gaze stabilization reflexes to predator avoidance or prey capture. To understand how the retina constructs the distinct neural representations required for these behaviors, we investigated two circuits responsible for encoding different aspects of image motion: ON and ON-OFF direction-selective ganglion cells (DSGCs). Using a combination of two-photon targeted whole-cell electrophysiology, pharmacology, and conditional knockout mice, we show that distinct inhibitory pathways independently control tuning for motion velocity and motion direction in these two cell types. We further employ dynamic clamp and numerical modeling techniques to show that asymmetric inhibition provides a velocity-invariant mechanism of directional tuning, despite the strong velocity dependence of classical models of direction selectivity. We therefore demonstrate that invariant representations of motion features by inhibitory interneurons act as computational building blocks to construct distinct, behaviorally relevant signals at the earliest stages of the visual system.
Collapse
Affiliation(s)
- Mathew T Summers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Ganczer A, Szarka G, Balogh M, Hoffmann G, Tengölics ÁJ, Kenyon G, Kovács-Öller T, Völgyi B. Transience of the Retinal Output Is Determined by a Great Variety of Circuit Elements. Cells 2022; 11:cells11050810. [PMID: 35269432 PMCID: PMC8909309 DOI: 10.3390/cells11050810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Retinal ganglion cells (RGCs) encrypt stimulus features of the visual scene in action potentials and convey them toward higher visual centers in the brain. Although there are many visual features to encode, our recent understanding is that the ~46 different functional subtypes of RGCs in the retina share this task. In this scheme, each RGC subtype establishes a separate, parallel signaling route for a specific visual feature (e.g., contrast, the direction of motion, luminosity), through which information is conveyed. The efficiency of encoding depends on several factors, including signal strength, adaptational levels, and the actual efficacy of the underlying retinal microcircuits. Upon collecting inputs across their respective receptive field, RGCs perform further analysis (e.g., summation, subtraction, weighting) before they generate the final output spike train, which itself is characterized by multiple different features, such as the number of spikes, the inter-spike intervals, response delay, and the rundown time (transience) of the response. These specific kinetic features are essential for target postsynaptic neurons in the brain in order to effectively decode and interpret signals, thereby forming visual perception. We review recent knowledge regarding circuit elements of the mammalian retina that participate in shaping RGC response transience for optimal visual signaling.
Collapse
Affiliation(s)
- Alma Ganczer
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Gergely Szarka
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Márton Balogh
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Gyula Hoffmann
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ádám Jonatán Tengölics
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Garrett Kenyon
- Los Alamos National Laboratory, Computer & Computational Science Division, Los Alamos, NM 87545, USA;
| | - Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
14
|
Ezra-Tsur E, Amsalem O, Ankri L, Patil P, Segev I, Rivlin-Etzion M. Realistic retinal modeling unravels the differential role of excitation and inhibition to starburst amacrine cells in direction selectivity. PLoS Comput Biol 2021; 17:e1009754. [PMID: 34968385 PMCID: PMC8754344 DOI: 10.1371/journal.pcbi.1009754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/12/2022] [Accepted: 12/14/2021] [Indexed: 11/19/2022] Open
Abstract
Retinal direction-selectivity originates in starburst amacrine cells (SACs), which display a centrifugal preference, responding with greater depolarization to a stimulus expanding from soma to dendrites than to a collapsing stimulus. Various mechanisms were hypothesized to underlie SAC centrifugal preference, but dissociating them is experimentally challenging and the mechanisms remain debatable. To address this issue, we developed the Retinal Stimulation Modeling Environment (RSME), a multifaceted data-driven retinal model that encompasses detailed neuronal morphology and biophysical properties, retina-tailored connectivity scheme and visual input. Using a genetic algorithm, we demonstrated that spatiotemporally diverse excitatory inputs-sustained in the proximal and transient in the distal processes-are sufficient to generate experimentally validated centrifugal preference in a single SAC. Reversing these input kinetics did not produce any centrifugal-preferring SAC. We then explored the contribution of SAC-SAC inhibitory connections in establishing the centrifugal preference. SAC inhibitory network enhanced the centrifugal preference, but failed to generate it in its absence. Embedding a direction selective ganglion cell (DSGC) in a SAC network showed that the known SAC-DSGC asymmetric connectivity by itself produces direction selectivity. Still, this selectivity is sharpened in a centrifugal-preferring SAC network. Finally, we use RSME to demonstrate the contribution of SAC-SAC inhibitory connections in mediating direction selectivity and recapitulate recent experimental findings. Thus, using RSME, we obtained a mechanistic understanding of SACs' centrifugal preference and its contribution to direction selectivity.
Collapse
Affiliation(s)
- Elishai Ezra-Tsur
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Mathematics and Computer Science, The Open University of Israel, Ra’anana, Israel
| | - Oren Amsalem
- Department of Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Pritish Patil
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Segev
- Department of Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
15
|
Matsumoto A, Agbariah W, Nolte SS, Andrawos R, Levi H, Sabbah S, Yonehara K. Direction selectivity in retinal bipolar cell axon terminals. Neuron 2021; 109:2928-2942.e8. [PMID: 34390651 PMCID: PMC8478419 DOI: 10.1016/j.neuron.2021.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022]
Abstract
The ability to encode the direction of image motion is fundamental to our sense of vision. Direction selectivity along the four cardinal directions is thought to originate in direction-selective ganglion cells (DSGCs) because of directionally tuned GABAergic suppression by starburst cells. Here, by utilizing two-photon glutamate imaging to measure synaptic release, we reveal that direction selectivity along all four directions arises earlier than expected at bipolar cell outputs. Individual bipolar cells contained four distinct populations of axon terminal boutons with different preferred directions. We further show that this bouton-specific tuning relies on cholinergic excitation from starburst cells and GABAergic inhibition from wide-field amacrine cells. DSGCs received both tuned directionally aligned inputs and untuned inputs from among heterogeneously tuned glutamatergic bouton populations. Thus, directional tuning in the excitatory visual pathway is incrementally refined at the bipolar cell axon terminals and their recipient DSGC dendrites by two different neurotransmitters co-released from starburst cells.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
| | - Weaam Agbariah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Stella Solveig Nolte
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
| | - Rawan Andrawos
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hadara Levi
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark.
