1
|
Lee HH, Carrasco M. Visual adaptation stronger at horizontal than vertical meridian: Linking performance with V1 cortical surface area. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642102. [PMID: 40166189 PMCID: PMC11956974 DOI: 10.1101/2025.03.07.642102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Visual adaptation reduces bioenergetic expenditure by decreasing sensitivity to repetitive and similar stimuli. In human adults, visual performance varies systematically around polar angle for many visual dimensions and tasks. Performance is superior along the horizontal than the vertical meridian (horizontal-vertical anisotropy, HVA), and the lower than upper vertical meridian (vertical meridian asymmetry, VMA). These asymmetries are resistant to spatial and temporal attention. Here, we investigated how adaptation influences contrast sensitivity at the fovea and perifovea across the four cardinal meridian locations, for horizontal and vertical stimuli. In the non-adapted conditions, the HVA was more pronounced for horizontal than vertical stimuli. For both orientations, adaptation was stronger along the horizontal than vertical meridian, exceeding foveal adaptation. Additionally, perifoveal adaptation effects positively correlated with individual V1 cortical surface area. These findings reveal that visual adaptation mitigates the HVA in contrast sensitivity, fostering perceptual uniformity around the visual field while conserving bioenergetic resources.
Collapse
|
2
|
Klímová M, Bloem IM, Ling S. How does orientation-tuned normalization spread across the visual field? J Neurophysiol 2025; 133:539-546. [PMID: 39772970 DOI: 10.1152/jn.00224.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Visuocortical responses are regulated by gain control mechanisms, giving rise to fundamental neural and perceptual phenomena such as surround suppression. Suppression strength, determined by the composition and relative properties of stimuli, controls the strength of neural responses in early visual cortex, and in turn, the subjective salience of the visual stimulus. Notably, suppression strength is modulated by feature similarity; for instance, responses to a center-surround stimulus in which the components are collinear to each other are weaker than when they are orthogonal. However, this feature-tuned aspect of normalization, and how it may affect the gain of responses, has been understudied. Here, we examine the contribution of the tuned component of suppression to contrast response modulations across the visual field. To do so, we used functional magnetic resonance imaging (fMRI) to measure contrast response functions (CRFs) in early visual cortex (areas V1-V3) in 10 observers while they viewed full-field center-surround gratings. The center stimulus varied in contrast between 2.67% and 96% and was surrounded by a collinear or orthogonal surround at full contrast. We found substantially stronger suppression of responses when the surround was parallel to the center, manifesting as shifts in the population CRF. The magnitude of the CRF shift was strongly dependent on voxel spatial preference and seen primarily in voxels whose receptive field spatial preference corresponds to the area straddling the center-surround boundary in our display, with little-to-no modulation elsewhere.NEW & NOTEWORTHY Visuocortical responses are underpinned by gain control mechanisms. In surround suppression, it has been shown that suppression strength is affected by the orientation similarity between the center and surround stimuli. In this study, we examine the impact of orientation-tuned suppression on population contrast responses in early visual cortex and its spread across the visual field. Results show stronger suppression in parallel stimulus configurations, with suppression largely isolated to voxels near the center-surround boundary.
Collapse
Affiliation(s)
- Michaela Klímová
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States
| | - Ilona M Bloem
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Sam Ling
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Lee HH, Fernández A, Carrasco M. Adaptation and exogenous attention interact in the early visual cortex: A TMS study. iScience 2024; 27:111155. [PMID: 39524352 PMCID: PMC11544076 DOI: 10.1016/j.isci.2024.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/18/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) to early visual cortex modulates the effect of adaptation and eliminates the effect of exogenous (involuntary) attention on contrast sensitivity. Here, we investigated whether adaptation modulates exogenous attention under TMS to V1/V2. Observers performed an orientation discrimination task while attending to one of two stimuli, with or without adaptation. Following an attentional cue, two stimuli were presented in the stimulated region and its contralateral symmetric region. A response cue indicated the stimulus whose orientation observers had to discriminate. Without adaptation, in the distractor-stimulated condition, contrast sensitivity increased at the attended location and decreased at the unattended location via response gain-but these effects were eliminated in the target-stimulated condition. Critically, after adaptation, exogenous attention altered performance similarly in both distractor-stimulated and target-stimulated conditions. These results reveal that (1) adaptation and attention interact in the early visual cortex, and (2) adaptation shields exogenous attention from TMS effects.
Collapse
Affiliation(s)
- Hsing-Hao Lee
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Antonio Fernández
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Sciences, New York University, New York, NY 10003, USA
| |
Collapse
|
4
|
Choi K, Rosenbluth W, Graf IR, Kadakia N, Emonet T. Bifurcation enhances temporal information encoding in the olfactory periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596086. [PMID: 38853849 PMCID: PMC11160621 DOI: 10.1101/2024.05.27.596086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Living systems continually respond to signals from the surrounding environment. Survival requires that their responses adapt quickly and robustly to the changes in the environment. One particularly challenging example is olfactory navigation in turbulent plumes, where animals experience highly intermittent odor signals while odor concentration varies over many length- and timescales. Here, we show theoretically that Drosophila olfactory receptor neurons (ORNs) can exploit proximity to a bifurcation point of their firing dynamics to reliably extract information about the timing and intensity of fluctuations in the odor signal, which have been shown to be critical for odor-guided navigation. Close to the bifurcation, the system is intrinsically invariant to signal variance, and information about the timing, duration, and intensity of odor fluctuations is transferred efficiently. Importantly, we find that proximity to the bifurcation is maintained by mean adaptation alone and therefore does not require any additional feedback mechanism or fine-tuning. Using a biophysical model with calcium-based feedback, we demonstrate that this mechanism can explain the measured adaptation characteristics of Drosophila ORNs.
Collapse
|
5
|
Choi K, Rosenbluth W, Graf IR, Kadakia N, Emonet T. Bifurcation enhances temporal information encoding in the olfactory periphery. ARXIV 2024:arXiv:2405.20135v3. [PMID: 38855541 PMCID: PMC11160886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Living systems continually respond to signals from the surrounding environment. Survival requires that their responses adapt quickly and robustly to the changes in the environment. One particularly challenging example is olfactory navigation in turbulent plumes, where animals experience highly intermittent odor signals while odor concentration varies over many length- and timescales. Here, we show theoretically that Drosophila olfactory receptor neurons (ORNs) can exploit proximity to a bifurcation point of their firing dynamics to reliably extract information about the timing and intensity of fluctuations in the odor signal, which have been shown to be critical for odor-guided navigation. Close to the bifurcation, the system is intrinsically invariant to signal variance, and information about the timing, duration, and intensity of odor fluctuations is transferred efficiently. Importantly, we find that proximity to the bifurcation is maintained by mean adaptation alone and therefore does not require any additional feedback mechanism or fine-tuning. Using a biophysical model with calcium-based feedback, we demonstrate that this mechanism can explain the measured adaptation characteristics of Drosophila ORNs.