| |
Collapse
|
16
|
Chen Q, Smith RG, Huang X, Wei W. Preserving inhibition with a disinhibitory microcircuit in the retina. eLife 2020; 9:62618. [PMID: 33269700 PMCID: PMC7728437 DOI: 10.7554/elife.62618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/02/2020] [Indexed: 01/13/2023] Open
Abstract
Previously, we found that in the mammalian retina, inhibitory inputs onto starburst amacrine cells (SACs) are required for robust direction selectivity of On-Off direction-selective ganglion cells (On-Off DSGCs) against noisy backgrounds (Chen et al., 2016). However, the source of the inhibitory inputs to SACs and how this inhibition confers noise resilience of DSGCs are unknown. Here, we show that when visual noise is present in the background, the motion-evoked inhibition to an On-Off DSGC is preserved by a disinhibitory motif consisting of a serially connected network of neighboring SACs presynaptic to the DSGC. This preservation of inhibition by a disinhibitory motif arises from the interaction between visually evoked network dynamics and short-term synaptic plasticity at the SAC-DSGC synapse. Although the disinhibitory microcircuit is well studied for its disinhibitory function in brain circuits, our results highlight the algorithmic flexibility of this motif beyond disinhibition due to the mutual influence between network and synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- Qiang Chen
- Committee on Computational Neuroscience, University of Chicago, Chicago, United States
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
| | - Xiaolin Huang
- Committee on Neurobiology, University of Chicago, Chicago, United States
| | - Wei Wei
- Committee on Computational Neuroscience, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States.,Department of Neurobiology, the University of Chicago, Chicago, United States.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, United States
| |
Collapse
|
17
|
Spatiotemporally Asymmetric Excitation Supports Mammalian Retinal Motion Sensitivity. Curr Biol 2019; 29:3277-3288.e5. [PMID: 31564498 PMCID: PMC6865067 DOI: 10.1016/j.cub.2019.08.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 11/20/2022]
Abstract
The detection of visual motion is a fundamental function of the visual system. How motion speed and direction are computed together at the cellular level, however, remains largely unknown. Here, we suggest a circuit mechanism by which excitatory inputs to direction-selective ganglion cells in the mouse retina become sensitive to the motion speed and direction of image motion. Electrophysiological, imaging, and connectomic analyses provide evidence that the dendrites of ON direction-selective cells receive spatially offset and asymmetrically filtered glutamatergic inputs along motion-preference axis from asymmetrically wired bipolar and amacrine cell types with distinct release dynamics. A computational model shows that, with this spatiotemporal structure, the input amplitude becomes sensitive to speed and direction by a preferred direction enhancement mechanism. Our results highlight the role of an excitatory mechanism in retinal motion computation by which feature selectivity emerges from non-selective inputs.
Collapse
|
18
|
Bereshpolova Y, Stoelzel CR, Su C, Alonso JM, Swadlow HA. Activation of a Visual Cortical Column by a Directionally Selective Thalamocortical Neuron. Cell Rep 2019; 27:3733-3740.e3. [PMID: 31242407 DOI: 10.1016/j.celrep.2019.05.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 01/26/2023] Open
Abstract
The retinas of rabbits and rodents have directionally selective (DS) retinal ganglion cells that convey directional signals through the lateral geniculate nucleus (LGN) of the thalamus to the primary visual cortex (V1). Notably, the function and synaptic impact in V1 of these directional LGN signals are unknown. Here we measured, in awake rabbits, the synaptic impact generated in V1 by individual LGN DS neurons. We show that these neurons make fast and strong connections in layers 4 and 6, with postsynaptic effects that are similar to those made by LGN concentric neurons, the main thalamic drivers of V1. By contrast, the synaptic impact of LGN DS neurons on superficial cortical layers was not detectable. These results suggest that LGN DS neurons activate a cortical column by targeting the main cortical input layers and that the role of DS input to superficial cortical layers is likely to be weak and/or modulatory.
Collapse
Affiliation(s)
- Yulia Bereshpolova
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Carl R Stoelzel
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Chuyi Su
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Jose-Manuel Alonso
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA; Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY 10036, USA
| | - Harvey A Swadlow
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA; Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY 10036, USA.
| |
Collapse
|
19
|
Kovács-Öller T, Szarka G, Ganczer A, Tengölics Á, Balogh B, Völgyi B. Expression of Ca 2+-Binding Buffer Proteins in the Human and Mouse Retinal Neurons. Int J Mol Sci 2019; 20:E2229. [PMID: 31067641 PMCID: PMC6539911 DOI: 10.3390/ijms20092229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022] Open
Abstract
Ca2+-binding buffer proteins (CaBPs) are widely expressed by various neurons throughout the central nervous system (CNS), including the retina. While the expression of CaBPs by photoreceptors, retinal interneurons and the output ganglion cells in the mammalian retina has been extensively studied, a general description is still missing due to the differences between species, developmental expression patterns and study-to-study discrepancies. Furthermore, CaBPs are occasionally located in a compartment-specific manner and two or more CaBPs can be expressed by the same neuron, thereby sharing the labor of Ca2+ buffering in the intracellular milieu. This article reviews this topic by providing a framework on CaBP functional expression by neurons of the mammalian retina with an emphasis on human and mouse retinas and the three most abundant and extensively studied buffer proteins: parvalbumin, calretinin and calbindin.
Collapse
Affiliation(s)
- Tamás Kovács-Öller
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary.
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
- Medical School, University of Pécs, 7624 Pécs, Hungary.
| | - Gergely Szarka
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary.
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Alma Ganczer
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary.
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Ádám Tengölics
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary.
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Boglárka Balogh
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary.
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Béla Völgyi
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary.
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, 1051 Budapest, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
- Medical School, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
20
|
Simulated Saccadic Stimuli Suppress ON-Type Direction-Selective Retinal Ganglion Cells via Glycinergic Inhibition. J Neurosci 2019; 39:4312-4322. [PMID: 30926751 DOI: 10.1523/jneurosci.3066-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Two types of mammalian direction-selective ganglion cells (DSGCs), ON and ONOFF, operate over different speed ranges. The directional axes of the ON-DSGCs are thought to align with the axes of the vestibular system and provide sensitivity at rotational velocities that are too slow to activate the semicircular canals. ONOFF-DSGCs respond to faster image velocities. Using natural images that simulate the natural visual inputs to freely moving animals, we show that simulated visual saccades suppress responses in ON-DSGCs but not ONOFF-DSGCs recorded in retinas of domestic rabbits of either gender. Analysis of the synaptic inputs shows that this saccadic suppression results from glycinergic inputs that are specific to ON-DSGCs and are absent in ONOFF-DSGCs. When this glycinergic input is blocked, both cell types respond similarly to visual saccades and display essentially identical speed tuning. The results demonstrate that glycinergic circuits within the retina can produce saccadic suppression of retinal ganglion cell activity. The cell-type-specific targeting of the glycinergic circuits further supports the proposed physiological roles of ON-DSGCs in retinal-image stabilization and of ONOFF-DSGCs in detecting local object motion and signaling optical flow.SIGNIFICANCE STATEMENT In the mammalian retina, ON direction-selective ganglion cells (DSGCs) respond preferentially to slow image motion, whereas ONOFF-DSGCs respond better to rapid motion. The mechanisms producing this different speed tuning remain unclear. Here we show that simulated visual saccades suppress ON-DSGCs, but not ONOFF-DSGCs. This selective saccadic suppression is because of the selective targeting of glycinergic inhibitory synaptic inputs to ON-DSGCs. The different saccadic suppression in the two cell types points to different physiological roles, consistent with their projections to distinct areas within the brain. ON-DSGCs may be critical for providing the visual feedback signals that contribute to stabilizing the image on the retina, whereas ONOFF-DSGCs may be important for detecting the onset of saccades or for signaling optical flow.
Collapse
|
21
|
Yufik YM. The Understanding Capacity and Information Dynamics in the Human Brain. ENTROPY (BASEL, SWITZERLAND) 2019; 21:E308. [PMID: 33267023 PMCID: PMC7514789 DOI: 10.3390/e21030308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
This article proposes a theory of neuronal processes underlying cognition, focusing on the mechanisms of understanding in the human brain. Understanding is a product of mental modeling. The paper argues that mental modeling is a form of information production inside the neuronal system extending the reach of human cognition "beyond the information given" (Bruner, J.S., Beyond the Information Given, 1973). Mental modeling enables forms of learning and prediction (learning with understanding and prediction via explanation) that are unique to humans, allowing robust performance under unfamiliar conditions having no precedents in the past history. The proposed theory centers on the notions of self-organization and emergent properties of collective behavior in the neuronal substrate. The theory motivates new approaches in the design of intelligent artifacts (machine understanding) that are complementary to those underlying the technology of machine learning.