Collapse
Affiliation(s)
- Kiri Choi
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
- Quantitative Biology Institute, Yale University, New Haven, Connecticut 06511, USA
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, Connecticut 06511, USA
| | - Will Rosenbluth
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Isabella R. Graf
- Quantitative Biology Institute, Yale University, New Haven, Connecticut 06511, USA
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nirag Kadakia
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
- Quantitative Biology Institute, Yale University, New Haven, Connecticut 06511, USA
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, Connecticut 06511, USA
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
- Quantitative Biology Institute, Yale University, New Haven, Connecticut 06511, USA
- Department of Physics, Yale University, New Haven, Connecticut 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
6
|
Fritsche M, Majumdar A, Strickland L, Liebana Garcia S, Bogacz R, Lak A. Temporal regularities shape perceptual decisions and striatal dopamine signals. Nat Commun 2024; 15:7093. [PMID: 39154025 PMCID: PMC11330509 DOI: 10.1038/s41467-024-51393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Perceptual decisions should depend on sensory evidence. However, such decisions are also influenced by past choices and outcomes. These choice history biases may reflect advantageous strategies to exploit temporal regularities of natural environments. However, it is unclear whether and how observers can adapt their choice history biases to different temporal regularities, to exploit the multitude of temporal correlations that exist in nature. Here, we show that male mice adapt their perceptual choice history biases to different temporal regularities of visual stimuli. This adaptation was slow, evolving over hundreds of trials across several days. It occurred alongside a fast non-adaptive choice history bias, limited to a few trials. Both fast and slow trial history effects are well captured by a normative reinforcement learning algorithm with multi-trial belief states, comprising both current trial sensory and previous trial memory states. We demonstrate that dorsal striatal dopamine tracks predictions of the model and behavior, suggesting that striatal dopamine reports reward predictions associated with adaptive choice history biases. Our results reveal the adaptive nature of perceptual choice history biases and shed light on their underlying computational principles and neural correlates.
Collapse
Affiliation(s)
- Matthias Fritsche
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK.
| | - Antara Majumdar
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Lauren Strickland
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
- Institute of Behavioral Neuroscience, University College London, London, UK
| | | | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Armin Lak
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Aeschlimann SA, Klein A, Schankin CJ. Visual snow syndrome: recent advances in understanding the pathophysiology and potential treatment approaches. Curr Opin Neurol 2024; 37:283-288. [PMID: 38465699 PMCID: PMC11064904 DOI: 10.1097/wco.0000000000001258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
PURPOSE OF REVIEW Visual snow syndrome (VSS) is a disorder characterized by persistent visual disturbances, including the visual snow phenomenon, palinopsia, heightened perception of entoptic phenomena, impaired night vision, and photophobia. The purpose of this review is to provide an update on recent findings over the past 18 months in VSS research and to summarize the current state of treatment approaches. RECENT FINDINGS Electrophysiological studies have revealed cortical hyperresponsivity in visual brain areas, imaging studies demonstrated microstructural and functional connectivity alterations in multiple cortical and thalamic regions and investigated glutamatergic and serotoninergic neurotransmission. These findings suggest that VSS might be a network disorder.Only few treatment studies are currently available demonstrating limited response to medication and even worsening or triggering of visual symptoms by certain antidepressants. Promising nonpharmacological treatments include mindfulness-based cognitive therapy, the use of chromatic filters, and research on visual noise adaption and neuro-optometric visual rehabilitation therapy (NORT). However, the level of evidence is still low and further research is needed including larger trials and involving objective measures of individual dysfunction. SUMMARY Although there has been recent progress, we still have not fully understood the nature of VSS. Further research is needed on a clinical and pathophysiological level to successfully treat the condition.
Collapse
Affiliation(s)
- Sarah A Aeschlimann
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
8
|
Wang M, McGraw PV, Ledgeway T. Collective plasticity of binocular interactions in the adult visual system. Sci Rep 2024; 14:10494. [PMID: 38714660 PMCID: PMC11076462 DOI: 10.1038/s41598-024-57276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/15/2024] [Indexed: 05/10/2024] Open
Abstract
Binocular visual plasticity can be initiated via either bottom-up or top-down mechanisms, but it is unknown if these two forms of adult plasticity can be independently combined. In seven participants with normal binocular vision, sensory eye dominance was assessed using a binocular rivalry task, before and after a period of monocular deprivation and with and without selective attention directed towards one eye. On each trial, participants reported the dominant monocular target and the inter-ocular contrast difference between the stimuli was systematically altered to obtain estimates of ocular dominance. We found that both monocular light- and pattern-deprivation shifted dominance in favour of the deprived eye. However, this shift was completely counteracted if the non-deprived eye's stimulus was selectively attended. These results reveal that shifts in ocular dominance, driven by bottom-up and top-down selection, appear to act independently to regulate the relative contrast gain between the two eyes.
Collapse
Affiliation(s)
- Mengxin Wang
- School of Psychology, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Paul V McGraw
- School of Psychology, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Timothy Ledgeway
- School of Psychology, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
9
|
Lee HH, Fernández A, Carrasco M. Adaptation and exogenous attention interact in the early visual cortex: A TMS study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.27.563093. [PMID: 37961163 PMCID: PMC10634897 DOI: 10.1101/2023.10.27.563093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Transcranial magnetic stimulation (TMS) to early visual cortex modulates the effect of adaptation and eliminates the effect of exogenous (involuntary) attention on contrast sensitivity. Here we investigated whether adaptation modulates exogenous attention under TMS to V1/V2. Observers performed an orientation discrimination task while attending to one of two stimuli, with or without adaptation. Following an attentional cue, two stimuli were presented in the stimulated region and its contralateral symmetric region. A response cue indicated the stimulus whose orientation observers had to discriminate. Without adaptation, in the distractor-stimulated condition, contrast sensitivity increased at the attended location and decreased at the unattended location via response gain-but these effects were eliminated in the target-stimulated condition. Critically, after adaptation, exogenous attention altered performance similarly in both distractor-stimulated and target-stimulated conditions. These results reveal that (1) adaptation and attention interact in the early visual cortex, and (2) adaptation shields exogenous attention from TMS effects.