Collapse
Affiliation(s)
- Yan M Yufik
- Virtual Structures Research, Inc., Potomac, MD 20854, USA
| |
Collapse
|
22
|
Hanson L, Sethuramanujam S, deRosenroll G, Jain V, Awatramani GB. Retinal direction selectivity in the absence of asymmetric starburst amacrine cell responses. eLife 2019; 8:42392. [PMID: 30714905 PMCID: PMC6377229 DOI: 10.7554/elife.42392] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/01/2019] [Indexed: 01/18/2023] Open
Abstract
In the mammalian retina, direction-selectivity is thought to originate in the dendrites of GABAergic/cholinergic starburst amacrine cells, where it is first observed. However, here we demonstrate that direction selectivity in downstream ganglion cells remains remarkably unaffected when starburst dendrites are rendered non-directional, using a novel strategy combining a conditional GABAA α2 receptor knockout mouse with optogenetics. We show that temporal asymmetries between excitation/inhibition, arising from the differential connectivity patterns of starburst cholinergic and GABAergic synapses to ganglion cells, form the basis for a parallel mechanism generating direction selectivity. We further demonstrate that these distinct mechanisms work in a coordinated way to refine direction selectivity as the stimulus crosses the ganglion cell’s receptive field. Thus, precise spatiotemporal patterns of inhibition and excitation that determine directional responses in ganglion cells are shaped by two ‘core’ mechanisms, both arising from distinct specializations of the starburst network.
Collapse
Affiliation(s)
- Laura Hanson
- Department of Biology, University of Victoria, Victoria, Canada
| | | | | | - Varsha Jain
- Department of Biology, University of Victoria, Victoria, Canada
| | | |
Collapse
|
23
|
Abstract
Visual motion on the retina activates a cohort of retinal ganglion cells (RGCs). This population activity encodes multiple streams of information extracted by parallel retinal circuits. Motion processing in the retina is best studied in the direction-selective circuit. The main focus of this review is the neural basis of direction selectivity, which has been investigated in unprecedented detail using state-of-the-art functional, connectomic, and modeling methods. Mechanisms underlying the encoding of other motion features by broader RGC populations are also discussed. Recent discoveries at both single-cell and population levels highlight the dynamic and stimulus-dependent engagement of multiple mechanisms that collectively implement robust motion detection under diverse visual conditions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
24
|
Sethuramanujam S, Awatramani GB, Slaughter MM. Cholinergic excitation complements glutamate in coding visual information in retinal ganglion cells. J Physiol 2018; 596:3709-3724. [PMID: 29758086 DOI: 10.1113/jp275073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/25/2018] [Indexed: 01/07/2023] Open
Abstract
KEY POINTS Starburst amacrine cells release GABA and ACh. This study explores the coordinated function of starburst-mediated cholinergic excitation and GABAergic inhibition to bistratified retinal ganglion cells, predominantly direction-selective ganglion cells (DSGCs). In rat retina, under our recording conditions, starbursts were found to provide the major excitatory drive to a sub-population of ganglion cells whose dendrites co-stratify with starburst dendrites (putative DSGCs). In mouse retina, recordings from genetically identified DSGCs at physiological temperatures reveal that ACh inputs dominate the response to small spot-high contrast light stimuli, with preferential addition of bipolar cell input shifting the balance towards glutamate for larger spot stimuli In addition, starbursts also appear to gate glutamatergic excitation to DSGCs by postsynaptic and possibly presynaptic inhibitory processes ABSTRACT: Starburst amacrine cells release both GABA and ACh, allowing them to simultaneously mediate inhibition and excitation. However, the precise pre- and postsynaptic targets for ACh and GABA remain under intense investigation. Most previous studies have focused on starburst-mediated postsynaptic GABAergic inhibition and its role in the formation of directional selectivity in ganglion cells. However, the significance of postsynaptic cholinergic excitation is only beginning to be appreciated. Here, we found that light-evoked responses measured in bi-stratified rat ganglion cells with dendrites that co-fasciculate with ON and OFF starburst dendrites (putative direction-selective ganglion cells, DSGCs) were abolished by the application of nicotinic receptor antagonists, suggesting ACh could act as the primary source of excitation. Recording from genetically labelled DSGCs in mouse retina at physiological temperatures revealed that cholinergic synaptic inputs dominated the excitation for high contrast stimuli only when the size of the stimulus was small. Canonical glutamatergic inputs mediated by bipolar cells were prominent when GABA/glycine receptors were blocked or when larger spot stimuli were utilized. In mouse DSGCs, bipolar cell excitation could also be unmasked through the activation of mGluR2,3 receptors, which we show suppresses starburst output, suggesting that GABA from starbursts serves to inhibit bipolar cell signals in DSGCs. Taken together, these results suggest that starbursts amplify excitatory signals traversing the retina, endowing DSGCs with the ability to encode fine spatial information without compromising their ability to encode direction.
Collapse
Affiliation(s)
- Santhosh Sethuramanujam
- Center for Neuroscience and Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, 14214, USA.,Department of Biology, University of Victoria, Victoria, BC, V8W2Y2, Canada
| | | | - Malcolm M Slaughter
- Center for Neuroscience and Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
25
|
Chen Q, Wei W. Stimulus-dependent engagement of neural mechanisms for reliable motion detection in the mouse retina. J Neurophysiol 2018; 120:1153-1161. [PMID: 29897862 DOI: 10.1152/jn.00716.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Direction selectivity is a fundamental computation in the visual system and is first computed by the direction-selective circuit in the mammalian retina. Although landmark discoveries on the neural basis of direction selectivity have been made in the rabbit, many technological advances designed for the mouse have emerged, making this organism a favored model for investigating the direction-selective circuit at the molecular, synaptic, and network levels. Studies using diverse motion stimuli in the mouse retina demonstrate that retinal direction selectivity is implemented by multilayered mechanisms. This review begins with a set of central mechanisms that are engaged under a wide range of visual conditions and then focuses on additional layers of mechanisms that are dynamically recruited under different visual stimulus conditions. Together, recent findings allude to an emerging theme: robust motion detection in the natural environment requires flexible neural mechanisms.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Neurobiology, The University of Chicago , Chicago, Illinois.,Committee on Computational Neuroscience, The University of Chicago , Chicago, Illinois
| | - Wei Wei
- Department of Neurobiology, The University of Chicago , Chicago, Illinois.,Committee on Computational Neuroscience, The University of Chicago , Chicago, Illinois
| |
Collapse
|
26
|
Shen W, Nan C, Nelson PT, Ripps H, Slaughter MM. GABA B receptor attenuation of GABA A currents in neurons of the mammalian central nervous system. Physiol Rep 2017; 5:5/6/e13129. [PMID: 28348006 PMCID: PMC5371550 DOI: 10.14814/phy2.13129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 11/24/2022] Open
Abstract
Ionotropic receptors are tightly regulated by second messenger systems and are often present along with their metabotropic counterparts on a neuron's plasma membrane. This leads to the hypothesis that the two receptor subtypes can interact, and indeed this has been observed in excitatory glutamate and inhibitory GABA receptors. In both systems the metabotropic pathway augments the ionotropic receptor response. However, we have found that the metabotropic GABAB receptor can suppress the ionotropic GABAA receptor current, in both the in vitro mouse retina and in human amygdala membrane fractions. Expression of amygdala membrane microdomains in Xenopus oocytes by microtransplantation produced functional ionotropic and metabotropic GABA receptors. Most GABAA receptors had properties of α‐subunit containing receptors, with ~5% having ρ‐subunit properties. Only GABAA receptors with α‐subunit‐like properties were regulated by GABAB receptors. In mouse retinal ganglion cells, where only α‐subunit‐containing GABAA receptors are expressed, GABAB receptors suppressed GABAA receptor currents. This suppression was blocked by GABAB receptor antagonists, G‐protein inhibitors, and GABAB receptor antibodies. Based on the kinetic differences between metabotropic and ionotropic receptors, their interaction would suppress repeated, rapid GABAergic inhibition.
Collapse
Affiliation(s)
- Wen Shen
- Department of Biomedical Science, Charles E. Schmidt College of Medicine Florida Atlantic University, Boca Raton, Florida
| | - Changlong Nan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine Florida Atlantic University, Boca Raton, Florida
| | - Peter T Nelson
- Division of Neuropathology, Department of Pathology, University of Kentucky, Lexington, Kentucky.,Sanders-Brown Centre on Aging, University of Kentucky, Lexington, Kentucky
| | - Harris Ripps
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois.,Whitman Investigator, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Malcolm M Slaughter
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
27
|
Dendro-dendritic cholinergic excitation controls dendritic spike initiation in retinal ganglion cells. Nat Commun 2017; 8:15683. [PMID: 28589928 PMCID: PMC5477517 DOI: 10.1038/ncomms15683] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
The retina processes visual images to compute features such as the direction of image motion. Starburst amacrine cells (SACs), axonless feed-forward interneurons, are essential components of the retinal direction-selective circuitry. Recent work has highlighted that SAC-mediated dendro-dendritic inhibition controls the action potential output of direction-selective ganglion cells (DSGCs) by vetoing dendritic spike initiation. However, SACs co-release GABA and the excitatory neurotransmitter acetylcholine at dendritic sites. Here we use direct dendritic recordings to show that preferred direction light stimuli evoke SAC-mediated acetylcholine release, which powerfully controls the stimulus sensitivity, receptive field size and action potential output of ON-DSGCs by acting as an excitatory drive for the initiation of dendritic spikes. Consistent with this, paired recordings reveal that the activation of single ON-SACs drove dendritic spike generation, because of predominate cholinergic excitation received on the preferred side of ON-DSGCs. Thus, dendro-dendritic release of neurotransmitters from SACs bi-directionally gate dendritic spike initiation to control the directionally selective action potential output of retinal ganglion cells. Neural computations performed by the retinal microcircuit have been extensively studied. Here the authors report using dendritic recordings that the direction selective responses of retinal ganglion cells are controlled by dendro-dendritic cholinergic excitation from starburst amacrine cells.
Collapse
|
28
|
Zhang C, Kolodkin AL, Wong RO, James RE. Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. Annu Rev Neurosci 2017; 40:395-424. [PMID: 28460185 DOI: 10.1146/annurev-neuro-072116-031607] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retina is a tremendously complex image processor, containing numerous cell types that form microcircuits encoding different aspects of the visual scene. Each microcircuit exhibits a distinct pattern of synaptic connectivity. The developmental mechanisms responsible for this patterning are just beginning to be revealed. Furthermore, signals processed by different retinal circuits are relayed to specific, often distinct, brain regions. Thus, much work has focused on understanding the mechanisms that wire retinal axonal projections to their appropriate central targets. Here, we highlight recently discovered cellular and molecular mechanisms that together shape stereotypic wiring patterns along the visual pathway, from within the retina to the brain. Although some mechanisms are common across circuits, others play unconventional and circuit-specific roles. Indeed, the highly organized connectivity of the visual system has greatly facilitated the discovery of novel mechanisms that establish precise synaptic connections within the nervous system.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Rebecca E James
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| |
Collapse
|
29
|
Percival KA, Venkataramani S, Smith RG, Taylor WR. Directional excitatory input to direction-selective ganglion cells in the rabbit retina. J Comp Neurol 2017; 527:270-281. [PMID: 28295340 DOI: 10.1002/cne.24207] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 12/19/2022]
Abstract
Directional responses in retinal ganglion cells are generated in large part by direction-selective release of γ-aminobutyric acid from starburst amacrine cells onto direction-selective ganglion cells (DSGCs). The excitatory inputs to DSGCs are also widely reported to be direction-selective, however, recent evidence suggests that glutamate release from bipolar cells is not directional, and directional excitation seen in patch-clamp analyses may be an artifact resulting from incomplete voltage control. Here, we test this voltage-clamp-artifact hypothesis in recordings from 62 ON-OFF DSGCs in the rabbit retina. The strength of the directional excitatory signal varies considerably across the sample of cells, but is not correlated with the strength of directional inhibition, as required for a voltage-clamp artifact. These results implicate additional mechanisms in generating directional excitatory inputs to DSGCs.
Collapse
Affiliation(s)
- Kumiko A Percival
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Sowmya Venkataramani
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
| | - W Rowland Taylor
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
30
|
Neuronify: An Educational Simulator for Neural Circuits. eNeuro 2017; 4:eN-MNT-0022-17. [PMID: 28321440 PMCID: PMC5355897 DOI: 10.1523/eneuro.0022-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/18/2017] [Accepted: 02/23/2017] [Indexed: 11/21/2022] Open
Abstract
Educational software (apps) can improve science education by providing an interactive way of learning about complicated topics that are hard to explain with text and static illustrations. However, few educational apps are available for simulation of neural networks. Here, we describe an educational app, Neuronify, allowing the user to easily create and explore neural networks in a plug-and-play simulation environment. The user can pick network elements with adjustable parameters from a menu, i.e., synaptically connected neurons modelled as integrate-and-fire neurons and various stimulators (current sources, spike generators, visual, and touch) and recording devices (voltmeter, spike detector, and loudspeaker). We aim to provide a low entry point to simulation-based neuroscience by allowing students with no programming experience to create and simulate neural networks. To facilitate the use of Neuronify in teaching, a set of premade common network motifs is provided, performing functions such as input summation, gain control by inhibition, and detection of direction of stimulus movement. Neuronify is developed in C++ and QML using the cross-platform application framework Qt and runs on smart phones (Android, iOS) and tablet computers as well personal computers (Windows, Mac, Linux).
Collapse
|
31
|
Abstract
Abstract
How direction of image motion is detected as early as at the level of the vertebrate eye has been intensively studied in retina research. Although the first direction-selective (DS) retinal ganglion cells were already described in the 1960s and have since then been in the focus of many studies, scientists are still puzzled by the intricacy of the neuronal circuits and computational mechanisms underlying retinal direction selectivity. The fact that the retina can be easily isolated and studied in a Petri dish-by presenting light stimuli while recording from the various cell types in the retinal circuits-in combination with the extensive anatomical, molecular and physiological knowledge about this part of the brain presents a unique opportunity for studying this intriguing visual circuit in detail. This article provides a brief overview of the history of research on retinal direction selectivity, but then focuses on the past decade and the progress achieved, in particular driven by methodological advances in optical recording techniques, molecular genetics approaches and large-scale ultrastructural reconstructions. As it turns out, retinal direction selectivity is a complex, multi-tiered computation, involving dendrite-intrinsic mechanisms as well as several types of network interactions on the basis of highly selective, likely genetically predetermined synaptic connectivity. Moreover, DS ganglion cell types appear to be more diverse than previously thought, differing not only in their preferred direction and response polarity, but also in physiology, DS mechanism, dendritic morphology and, importantly, the target area of their projections in the brain.