Collapse
|
10
|
Khayat N, Pavlovskaya M, Hochstein S. Comparing explicit and implicit ensemble perception: 3 stimulus variables and 3 presentation modes. Atten Percept Psychophys 2024; 86:482-502. [PMID: 37821745 PMCID: PMC10805897 DOI: 10.3758/s13414-023-02784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/13/2023]
Abstract
Visual scenes are too complex for one to immediately perceive all their details. As suggested by Gestalt psychologists, grouping similar scene elements and perceiving their summary statistics provides one shortcut for evaluating scene gist. Perceiving ensemble statistics overcomes processing, attention, and memory limits, facilitating higher-order scene understanding. Ensemble perception spans simple/complex dimensions (circle size, face emotion), including various statistics (mean, range), and inherently spans space and/or time, when sets are presented scattered across the visual scene, and/or sequentially in rapid series. Furthermore, ensemble perception occurs explicitly, when observers are asked to judge set mean, and also automatically/implicitly, when observers are engaged in an orthogonal task. We now study relationships among these ensemble-perception phenomena, testing explicit and implicit ensemble perception; for sets varying in circle size, line orientation, or disc brightness; and with spatial, temporal or spatio-temporal presentation. Following ensemble set presentation, observers were asked if a test image, or which of two test images, had been present in the set. Confirming previous results, responses reflected implicit mean perception, depending on test image distance from the mean, and on its being within or outside ensemble range. Subsequent experiments asked the same observers to explicitly judge whether test images were larger, more clockwise, or brighter than the set mean, or which of two test images was closer to the mean. Comparing implicit and explicit mean perception, we find that explicit ensemble averaging is more precise than implicit mean perception-for each ensemble variable and presentation mode. Implications are discussed regarding possible separate mechanisms for explicit versus implicit ensemble perception.
Collapse
Affiliation(s)
- Noam Khayat
- ELSC Safra Center for Brain Research and Life Sciences Institute, Hebrew University, Jerusalem, 91904, Israel
| | - Marina Pavlovskaya
- ELSC Safra Center for Brain Research and Life Sciences Institute, Hebrew University, Jerusalem, 91904, Israel
| | - Shaul Hochstein
- ELSC Safra Center for Brain Research and Life Sciences Institute, Hebrew University, Jerusalem, 91904, Israel.
| |
Collapse
|
11
|
Georgeson M, Lerner P, Kingdom F. Binocular properties of contrast adaptation in human vision. Vision Res 2023; 209:108261. [PMID: 37300947 DOI: 10.1016/j.visres.2023.108261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023]
Abstract
Adaptation to contrast has been known and studied for 50 years, and the functional importance of dynamic gain control mechanisms is widely recognized. Understanding of binocular combination and binocular fusion has also advanced in the last 20 years, but aside from interocular transfer (IOT), we still know little about binocular properties of contrast adaptation. Our observers adapted to a high contrast 3.6 c/deg grating, and we assessed contrast detection and discrimination across a wide range of test contrasts (plotted as threshold vs contrast [TvC] functions). For each combination of adapt/test eye(s), the adapted TvC data followed a 'dipper' curve similar to the unadapted data, but displaced obliquely to higher contrasts. Adaptation had effectively re-scaled all contrasts by a common factor Cs that varied with the combination of adapt and test eye(s). Cs was well described by a simple 2-parameter model that had separate monocular and binocular gain controls, sited before and after binocular summation respectively. When these two levels of adaptation were inserted into an existing model for contrast discrimination, the extended 2-stage model gave a good account of the TvC functions, their shape invariance with adaptation, and the contrast scaling factors. The underlying contrast-response function is of almost constant shape, and adaptation shifts it to higher contrasts by the factor log10(Cs) - a 'pure contrast gain control'. Evidence of partial IOT in cat V1 cells supports the 2-stage scheme, but is not consistent with a classic (single-stage) model.
Collapse
Affiliation(s)
- Mark Georgeson
- Aston University, School of Life & Health Sciences, Birmingham, UK.
| | - Paul Lerner
- Department of Surgery, Division of General Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Frederick Kingdom
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Canada.
| |
Collapse
|
12
|
Zhang Y, Valsecchi M, Gegenfurtner KR, Chen J. The time course of chromatic adaptation in human early visual cortex revealed by SSVEPs. J Vis 2023; 23:17. [PMID: 37223943 PMCID: PMC10214868 DOI: 10.1167/jov.23.5.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/26/2023] [Indexed: 05/25/2023] Open
Abstract
Previous studies have identified at least two components of chromatic adaptation: a rapid component with a time scale between tens of milliseconds to a few seconds, and a slow component with a half-life of about 10 to 30 seconds. The basis of the rapid adaptation probably lies in receptor adaptation at the retina. The neural substrate for the slow adaptation remains unclear, although previous psychophysical results hint at the early visual cortex. A promising approach to investigate adaptation effects in the visual cortex is to analyze steady-state visual evoked potentials (SSVEPs) elicited by chromatic stimuli, which typically use long durations of stimulation. Here, we re-analyzed the data from two previous pattern-reversal SSVEP studies. In these experiments (N = 49 observers in total), SSVEPs were elicited by counter-phase flickering color- or luminance-defined grating stimuli for 150 seconds in each trial. By analyzing SSVEPs with short time windows, we found that chromatic SSVEP responses decreased with increasing stimulation duration and reached a lower asymptote within a minute of stimulation. The luminance SSVEPs did not show any systematic adaptation. The time course of chromatic SSVEPs can be well described by an exponential decay function with a half-life of about 20 seconds, which is very close to previous psychophysical reports. Despite the difference in stimuli between the current and previous studies, the coherent time course may indicate a more general adaptation mechanism in the early visual cortex. In addition, the current result also provides a guide for future color SSVEP studies in terms of either avoiding or exploiting this adaptation effect.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Matteo Valsecchi
- Dipartimento di Psicologia, Universitá di Bologna, Bologna, Italy
- https://www.unibo.it/sitoweb/matteo.valsecchi
| | - Karl R Gegenfurtner
- Abteilung Allgemeine Psychologie and Center for Mind, Brain & Behavior, Justus-Liebig-Universität Giessen, Giessen, Germany
- https://www.allpsych.uni-giessen.de/karl/
| | - Jing Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China
- https://orcid.org/0000-0002-3038-1786
| |
Collapse
|
13
|
Gaglianese A, Fracasso A, Fernandes FG, Harvey B, Dumoulin SO, Petridou N. Mechanisms of speed encoding in the human middle temporal cortex measured by 7T fMRI. Hum Brain Mapp 2023; 44:2050-2061. [PMID: 36637226 PMCID: PMC9980888 DOI: 10.1002/hbm.26193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 01/14/2023] Open
Abstract
Perception of dynamic scenes in our environment results from the evaluation of visual features such as the fundamental spatial and temporal frequency components of a moving object. The ratio between these two components represents the object's speed of motion. The human middle temporal cortex hMT+ has a crucial biological role in the direct encoding of object speed. However, the link between hMT+ speed encoding and the spatiotemporal frequency components of a moving object is still under explored. Here, we recorded high resolution 7T blood oxygen level-dependent BOLD responses to different visual motion stimuli as a function of their fundamental spatial and temporal frequency components. We fitted each hMT+ BOLD response with a 2D Gaussian model allowing for two different speed encoding mechanisms: (1) distinct and independent selectivity for the spatial and temporal frequencies of the visual motion stimuli; (2) pure tuning for the speed of motion. We show that both mechanisms occur but in different neuronal groups within hMT+, with the largest subregion of the complex showing separable tuning for the spatial and temporal frequency of the visual stimuli. Both mechanisms were highly reproducible within participants, reconciling single cell recordings from MT in animals that have showed both encoding mechanisms. Our findings confirm that a more complex process is involved in the perception of speed than initially thought and suggest that hMT+ plays a primary role in the evaluation of the spatial features of the moving visual input.
Collapse
Affiliation(s)
- Anna Gaglianese
- The Laboratory for Investigative Neurophysiology (The LINE), Department of RadiologyUniversity Hospital Center and University of LausanneLausanneSwitzerland
- Department of Neurosurgery and Neurology, UMC Utrecht Brain CenterUniversity Medical CenterUtrechtNetherlands
- Department of Radiology, Center for Image SciencesUniversity Medical CenterUtrechtNetherlands
| | - Alessio Fracasso
- Department of Radiology, Center for Image SciencesUniversity Medical CenterUtrechtNetherlands
- University of GlasgowSchool of Psychology and NeuroscienceGlasgowUK
- Spinoza Center for NeuroimagingAmsterdamNetherlands
| | - Francisco G. Fernandes
- Department of Neurosurgery and Neurology, UMC Utrecht Brain CenterUniversity Medical CenterUtrechtNetherlands
| | - Ben Harvey
- Experimental Psychology, Helmholtz InstituteUtrecht UniversityUtrechtNetherlands
| | - Serge O. Dumoulin
- Experimental Psychology, Helmholtz InstituteUtrecht UniversityUtrechtNetherlands
| | - Natalia Petridou
- Department of Radiology, Center for Image SciencesUniversity Medical CenterUtrechtNetherlands
| |
Collapse
|
14
|
Hess RF, Hyun Min S. Is ocular dominance plasticity a special case of contrast adaptation? Vision Res 2023; 207:108212. [PMID: 36963276 DOI: 10.1016/j.visres.2023.108212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 03/26/2023]
Abstract
The visual system can regulate its sensitivity depending on the prevailing contrast conditions. This is known as contrast adaptation and reflects contrast gain changes at different stages along the visual pathway. Recently, it has been shown that depriving an eye of visual stimulation for a short period of time can lead to neuroplastic changes in ocular dominance as the result of homeostatic changes in contrast gain. Here we examine, on the basis of previously published results, whether the neuroplastic ocular dominance changes are just manifestation of the mechanism responsible for contrast adaptation. The evidence suggests that these two visual processes are separate and do not have a common neural substrate.
Collapse
Affiliation(s)
- Robert F Hess
- McGill Vision Research, Department of Vision Sciences and Ophthalmology, McGill University, Montreal, Quebec, Canada.
| | - Seung Hyun Min
- McGill Vision Research, Department of Vision Sciences and Ophthalmology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Elson R, Schluppeck D, Johnston A. fMRI evidence that hyper-caricatured faces activate object-selective cortex. Front Psychol 2023; 13:1035524. [PMID: 36710782 PMCID: PMC9878608 DOI: 10.3389/fpsyg.2022.1035524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Many brain imaging studies have looked at the cortical responses to object categories and faces. A popular way to manipulate face stimuli is by using a "face space," a high dimensional representation of individual face images, with the average face located at the origin. However, how the brain responds to faces that deviate substantially from average has not been much explored. Increasing the distance from the average (leading to increased caricaturing) could increase neural responses in face-selective regions, an idea supported by results from non-human primates. Here, we used a face space based on principal component analysis (PCA) to generate faces ranging from average to heavily caricatured. Using functional magnetic resonance imaging (fMRI), we first independently defined face-, object- and scene-selective areas with a localiser scan and then measured responses to parametrically caricatured faces. We also included conditions in which the images of faces were inverted. Interestingly in the right fusiform face area (FFA), we found that the patterns of fMRI response were more consistent as caricaturing increased. However, we found no consistent effect of either caricature level or facial inversion on the average fMRI response in the FFA or face-selective regions more broadly. In contrast, object-selective regions showed an increase in both the consistency of response pattern and the average fMRI response with increasing caricature level. This shows that caricatured faces recruit processing from regions typically defined as object-selective, possibly through enhancing low-level properties that are characteristic of objects.
Collapse
|
16
|
Preparatory attention to visual features primarily relies on non-sensory representation. Sci Rep 2022; 12:21726. [PMID: 36526653 PMCID: PMC9758135 DOI: 10.1038/s41598-022-26104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Prior knowledge of behaviorally relevant information promotes preparatory attention before the appearance of stimuli. A key question is how our brain represents the attended information during preparation. A sensory template hypothesis assumes that preparatory signals evoke neural activity patterns that resembled the perception of the attended stimuli, whereas a non-sensory, abstract template hypothesis assumes that preparatory signals reflect the abstraction of attended stimuli. To test these hypotheses, we used fMRI and multivariate analysis to characterize neural activity patterns when human participants were prepared to attend a feature and then select it from a compound stimulus. In an fMRI experiment using basic visual feature (motion direction), we observed reliable decoding of the to-be-attended feature from the preparatory activity in both visual and frontoparietal areas. However, while the neural patterns constructed by a single feature from a baseline task generalized to the activity patterns during stimulus selection, they could not generalize to the activity patterns during preparation. Our findings thus suggest that neural signals during attentional preparation are predominantly non-sensory in nature that may reflect an abstraction of the attended feature. Such a representation could provide efficient and stable guidance of attention.
Collapse
|
17
|
Himmelberg MM, Gardner JL, Winawer J. What has vision science taught us about functional MRI? Neuroimage 2022; 261:119536. [PMID: 35931310 PMCID: PMC9756767 DOI: 10.1016/j.neuroimage.2022.119536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022] Open
Abstract
In the domain of human neuroimaging, much attention has been paid to the question of whether and how the development of functional magnetic resonance imaging (fMRI) has advanced our scientific knowledge of the human brain. However, the opposite question is also important; how has our knowledge of the brain advanced our understanding of fMRI? Here, we discuss how and why scientific knowledge about the human and animal visual system has been used to answer fundamental questions about fMRI as a brain measurement tool and how these answers have contributed to scientific discoveries beyond vision science.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, NY, USA; Center for Neural Science, New York University, NY, USA.