Collapse
|
32
|
Barloscio D, Cerri E, Domenici L, Longhi R, Dallanoce C, Moretti M, Vilella A, Zoli M, Gotti C, Origlia N. In vivo study of the role of α6-containing nicotinic acetylcholine receptor in retinal function using subtype-specific RDP-MII(E11R) toxin. FASEB J 2016; 31:192-202. [PMID: 27682206 DOI: 10.1096/fj.201600855r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/16/2016] [Indexed: 02/05/2023]
Abstract
Although α6-contaning (α6*) nicotinic acetylcholine receptors (nAChRs) are densely expressed in the visual system, their role is not well known. We have characterized a family of toxins that are antagonists for α6β2* receptors and used one of these [RDP-MII(E11R)] to localize α6* nAChRs and investigate their impact on retinal function in adult Long-Evans rats. The α6*nAChRs in retinal tissue were localized using either a fluorescently tagged [RDP-MII(E11R)] or anti-α6-specific antibodies and found to be predominantly at the level of the ganglion cell layer. After intraocular injection of RDP-MII(E11R) in one eye and vehicle or inactive MII in contralateral eyes as controls, we recorded flash electroretinograms (F-ERGs), pattern ERGs (P-ERGs), and cortical visual-evoked potential (VEPs). There was no significant difference in F-ERG between the RDP-MII(E11R)-treated and control eyes. In contrast, P-ERG response amplitude was significantly reduced in the RDP-MII(E11R)-injected eye. Blocking α6* nAChRs at retinal level also decreased the VEP amplitude recorded in the visual cortex contralateral to the injected eye. Because both the cortical and inner retina output were affected by RDP-MII(E11R), whereas photoreceptor output was preserved, we conclude that the reduced visual response was due to an alteration in the function of α6* nAChRs present in the ganglion cell layer.-Barloscio, D., Cerri, E., Domenici, L., Longhi, R., Dallanoce, C., Moretti, M., Vilella, A., Zoli, M., Gotti, C., and Origlia, N. In vivo study of the role of α6-containing nicotinic acetylcholine receptor in retinal function using subtype-specific RDP-MII(E11R) toxin.
Collapse
Affiliation(s)
- Davide Barloscio
- National Research Council (CNR) Neuroscience Institute-Pisa, Pisa, Italy
| | - Elisa Cerri
- National Research Council (CNR) Neuroscience Institute-Pisa, Pisa, Italy
| | - Luciano Domenici
- National Research Council (CNR) Neuroscience Institute-Pisa, Pisa, Italy
| | - Renato Longhi
- CNR Institute of Chemistry of Molecular Recognition, Milan, Italy
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Section of Medicinal Chemistry "Pietro Pratesi," University of Milan, Milan, Italy
| | - Milena Moretti
- CNR Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy; and
| | - Antonietta Vilella
- Center for Neuroscience and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Zoli
- Center for Neuroscience and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Gotti
- CNR Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy; and
| | - Nicola Origlia
- National Research Council (CNR) Neuroscience Institute-Pisa, Pisa, Italy;
| |
Collapse
|
33
|
Vlasits AL, Morrie RD, Tran-Van-Minh A, Bleckert A, Gainer CF, DiGregorio DA, Feller MB. A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina. Neuron 2016; 89:1317-1330. [PMID: 26985724 DOI: 10.1016/j.neuron.2016.02.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/22/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Abstract
The starburst amacrine cell in the mouse retina presents an opportunity to examine the precise role of sensory input location on neuronal computations. Using visual receptive field mapping, glutamate uncaging, two-photon Ca(2+) imaging, and genetic labeling of putative synapses, we identify a unique arrangement of excitatory inputs and neurotransmitter release sites on starburst amacrine cell dendrites: the excitatory input distribution is skewed away from the release sites. By comparing computational simulations with Ca(2+) transients recorded near release sites, we show that this anatomical arrangement of inputs and outputs supports a dendritic mechanism for computing motion direction. Direction-selective Ca(2+) transients persist in the presence of a GABA-A receptor antagonist, though the directional tuning is reduced. These results indicate a synergistic interaction between dendritic and circuit mechanisms for generating direction selectivity in the starburst amacrine cell.
Collapse
Affiliation(s)
- Anna L Vlasits
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryan D Morrie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexandra Tran-Van-Minh
- Unit of Dynamic Neuronal Imaging, Institut Pasteur, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, 75724 Paris Cedex 15, France
| | - Adam Bleckert
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Christian F Gainer
- Department of Optometry, University of California, Berkeley, Berkeley, CA 94704, USA
| | - David A DiGregorio
- Unit of Dynamic Neuronal Imaging, Institut Pasteur, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, 75724 Paris Cedex 15, France.
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
34
|
Sethuramanujam S, McLaughlin AJ, deRosenroll G, Hoggarth A, Schwab DJ, Awatramani GB. A Central Role for Mixed Acetylcholine/GABA Transmission in Direction Coding in the Retina. Neuron 2016; 90:1243-1256. [PMID: 27238865 DOI: 10.1016/j.neuron.2016.04.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/09/2016] [Accepted: 04/18/2016] [Indexed: 11/27/2022]
Abstract
A surprisingly large number of neurons throughout the brain are endowed with the ability to co-release both a fast excitatory and inhibitory transmitter. The computational benefits of dual transmitter release, however, remain poorly understood. Here, we address the role of co-transmission of acetylcholine (ACh) and GABA from starburst amacrine cells (SACs) to direction-selective ganglion cells (DSGCs). Using a combination of pharmacology, optogenetics, and linear regression methods, we estimated the spatiotemporal profiles of GABA, ACh, and glutamate receptor-mediated synaptic activity in DSGCs evoked by motion. We found that ACh initiates responses to motion in natural scenes or under low-contrast conditions. In contrast, classical glutamatergic pathways play a secondary role, amplifying cholinergic responses via NMDA receptor activation. Furthermore, under these conditions, the network of SACs differentially transmits ACh and GABA to DSGCs in a directional manner. Thus, mixed transmission plays a central role in shaping directional responses of DSGCs.
Collapse
Affiliation(s)
| | | | | | - Alex Hoggarth
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - David J Schwab
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Gautam B Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
35
|
Koizumi A, Poznanski RR. Does heterogeneity of intracellular Ca[Formula: see text] dynamics underlie speed tuning of direction-selective responses in starburst amacrine cells? J Integr Neurosci 2016; 14:1-17. [PMID: 26762484 DOI: 10.1142/s0219635215500259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The starburst amacrine cell (SAC) plays a fundamental role in retinal motion perception. In the vertebrate retina, SAC dendrites have been shown to be directionally selective in terms of their Ca[Formula: see text] responses for stimuli that move centrifugally from the soma. The mechanism by which SACs show Ca[Formula: see text] bias for centrifugal motion is yet to be determined with precision. Recent morphological studies support a presynaptic delay in glutamate receptor activation induced Ca[Formula: see text] release from bipolar cells preferentially contacting SACs. However, bipolar cells are known to be electrotonically coupled so time delays between the bipolar cells that provide input to SACs seem unlikely. Using fluorescent microscopy and imunnostaining, we found that the endoplasmic reticulum (ER) is omnipresent in the soma extending to the distal processes of SACs. Consequently, a working hypothesis on heterogeneity of intracellular Ca[Formula: see text] dynamics from ER is proposed as a possible explanation for the cause of speed tuning of direction-selective Ca[Formula: see text] responses in dendrites of SACs.