| | | | - Jonathan Winawer
- Department of Psychology, New York University, NY, USA; Center for Neural Science, New York University, NY, USA
| |
Collapse
|
18
|
Foster JJ, Ling S. Feature-Based Attention Multiplicatively Scales the fMRI-BOLD Contrast-Response Function. J Neurosci 2022; 42:6894-6906. [PMID: 35868860 PMCID: PMC9464014 DOI: 10.1523/jneurosci.0513-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
fMRI plays a key role in the study of attention. However, there remains a puzzling discrepancy between attention effects measured with fMRI and with electrophysiological methods. While electrophysiological studies find that attention increases sensory gain, amplifying stimulus-evoked neural responses by multiplicatively scaling the contrast-response function (CRF), fMRI appears to be insensitive to these multiplicative effects. Instead, fMRI studies typically find that attention produces an additive baseline shift in the BOLD signal. These findings suggest that attentional effects measured with fMRI reflect top-down inputs to visual cortex, rather than the modulation of sensory gain. If true, this drastically limits what fMRI can tell us about how attention improves sensory coding. Here, we examined whether fMRI is sensitive to multiplicative effects of attention using a feature-based attention paradigm designed to preclude any possible additive effects. We measured BOLD activity evoked by a probe stimulus in one visual hemifield while participants (6 male, 6 female) attended to the probe orientation (attended condition), or to an orthogonal orientation (unattended condition), in the other hemifield. To measure CRFs in visual areas V1-V3, we parametrically varied the contrast of the probe stimulus. In all three areas, feature-based attention increased contrast gain, improving sensitivity by shifting CRFs toward lower contrasts. In V2 and V3, we also found an increase in response gain, an increase in the responsivity of the CRF, that was greatest at inner eccentricities. These results provide clear evidence that the fMRI-BOLD signal is sensitive to multiplicative effects of attention.SIGNIFICANCE STATEMENT fMRI plays a central role in the study of attention because it allows researchers to precisely and noninvasively characterize the effects of attention throughout the brain. Electrophysiological studies have shown that attention increases sensory gain, amplifying stimulus-evoked neural responses. However, a growing body of work suggests that the BOLD signal that is measured with fMRI is not sensitive to these multiplicative effects of attention, calling into question what we can learn from fMRI about how attention improves sensory codes. Here, using a feature-based attention paradigm, we provide evidence that the BOLD signal can pick up multiplicative effects of attention.
Collapse
Affiliation(s)
- Joshua J Foster
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Sam Ling
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
19
|
Goddard E, Shooner C, Mullen KT. Magnetoencephalography contrast adaptation reflects perceptual adaptation. J Vis 2022; 22:16. [PMID: 36121660 PMCID: PMC9503227 DOI: 10.1167/jov.22.10.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Contrast adaptation is a fundamental visual process that has been extensively investigated and used to infer the selectivity of visual cortex. We recently reported an apparent disconnect between the effects of contrast adaptation on perception and functional magnetic resonance imaging BOLD response adaptation, in which adaptation between chromatic and achromatic stimuli measured psychophysically showed greater selectivity than adaptation measured using BOLD signals. Here we used magnetoencephalography (MEG) recordings of neural responses to the same chromatic and achromatic adaptation conditions to characterize the neural effects of contrast adaptation and to determine whether BOLD adaptation or MEG better reflect the measured perceptual effects. Participants viewed achromatic, L-M isolating, or S-cone isolating radial sinusoids before adaptation and after adaptation to each of the three contrast directions. We measured adaptation-related changes in the neural response to a range of stimulus contrast amplitudes using two measures of the MEG response: the overall response amplitude, and a novel time-resolved measure of the contrast response function, derived from a classification analysis combined with multidimensional scaling. Within-stimulus adaptation effects on the contrast response functions in each case showed a pattern of contrast-gain or a combination of contrast-gain and response-gain effects. Cross-stimulus adaptation conditions showed that adaptation effects were highly stimulus selective across early, ventral, and dorsal visual cortical areas, consistent with the perceptual effects.
Collapse
Affiliation(s)
- Erin Goddard
- McGill Vision Research, Department of Ophthalmology & Visual Sciences, McGill University Montreal, Quebec, Canada.,Present address: School of Psychology, UNSW, Sydney, Australia.,
| | - Christopher Shooner
- McGill Vision Research, Department of Ophthalmology & Visual Sciences, McGill University Montreal, Quebec, Canada.,
| | - Kathy T Mullen
- McGill Vision Research, Department of Ophthalmology & Visual Sciences, McGill University Montreal, Quebec, Canada.,
| |
Collapse
|
20
|
Khalife S, Francis ST, Schluppeck D, Sánchez-Panchuelo RM, Besle J. Fast Event-Related Mapping of Population Fingertip Tuning Properties in Human Sensorimotor Cortex at 7T. eNeuro 2022; 9:ENEURO.0069-22.2022. [PMID: 36194620 PMCID: PMC9480917 DOI: 10.1523/eneuro.0069-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/11/2022] [Accepted: 07/31/2022] [Indexed: 12/15/2022] Open
Abstract
fMRI studies that investigate somatotopic tactile representations in the human cortex typically use either block or phase-encoded stimulation designs. Event-related (ER) designs allow for more flexible and unpredictable stimulation sequences than the other methods, but they are less efficient. Here, we compared an efficiency-optimized fast ER design (2.8-s average intertrial interval; ITI) to a conventional slow ER design (8-s average ITI) for mapping voxelwise fingertip tactile tuning properties in the sensorimotor cortex of six participants at 7 Tesla. The fast ER design yielded more reliable responses compared with the slow ER design, but with otherwise similar tuning properties. Concatenating the fast and slow ER data, we demonstrate in each individual brain the existence of two separate somatotopically-organized tactile representations of the fingertips, one in the primary somatosensory cortex (S1) on the postcentral gyrus, and the other shared across the motor and premotor cortices on the precentral gyrus. In both S1 and motor representations, fingertip selectivity decreased progressively, from narrowly-tuned Brodmann area (BA) 3b and BA4a, respectively, toward associative parietal and frontal regions that responded equally to all fingertips, suggesting increasing information integration along these two pathways. In addition, fingertip selectivity in S1 decreased from the cortical representation of the thumb to that of the pinky.
Collapse
Affiliation(s)
- Sarah Khalife
- Department of Psychology, American University of Beirut, Beirut, 11072020, Lebanon
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG72RD, United Kingdom
- National Institute for Health and Care Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, University of Nottingham, Nottingham, NG72RD, United Kingdom
| | - Denis Schluppeck
- Visual Neuroscience Group, School of Psychology, University of Nottingham, Nottingham, NG72RD, United Kingdom
| | - Rosa-Maria Sánchez-Panchuelo
- National Institute for Health and Care Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, University of Nottingham, Nottingham, NG72RD, United Kingdom
| | - Julien Besle
- Department of Psychology, American University of Beirut, Beirut, 11072020, Lebanon
| |
Collapse
|
21
|
Vinke LN, Bloem IM, Ling S. Saturating Nonlinearities of Contrast Response in Human Visual Cortex. J Neurosci 2022; 42:1292-1302. [PMID: 34921048 PMCID: PMC8883860 DOI: 10.1523/jneurosci.0106-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Response nonlinearities are ubiquitous throughout the brain, especially within sensory cortices where changes in stimulus intensity typically produce compressed responses. Although this relationship is well established in electrophysiological measurements, it remains controversial whether the same nonlinearities hold for population-based measurements obtained with human fMRI. We propose that these purported disparities are not contingent on measurement type and are instead largely dependent on the visual system state at the time of interrogation. We show that deploying a contrast adaptation paradigm permits reliable measurements of saturating sigmoidal contrast response functions (10 participants, 7 female). When not controlling the adaptation state, our results coincide with previous fMRI studies, yielding nonsaturating, largely linear contrast responses. These findings highlight the important role of adaptation in manifesting measurable nonlinear responses within human visual cortex, reconciling discrepancies reported in vision neuroscience, re-establishing the qualitative relationship between stimulus intensity and response across different neural measures and the concerted study of cortical gain control.SIGNIFICANCE STATEMENT Nonlinear stimulus-response relationships govern many essential brain functions, ranging from the sensory to cognitive level. Certain core response properties previously shown to be nonlinear with nonhuman electrophysiology recordings have yet to be reliably measured with human neuroimaging, prompting uncertainty and reconsideration. The results of this study stand to reconcile these incongruencies in the vision neurosciences, demonstrating the profound impact adaptation can have on brain activation throughout the early visual cortex. Moving forward, these findings facilitate the study of modulatory influences on sensory processing (i.e., arousal and attention) and help establish a closer link between neural recordings in animals and hemodynamic measurements from human fMRI, resuming a concerted effort to understand operations in the mammalian cortex.
Collapse
Affiliation(s)
- Louis N Vinke
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114
- Harvard Medical School, Boston, Massachusetts 02115
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129
| | - Ilona M Bloem
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
- Department of Psychology, New York University, New York City, New York 10012
| | - Sam Ling
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
22
|
Lin YS, Chen CC, Greenlee MW. The role of lateral modulation in orientation-specific adaptation effect. J Vis 2022; 22:13. [PMID: 35191948 PMCID: PMC8883160 DOI: 10.1167/jov.22.2.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Center-surround modulation in visual processing reflects a normalization process of contrast gain control in the responsive neurons. Prior adaptation to a clockwise (CW) tilted grating, for example, leads to the percept of counterclockwise tilt in a vertical grating, referred to as the tilt-aftereffect (TAE). We previously reported that the magnitude of the TAE is modulated by adding a same-orientation annular surround to an adapter, suggesting inhibitory lateral modulation. To further examine the property of this lateral modulation effect on the perception of a central target, we here used center-surround sinusoidal patterns as adapters and varied the adapter surround and center orientations independently. The target had the same spatial extent as the adapter center with no physical overlap with the adapter surround. Participants were asked to judge the target orientation as tilted either CW or counterclockwise from vertical after adaptation. Results showed that, when the surround orientation was held constant, the TAE magnitude was determined by the adapter center, peaking between 10° and 20° of tilt. More important, the adapter surround orientation modulated the adaptation effect such that the TAE magnitude first decreased and then increased as the surround orientation became increasingly more different from that of the center, suggesting that the surround modulation effect was indeed orientation specific. Our data can be accounted for by a divisive inhibition model, in which (1) the adaptation effect is represented by increasing the normalizing constant and (2) the surround modulation is captured by two multiplicative sensitivity parameters determined by the adapter surround orientation.
Collapse
Affiliation(s)
- Yih-Shiuan Lin
- Institute of Experimental Psychology, University of Regensburg, Regensburg, Germany.,
| | - Chien-Chung Chen
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,
| | - Mark W Greenlee
- Institute of Experimental Psychology, University of Regensburg, Regensburg, Germany.,
| |
Collapse
|
23
|
Gao Y, Webster MA, Jiang F. Changes of tuning but not dynamics of contrast adaptation with age. Vision Res 2021; 187:129-136. [PMID: 34252728 PMCID: PMC8363565 DOI: 10.1016/j.visres.2021.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 10/20/2022]
Abstract
Normal aging results in pronounced optical and neural changes in the visual system. Processes of adaptation are thought to help compensate for many of these changes in order to maintain perceptual constancy, but it is uncertain how stable adaptation itself remains with aging. We compared the dynamics of adaptation in young (aged 19-24 years) and older (aged 66-74) adults. Contrast thresholds for Gabor patterns were tracked during and after 300 s adaptation to vertical and horizontal Gabor patches. The time course of contrast adaptation and asymptotic adaptation magnitude were similar between older and young adults when normalized for their respective baseline thresholds. Older adults showed stronger transfer of adaptation to the orthogonal orientation and there was an asymmetry between the transfer of adaptation between the horizontal and vertical orientations for both groups. These results suggest age-related changes in orientation tuning while the processes of cortical contrast adaptation remain largely intact with aging.
Collapse
Affiliation(s)
- Yi Gao
- University of Nevada, Reno, United States.
| | | | - Fang Jiang
- University of Nevada, Reno, United States
| |
Collapse
|
24
|
Lin Y, Zhou X, Naya Y, Gardner JL, Sun P. Voxel-Wise Linearity Analysis of Increments and Decrements in BOLD Responses in Human Visual Cortex Using a Contrast Adaptation Paradigm. Front Hum Neurosci 2021; 15:541314. [PMID: 34531731 PMCID: PMC8439421 DOI: 10.3389/fnhum.2021.541314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
The linearity of BOLD responses is a fundamental presumption in most analysis procedures for BOLD fMRI studies. Previous studies have examined the linearity of BOLD signal increments, but less is known about the linearity of BOLD signal decrements. The present study assessed the linearity of both BOLD signal increments and decrements in the human primary visual cortex using a contrast adaptation paradigm. Results showed that both BOLD signal increments and decrements kept linearity to long stimuli (e.g., 3 s, 6 s), yet, deviated from linearity to transient stimuli (e.g., 1 s). Furthermore, a voxel-wise analysis showed that the deviation patterns were different for BOLD signal increments and decrements: while the BOLD signal increments demonstrated a consistent overestimation pattern, the patterns for BOLD signal decrements varied from overestimation to underestimation. Our results suggested that corrections to deviations from linearity of transient responses should consider the different effects of BOLD signal increments and decrements.