Collapse
Affiliation(s)
- Amane Koizumi
- * National Institutes of Natural Sciences 105-0001, Tokyo, Japan
- † National Institute for Physiological Sciences Okazaki, Aichi 444-8585, Japan
| | - Roman R Poznanski
- ‡ Department of Clinical Sciences Faculty of Biosciences and Medical Engineering Universiti Teknologi Malaysia 81310 Johor Bahru, Malaysia
| |
Collapse
|
36
|
Damjanović I. Direction-selective units in goldfish retina and tectum opticum - review and new aspects. J Integr Neurosci 2016; 14:1530002. [PMID: 26729019 DOI: 10.1142/s0219635215300024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
The output units of fish retina, i.e., the retinal ganglion cells (detectors), send highly processed information to the primary visual centers of the brain, settled in the midbrain formation tectum opticum (TO). Axons of different fish motion detectors terminate in different tectal levels. In the superficial layer of TO, axons of direction-selective ganglion cells (DS GCs) are terminated. Single unit responses of the DS GCs were recorded in intact fish from their axon terminals in TO. Goldfish DS GCs projecting to TO were shown to comprise six physiological types according to their selectivity to sign of stimulus contrast (ON and OFF units) and their preferred directions: three directions separated by 120[Formula: see text]. These units, characterized by relatively small receptive fields and remarkable spatial resolution should be classified as local motion detectors. In addition to the retinal DS GCs, other kinds of DS units were extracellularly recorded in the superficial and deep sublaminae of tectum. Some features of their responses suggested that they originated from tectal neurons (TNs). Contrary to DS GCs which are characterized by small RFs and use separate ON and OFF channels, DS TNs have extra-large RFs and ON-OFF type responses. DS TNs were shown to select four preferred directions. Three of them are compatible with those already selected on the retinal level. Complementary to them, the fourth DS TN type with rostro-caudal preference (lacking in the retina) has been revealed. Possible functional interrelations between DS GCs and DS TNs are discussed.
Collapse
Affiliation(s)
- Ilija Damjanović
- 1 Institute for Information Transmission Problems Russian Academy of Sciences Bolshoi Karetny 19, 127994 Moscow, Russia
| |
Collapse
|
37
|
Conditional Knock-Out of Vesicular GABA Transporter Gene from Starburst Amacrine Cells Reveals the Contributions of Multiple Synaptic Mechanisms Underlying Direction Selectivity in the Retina. J Neurosci 2015; 35:13219-32. [PMID: 26400950 DOI: 10.1523/jneurosci.0933-15.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Direction selectivity of direction-selective ganglion cells (DSGCs) in the retina results from patterned excitatory and inhibitory inputs onto DSGCs during motion stimuli. The inhibitory inputs onto DSGCs are directionally tuned to the antipreferred (null) direction and therefore potently suppress spiking during motion in the null direction. However, whether direction-selective inhibition is indispensable for direction selectivity is unclear. Here, we selectively eliminated the directional tuning of inhibitory inputs onto DSGCs by disrupting GABA release from the presynaptic interneuron starburst amacrine cell in the mouse retina. We found that, even without directionally tuned inhibition, direction selectivity can still be implemented in a subset of On-Off DSGCs by direction-selective excitation and a temporal offset between excitation and isotropic inhibition. Our results therefore demonstrate the concerted action of multiple synaptic mechanisms for robust direction selectivity in the retina. Significance statement: The direction-selective circuit in the retina has been a classic model to study neural computations by the brain. An important but unresolved question is how direction selectivity is implemented by directionally tuned excitatory and inhibitory mechanisms. Here we specifically removed the direction tuning of inhibition from the circuit. We found that direction tuning of inhibition is important but not indispensable for direction selectivity of DSGCs' spiking activity, and that the residual direction selectivity is implemented by direction-selective excitation and temporal offset between excitation and inhibition. Our results highlight the concerted actions of synaptic excitation and inhibition required for robust direction selectivity in the retina and provide critical insights into how patterned excitation and inhibition collectively implement sensory processing.
Collapse
|
38
|
Fisher YE, Silies M, Clandinin TR. Orientation Selectivity Sharpens Motion Detection in Drosophila. Neuron 2015; 88:390-402. [PMID: 26456048 DOI: 10.1016/j.neuron.2015.09.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/08/2015] [Accepted: 08/31/2015] [Indexed: 10/22/2022]
Abstract
Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons, detectors of local motion. We demonstrate that this circuit performs selective amplification of local light inputs, an observation that constrains motion detection models and confirms a core prediction of the Hassenstein-Reichardt correlator (HRC). These neurons are also orientation selective, responding strongly to static features that are orthogonal to their preferred axis of motion, a tuning property not predicted by the HRC. This coincident extraction of orientation and direction sharpens directional tuning through surround inhibition and reveals a striking parallel between visual processing in flies and vertebrate cortex, suggesting a universal strategy for motion processing.
Collapse
Affiliation(s)
- Yvette E Fisher
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Marion Silies
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Hoggarth A, McLaughlin AJ, Ronellenfitch K, Trenholm S, Vasandani R, Sethuramanujam S, Schwab D, Briggman KL, Awatramani GB. Specific wiring of distinct amacrine cells in the directionally selective retinal circuit permits independent coding of direction and size. Neuron 2015; 86:276-91. [PMID: 25801705 DOI: 10.1016/j.neuron.2015.02.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/13/2014] [Accepted: 02/11/2015] [Indexed: 01/24/2023]
Abstract
Local and global forms of inhibition controlling directionally selective ganglion cells (DSGCs) in the mammalian retina are well documented. It is established that local inhibition arising from GABAergic starburst amacrine cells (SACs) strongly contributes to direction selectivity. Here, we demonstrate that increasing ambient illumination leads to the recruitment of GABAergic wide-field amacrine cells (WACs) endowing the DS circuit with an additional feature: size selectivity. Using a combination of electrophysiology, pharmacology, and light/electron microscopy, we show that WACs predominantly contact presynaptic bipolar cells, which drive direct excitation and feedforward inhibition (through SACs) to DSGCs, thus maintaining the appropriate balance of inhibition/excitation required for generating DS. This circuit arrangement permits high-fidelity direction coding over a range of ambient light levels, over which size selectivity is adjusted. Together, these results provide novel insights into the anatomical and functional arrangement of multiple inhibitory interneurons within a single computational module in the retina.
Collapse
Affiliation(s)
- Alex Hoggarth
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - Kara Ronellenfitch
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Stuart Trenholm
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Rishi Vasandani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - David Schwab
- Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road F165, Evanston, IL 60208, USA
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gautam B Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
40
|
Damjanović I, Maximova E, Aliper A, Maximov P, Maximov V. Opposing motion inhibits responses of direction-selective ganglion cells in the fish retina. J Integr Neurosci 2015; 14:53-72. [DOI: 10.1142/s0219635215500077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Elgueta C, Vielma AH, Palacios AG, Schmachtenberg O. Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells. Front Cell Neurosci 2015; 9:6. [PMID: 25709566 PMCID: PMC4321611 DOI: 10.3389/fncel.2015.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 01/07/2015] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells (SACs) under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat retina, we found that ACh application triggers GABA release onto rod bipolar (RB) cells. GABA was released from A17 amacrine cells and activated postsynaptic GABAA and GABAC receptors in RB cells. The sensitivity of ACh-induced currents to nicotinic ACh receptor (nAChR) antagonists (TMPH ~ mecamylamine > erysodine > DhβE > MLA) together with the differential potency of specific agonists to mimic ACh responses (cytisine >> RJR2403 ~ choline), suggest that A17 cells express heteromeric nAChRs containing the β4 subunit. Activation of nAChRs induced GABA release after Ca(2+) accumulation in A17 cell dendrites and varicosities mediated by L-type voltage-gated calcium channels (VGCCs) and intracellular Ca(2+) stores. Inhibition of acetylcholinesterase depolarized A17 cells and increased spontaneous inhibitory postsynaptic currents in RB cells, indicating that endogenous ACh enhances GABAergic inhibition of RB cells. Moreover, injection of neostigmine or cytisine reduced the b-wave of the scotopic flash electroretinogram (ERG), suggesting that cholinergic modulation of GABA release controls RB cell activity in vivo. These results describe a novel regulatory mechanism of RB cell inhibition and complement our understanding of the neuromodulatory control of retinal signal processing.
Collapse
Affiliation(s)
- Claudio Elgueta
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile ; Systemic and Cellular Neurophysiology, Institute of Physiology I, Albert-Ludwigs-Universität Freiburg, Germany
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
42
|
Popova E. GABAergic neurotransmission and retinal ganglion cell function. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:261-83. [PMID: 25656810 DOI: 10.1007/s00359-015-0981-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/13/2023]
Abstract
Ganglion cells are the output retinal neurons that convey visual information to the brain. There are ~20 different types of ganglion cells, each encoding a specific aspect of the visual scene as spatial and temporal contrast, orientation, direction of movement, presence of looming stimuli; etc. Ganglion cell functioning depends on the intrinsic properties of ganglion cell's membrane as well as on the excitatory and inhibitory inputs that these cells receive from other retinal neurons. GABA is one of the most abundant inhibitory neurotransmitters in the retina. How it modulates the activity of different types of ganglion cells and what is its significance in extracting the basic features from visual scene are questions with fundamental importance in visual neuroscience. The present review summarizes current data concerning the types of membrane receptors that mediate GABA action in proximal retina; the effects of GABA and its antagonists on the ganglion cell light-evoked postsynaptic potentials and spike discharges; the action of GABAergic agents on centre-surround organization of the receptive fields and feature related ganglion cell activity. Special emphasis is put on the GABA action regarding the ON-OFF and sustained-transient ganglion cell dichotomy in both nonmammalian and mammalian retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
43
|
Ishii T, Kaneda M. ON-pathway-dominant glycinergic regulation of cholinergic amacrine cells in the mouse retina. J Physiol 2014; 592:4235-45. [PMID: 25085888 DOI: 10.1113/jphysiol.2014.271148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Direction selectivity in the retina has been studied as a model of dendritic computation of neural circuits. Starburst amacrine cells (SACs) have been examined as a model system of dendritic computation as they play a pivotal role in the formation of direction selectivity. Because the difference of anatomical location inside the retina made ON-SACs an easier target to record, the biophysical properties of ON-SACs have been used to predict those of OFF-SACs. In this study, we systematically compared the responses of ON- and OFF-SACs to the two principal neurotransmitters, glycine and glutamate. We found that responses to glycine were significantly larger in ON-SACs than in OFF-SACs. In contrast, ON- and OFF-SACs responded similarly to glutamate. The amplitude of glycine responses in ON-SACs increased after eye opening and the largest amplitude was observed at postnatal day 28. On the other hand, no increase in the amplitude of glycine responses in OFF-SACs was observed until postnatal day 28. Glycine-evoked currents were inhibited by the application of strychnine. Glutamate-evoked currents were mimicked by the application of AMPA or kainite, and responses to N-methyl-d-aspartate were observed in the absence of Mg(2+) block. Glutamate-evoked currents produced an increase in the frequency of GABAergic inhibitory postsynaptic currents. Our results suggest that signal processing in ON-SACs cannot be directly used to understand the properties of OFF-SACs. Therefore fully defining the physiological properties of OFF-SACs will be critical to understanding and modelling direction selectivity in the retina.
Collapse
Affiliation(s)
- Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo, 113-8602, Japan
| |
Collapse
|
44
|
Popova E. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses. SCIENTIFICA 2014; 2014:149187. [PMID: 25143858 PMCID: PMC4131092 DOI: 10.1155/2014/149187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/24/2014] [Accepted: 05/27/2014] [Indexed: 05/27/2023]
Abstract
In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed.
Collapse
Affiliation(s)
- E. Popova
- Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| |
Collapse
|
45
|
Chen M, Lee S, Park SJH, Looger LL, Zhou ZJ. Receptive field properties of bipolar cell axon terminals in direction-selective sublaminas of the mouse retina. J Neurophysiol 2014; 112:1950-62. [PMID: 25031256 DOI: 10.1152/jn.00283.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Retinal bipolar cells (BCs) transmit visual signals in parallel channels from the outer to the inner retina, where they provide glutamatergic inputs to specific networks of amacrine and ganglion cells. Intricate network computation at BC axon terminals has been proposed as a mechanism for complex network computation, such as direction selectivity, but direct knowledge of the receptive field property and the synaptic connectivity of the axon terminals of various BC types is required in order to understand the role of axonal computation by BCs. The present study tested the essential assumptions of the presynaptic model of direction selectivity at axon terminals of three functionally distinct BC types that ramify in the direction-selective strata of the mouse retina. Results from two-photon Ca(2+) imaging, optogenetic stimulation, and dual patch-clamp recording demonstrated that 1) CB5 cells do not receive fast GABAergic synaptic feedback from starburst amacrine cells (SACs); 2) light-evoked and spontaneous Ca(2+) responses are well coordinated among various local regions of CB5 axon terminals; 3) CB5 axon terminals are not directionally selective; 4) CB5 cells consist of two novel functional subtypes with distinct receptive field structures; 5) CB7 cells provide direct excitatory synaptic inputs to, but receive no direct GABAergic synaptic feedback from, SACs; and 6) CB7 axon terminals are not directionally selective, either. These findings help to simplify models of direction selectivity by ruling out complex computation at BC terminals. They also show that CB5 comprises two functional subclasses of BCs.