Collapse
Affiliation(s)
- Yun Lin
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, China
| | - Xi Zhou
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Justin L Gardner
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Pei Sun
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China.,Laboratory for Cognitive Brain Mapping, RIKEN Center for Brain Sciences, Wako, Japan
| |
Collapse
|
25
|
Abstract
Selectivity for many basic properties of visual stimuli, such as orientation, is thought to be organized at the scale of cortical columns, making it difficult or impossible to measure directly with noninvasive human neuroscience measurement. However, computational analyses of neuroimaging data have shown that selectivity for orientation can be recovered by considering the pattern of response across a region of cortex. This suggests that computational analyses can reveal representation encoded at a finer spatial scale than is implied by the spatial resolution limits of measurement techniques. This potentially opens up the possibility to study a much wider range of neural phenomena that are otherwise inaccessible through noninvasive measurement. However, as we review in this article, a large body of evidence suggests an alternative hypothesis to this superresolution account: that orientation information is available at the spatial scale of cortical maps and thus easily measurable at the spatial resolution of standard techniques. In fact, a population model shows that this orientation information need not even come from single-unit selectivity for orientation tuning, but instead can result from population selectivity for spatial frequency. Thus, a categorical error of interpretation can result whereby orientation selectivity can be confused with spatial frequency selectivity. This is similarly problematic for the interpretation of results from numerous studies of more complex representations and cognitive functions that have built upon the computational techniques used to reveal stimulus orientation. We suggest in this review that these interpretational ambiguities can be avoided by treating computational analyses as models of the neural processes that give rise to measurement. Building upon the modeling tradition in vision science using considerations of whether population models meet a set of core criteria is important for creating the foundation for a cumulative and replicable approach to making valid inferences from human neuroscience measurements. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Justin L Gardner
- Department of Psychology, Stanford University, Stanford, California 94305, USA;
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
26
|
Limanowski J, Friston K. Attentional Modulation of Vision Versus Proprioception During Action. Cereb Cortex 2021; 30:1637-1648. [PMID: 31670769 PMCID: PMC7132949 DOI: 10.1093/cercor/bhz192] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/10/2019] [Accepted: 07/27/2019] [Indexed: 01/29/2023] Open
Abstract
To control our actions efficiently, our brain represents our body based on a combination of visual and proprioceptive cues, weighted according to how (un)reliable—how precise—each respective modality is in a given context. However, perceptual experiments in other modalities suggest that the weights assigned to sensory cues are also modulated “top-down” by attention. Here, we asked whether during action, attention can likewise modulate the weights (i.e., precision) assigned to visual versus proprioceptive information about body position. Participants controlled a virtual hand (VH) via a data glove, matching either the VH or their (unseen) real hand (RH) movements to a target, and thus adopting a ``visual'' or ``proprioceptive'' attentional set, under varying levels of visuo-proprioceptive congruence and visibility. Functional magnetic resonance imaging (fMRI) revealed increased activation of the multisensory superior parietal lobe (SPL) during the VH task and increased activation of the secondary somatosensory cortex (S2) during the RH task. Dynamic causal modeling (DCM) showed that these activity changes were the result of selective, diametrical gain modulations in the primary visual cortex (V1) and the S2. These results suggest that endogenous attention can balance the gain of visual versus proprioceptive brain areas, thus contextualizing their influence on multisensory areas representing the body for action.
Collapse
Affiliation(s)
- Jakub Limanowski
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| |
Collapse
|
27
|
Solomon SS, Tang H, Sussman E, Kohn A. Limited Evidence for Sensory Prediction Error Responses in Visual Cortex of Macaques and Humans. Cereb Cortex 2021; 31:3136-3152. [PMID: 33683317 DOI: 10.1093/cercor/bhab014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/06/2020] [Accepted: 01/15/2021] [Indexed: 11/14/2022] Open
Abstract
A recent formulation of predictive coding theory proposes that a subset of neurons in each cortical area encodes sensory prediction errors, the difference between predictions relayed from higher cortex and the sensory input. Here, we test for evidence of prediction error responses in spiking responses and local field potentials (LFP) recorded in primary visual cortex and area V4 of macaque monkeys, and in complementary electroencephalographic (EEG) scalp recordings in human participants. We presented a fixed sequence of visual stimuli on most trials, and violated the expected ordering on a small subset of trials. Under predictive coding theory, pattern-violating stimuli should trigger robust prediction errors, but we found that spiking, LFP and EEG responses to expected and pattern-violating stimuli were nearly identical. Our results challenge the assertion that a fundamental computational motif in sensory cortex is to signal prediction errors, at least those based on predictions derived from temporal patterns of visual stimulation.
Collapse
Affiliation(s)
- Selina S Solomon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Huizhen Tang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Otorhinolaryngology - Head & Neck Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Elyse Sussman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Otorhinolaryngology - Head & Neck Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adam Kohn
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Ophthalmology and Vision Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
28
|
Image luminance changes contrast sensitivity in visual cortex. Cell Rep 2021; 34:108692. [PMID: 33535047 PMCID: PMC7886026 DOI: 10.1016/j.celrep.2021.108692] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Accurate measures of contrast sensitivity are important for evaluating visual disease progression and for navigation safety. Previous measures suggested that cortical contrast sensitivity was constant across widely different luminance ranges experienced indoors and outdoors. Against this notion, here, we show that luminance range changes contrast sensitivity in both cat and human cortex, and the changes are different for dark and light stimuli. As luminance range increases, contrast sensitivity increases more within cortical pathways signaling lights than those signaling darks. Conversely, when the luminance range is constant, light-dark differences in contrast sensitivity remain relatively constant even if background luminance changes. We show that a Naka-Rushton function modified to include luminance range and light-dark polarity accurately replicates both the statistics of light-dark features in natural scenes and the cortical responses to multiple combinations of contrast and luminance. We conclude that differences in light-dark contrast increase with luminance range and are largest in bright environments.
Collapse
|
29
|
Efficient measurements for the dynamic range of human lightness perception. Jpn J Ophthalmol 2021; 65:432-438. [PMID: 33420857 DOI: 10.1007/s10384-020-00808-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/23/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Patients with an eye disease often report nyctalopia, hemianopia, and/or photophobia. We hypothesized that such symptoms are related to the disease impacting the dynamic range of lightness perception (DRL). However, there is currently no standardized approach for measuring DRL for clinical use. We developed an efficient measurement method to estimate DRL. STUDY DESIGN Clinical trial METHODS: Fifty-five photophobic patients with eye disease and 46 controls participated. Each participant judged the appearance of visual stimuli, a thick bar with luminance that gradually changed from maximum to minimum was displayed on uniform background. On different trials the background luminance changed pseudo-randomly between three levels. The participants repeatedly tapped a border on the bar that divided the appearance of grayish white/black and perfect white/black. We defined the DRL as the ratio between the luminance values at the tapped point of the border between gray and white/black. RESULTS The mean DRL of the patients was approximately 15 dB, significantly smaller than that of the controls (20 dB). The center of each patient's DRL shift depending on background luminance, which we named index of contextual susceptibility (iCS), was significantly larger than controls. The DRL of retinitis pigmentosa was smaller than controls for every luminance condition. Only the iCS of glaucoma was significantly larger than controls. CONCLUSIONS This measurement technique detects an abnormality of the DRL. The results support our hypothesis that the DRL abnormality characterizes lightness-relevant symptoms that may elucidate the causes of nyctalopia, hemeralopia, and photophobia.