Collapse
Affiliation(s)
- Minggang Chen
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut
| | - Seunghoon Lee
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut
| | - Silvia J H Park
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut
| | - Loren L Looger
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia
| | - Z Jimmy Zhou
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
46
|
Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning. J Neurosci 2014; 34:3976-81. [PMID: 24623775 DOI: 10.1523/jneurosci.5017-13.2014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Direction selectivity represents a fundamental visual computation. In mammalian retina, On-Off direction-selective ganglion cells (DSGCs) respond strongly to motion in a preferred direction and weakly to motion in the opposite, null direction. Electrical recordings suggested three direction-selective (DS) synaptic mechanisms: DS GABA release during null-direction motion from starburst amacrine cells (SACs) and DS acetylcholine and glutamate release during preferred direction motion from SACs and bipolar cells. However, evidence for DS acetylcholine and glutamate release has been inconsistent and at least one bipolar cell type that contacts another DSGC (On-type) lacks DS release. Here, whole-cell recordings in mouse retina showed that cholinergic input to On-Off DSGCs lacked DS, whereas the remaining (glutamatergic) input showed apparent DS. Fluorescence measurements with the glutamate biosensor intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) conditionally expressed in On-Off DSGCs showed that glutamate release in both On- and Off-layer dendrites lacked DS, whereas simultaneously recorded excitatory currents showed apparent DS. With GABA-A receptors blocked, both iGluSnFR signals and excitatory currents lacked DS. Our measurements rule out DS release from bipolar cells onto On-Off DSGCs and support a theoretical model suggesting that apparent DS excitation in voltage-clamp recordings results from inadequate voltage control of DSGC dendrites during null-direction inhibition. SAC GABA release is the apparent sole source of DS input onto On-Off DSGCs.
Collapse
|
47
|
Hei X, Stoelzel CR, Zhuang J, Bereshpolova Y, Huff JM, Alonso JM, Swadlow HA. Directional selective neurons in the awake LGN: response properties and modulation by brain state. J Neurophysiol 2014; 112:362-73. [PMID: 24790175 DOI: 10.1152/jn.00121.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Directionally selective (DS) neurons are found in the retina and lateral geniculate nucleus (LGN) of rabbits and rodents, and in rabbits, LGN DS cells project to primary visual cortex. Here, we compare visual response properties of LGN DS neurons with those of layer 4 simple cells, most of which show strong direction/orientation selectivity. These populations differed dramatically, suggesting that DS cells may not contribute significantly to the synthesis of simple receptive fields: 1) whereas the first harmonic component (F1)-to-mean firing rate (F0) ratios of LGN DS cells are strongly nonlinear, those of simple cells are strongly linear; 2) whereas LGN DS cells have overlapped ON/OFF subfields, simple cells have either a single ON or OFF subfield or two spatially separate subfields; and 3) whereas the preferred directions of LGN DS cells are closely tied to the four cardinal directions, the directional preferences of simple cells are more evenly distributed. We further show that directional selectivity in LGN DS neurons is strongly enhanced by alertness via two mechanisms, 1) an increase in responses to stimulation in the preferred direction, and 2) an enhanced suppression of responses to stimuli moving in the null direction. Finally, our simulations show that these two consequences of alertness could each serve, in a vector-based population code, to hasten the computation of stimulus direction when rabbits become alert.
Collapse
Affiliation(s)
- Xiaojuan Hei
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and
| | - Carl R Stoelzel
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and
| | - Jun Zhuang
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and
| | - Yulia Bereshpolova
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and
| | - Joseph M Huff
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and
| | - Jose-Manuel Alonso
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and Department of Biological Sciences, State University of New York, New York, New York
| | - Harvey A Swadlow
- Department of Psychology, University of Connecticut, Storrs, Connecticut; and Department of Biological Sciences, State University of New York, New York, New York
| |
Collapse
|
48
|
Kim HJ, Jeon CJ. Synaptic pattern of nicotinic acetylcholine receptor α7 and β2 subunits on the direction-selective retinal ganglion cells in the postnatal mouse retina. Exp Eye Res 2014; 122:54-64. [PMID: 24631336 DOI: 10.1016/j.exer.2014.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 11/26/2022]
Abstract
Direction-selective retinal ganglion cells (DS RGCs) respond strongly to a stimulus that moves in their preferred direction, but respond weakly or do not respond to a stimulus that moves in the opposite or null direction. DS RGCs are sensitive to acetylcholine, and starburst amacrine cells (SACs) make cholinergic synapses on DS RGCs. We studied the distributions of nicotinic acetylcholine receptor (nAChR) α7 and β2 subunits on the dendritic arbors of DS RGCs to search for anisotropies that contribute to the directional preferences of DS RGCs. The DS RGCs from the retinas of postnatal mice (postnatal day P5, P10, and P15) were injected with Lucifer yellow, and injected cells were identified by their dendritic morphology. The dendrites of the DS RGCs were labeled with antibodies for either the nAChR α7 or β2 subunit as well as postsynaptic density protein-95 (PSD-95), visualized by confocal microscopy, and reconstructed from high-resolution confocal images. The distribution of nAChR subunits on the dendritic arbors in both the ON and OFF layers of the RGCs revealed an asymmetrical pattern on early postnatal day P5. However, the distributions of nAChR subunits on the dendritic arbors were not asymmetric on P10 and P15. Our results therefore provide anatomical and developmental evidence suggesting that the nAChR α7 and β2 subunits may involve in the early direction-selectivity formation of DS RGCs in the mouse retina.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biology, School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungpook 790-784, South Korea
| | - Chang Jin Jeon
- Department of Biology, School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|
49
|
Escobar MJ, Pezo D, Orio P. Mathematical analysis and modeling of motion direction selectivity in the retina. ACTA ACUST UNITED AC 2013; 107:349-59. [PMID: 24008129 DOI: 10.1016/j.jphysparis.2013.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/31/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Motion detection is one of the most important and primitive computations performed by our visual system. Specifically in the retina, ganglion cells producing motion direction-selective responses have been addressed by different disciplines, such as mathematics, neurophysiology and computational modeling, since the beginnings of vision science. Although a number of studies have analyzed theoretical and mathematical considerations for such responses, a clear picture of the underlying cellular mechanisms is only recently emerging. In general, motion direction selectivity is based on a non-linear asymmetric computation inside a receptive field differentiating cell responses between preferred and null direction stimuli. To what extent can biological findings match these considerations? In this review, we outline theoretical and mathematical studies of motion direction selectivity, aiming to map the properties of the models onto the neural circuitry and synaptic connectivity found in the retina. Additionally, we review several compartmental models that have tried to fill this gap. Finally, we discuss the remaining challenges that computational models will have to tackle in order to fully understand the retinal motion direction-selective circuitry.
Collapse
Affiliation(s)
- María-José Escobar
- Universidad Técnica Federico Santa María, Department of Electronics Engineering, Avda España 1680, Valparaíso, Chile
| | | | | |
Collapse
|
50
|
Yonehara K, Farrow K, Ghanem A, Hillier D, Balint K, Teixeira M, Jüttner J, Noda M, Neve RL, Conzelmann KK, Roska B. The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells. Neuron 2013; 79:1078-85. [PMID: 23973208 DOI: 10.1016/j.neuron.2013.08.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 11/28/2022]
Abstract
Inferring the direction of image motion is a fundamental component of visual computation and essential for visually guided behavior. In the retina, the direction of image motion is computed in four cardinal directions, but it is not known at which circuit location along the flow of visual information the cardinal direction selectivity first appears. We recorded the concerted activity of the neuronal circuit elements of single direction-selective (DS) retinal ganglion cells at subcellular resolution by combining GCaMP3-functionalized transsynaptic viral tracing and two-photon imaging. While the visually evoked activity of the dendritic segments of the DS cells were direction selective, direction-selective activity was absent in the axon terminals of bipolar cells. Furthermore, the glutamate input to DS cells, recorded using a genetically encoded glutamate sensor, also lacked direction selectivity. Therefore, the first stage in which extraction of a cardinal motion direction occurs is the dendrites of DS cells.
Collapse
Affiliation(s)
- Keisuke Yonehara
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|