Collapse
|
30
|
Sauer Y, Wahl S, Rifai K. Parallel Adaptation to Spatially Distinct Distortions. Front Psychol 2020; 11:544867. [PMID: 33329178 PMCID: PMC7715010 DOI: 10.3389/fpsyg.2020.544867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Optical distortions as a visual disturbance are inherent in many optical devices such as spectacles or virtual reality headsets. In such devices, distortions vary spatially across the visual field. In progressive addition lenses, for example, the left and right regions of the lens skew the peripheral parts of the wearers visual field in opposing directions. The human visual system adapts to homogeneous distortions and the respective aftereffects are transferred to non-retinotopic locations. This study investigates simultaneous adaptation to two opposing distortions at different retinotopic locations. Two oppositely skewed natural image sequences were presented to 10 subjects as adaptation stimuli at two distinct locations in the visual field. To do so, subjects were instructed to keep fixation on a target. Eye tracking was used for gaze control. Change of perceived motion direction was measured in a direction identification task. The point of subjective equality (PSE), that is, the angle at which a group of coherently moving dots was perceived as moving horizontal, was determined for both retinal locations. The shift of perceived motion direction was evaluated by comparing PSE before and after adaptation. A significant shift at both retinal locations in the direction of the skew distortion of the corresponding adaptation stimulus is demonstrated. Consequently, parallel adaptation to two opposing distortions in a retinotopic reference frame was confirmed by this study.
Collapse
Affiliation(s)
- Yannick Sauer
- Institute for Ophtalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Siegfried Wahl
- Institute for Ophtalmic Research, University of Tuebingen, Tuebingen, Germany.,Carl Zeiss Vision International GmbH, Aalen, Germany
| | - Katharina Rifai
- Institute for Ophtalmic Research, University of Tuebingen, Tuebingen, Germany.,Carl Zeiss Vision International GmbH, Aalen, Germany
| |
Collapse
|
31
|
Liu Z, Chen Z, Gao L, Liu M, Huang Y, Feng L, Yuan J, Deng D, Huang CB, Yu M. A New Dichoptic Training Strategy Leads to Better Cooperation Between the Two Eyes in Amblyopia. Front Neurosci 2020; 14:593119. [PMID: 33324154 PMCID: PMC7725751 DOI: 10.3389/fnins.2020.593119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Recent clinical trials failed to endorse dichoptic training for amblyopia treatment. Here, we proposed an alternative training strategy that focused on reducing signal threshold contrast in the amblyopic eye under a constant and high noise contrast in the fellow eye (HNC), and compared it to a typical dichoptic strategy that aimed at increasing the tolerable noise contrast in the fellow eye (i.e., TNC strategy). We recruited 16 patients with amblyopia and divided them into two groups. Eight patients in Group 1 received the HNC training, while the other eight patients in Group 2 performed the TNC training first (Phase 1) and then crossed over to the HNC training (Phase 2). We measured contrast sensitivity functions (CSFs) separately in the amblyopic and fellow eyes when the untested eye viewed mean luminance (monocularly unmasked) or noise stimuli (dichoptically masked) before and after training at a particular frequency. The area under the log contrast sensitivity function (AULCSF) of masked and unmasked conditions, and dichoptic gain (the ratio of AULCSF of masked to unmasked condition) were calculated for each eye. We found that both dichoptic training paradigms substantially improved masked CSF, dichoptic gain, and visual acuity in the amblyopic eye. As opposed to the TNC paradigm, the HNC training produced stronger effects on masked CSFs, stereoacuity, dichoptic gain, and visual acuity in the amblyopic eye. Interestingly, the second-phase HNC training in Group 2 also induced further improvement in the masked contrast sensitivity and AULCSF in the amblyopic eye. We concluded that the HNC training strategy was more effective than the TNC training paradigm. Future design for dichoptic training should not only focus on increasing the tolerable noise contrast in the fellow eye but should also "nurture" the amblyopic eye under normal binocular viewing conditions and sustained interocular suppression.
Collapse
Affiliation(s)
- Zitian Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zidong Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Le Gao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Manli Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiru Huang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Feng
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junpeng Yuan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Daming Deng
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chang-Bing Huang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Biased Neural Representation of Feature-Based Attention in the Human Frontoparietal Network. J Neurosci 2020; 40:8386-8395. [PMID: 33004380 DOI: 10.1523/jneurosci.0690-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/21/2020] [Accepted: 09/23/2020] [Indexed: 11/21/2022] Open
Abstract
Selective attention is a core cognitive function for efficient processing of information. Although it is well known that attention can modulate neural responses in many brain areas, the computational principles underlying attentional modulation remain unclear. Contrary to the prevailing view of a high-dimensional, distributed neural representation, here we show a surprisingly simple, biased neural representation for feature-based attention in a large dataset including five human fMRI studies. We found that when human participants (both sexes) selected one feature from a compound stimulus, voxels in many cortical areas responded consistently higher to one attended feature over the other. This univariate bias was consistent across brain areas within individual subjects. Importantly, this univariate bias showed a progressively stronger magnitude along the cortical hierarchy. In frontoparietal areas, the bias was strongest and contributed largely to pattern-based decoding, whereas early visual areas lacked such a bias. These findings suggest a gradual transition from a more analog to a more abstract representation of attentional priority along the cortical hierarchy. Biased neural responses in high-level areas likely reflect a low-dimensional neural code that can facilitate a robust representation and simple readout of cognitive variables.SIGNIFICANCE STATEMENT It is typically assumed that cognitive variables are represented by distributed population activities. Although this view is rooted in decades of work in the sensory system, it has not been rigorously tested at different levels of cortical hierarchy. Here we show a novel, low-dimensional coding scheme that dominated the representation of feature-based attention in frontoparietal areas. The simplicity of such a biased code may confer a robust representation of cognitive variables, such as attentional selection, working memory, and decision-making.
Collapse
|
33
|
Wilming N, Murphy PR, Meyniel F, Donner TH. Large-scale dynamics of perceptual decision information across human cortex. Nat Commun 2020; 11:5109. [PMID: 33037209 PMCID: PMC7547662 DOI: 10.1038/s41467-020-18826-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022] Open
Abstract
Perceptual decisions entail the accumulation of sensory evidence for a particular choice towards an action plan. An influential framework holds that sensory cortical areas encode the instantaneous sensory evidence and downstream, action-related regions accumulate this evidence. The large-scale distribution of this computation across the cerebral cortex has remained largely elusive. Here, we develop a regionally-specific magnetoencephalography decoding approach to exhaustively map the dynamics of stimulus- and choice-specific signals across the human cortical surface during a visual decision. Comparison with the evidence accumulation dynamics inferred from behavior disentangles stimulus-dependent and endogenous components of choice-predictive activity across the visual cortical hierarchy. We find such an endogenous component in early visual cortex (including V1), which is expressed in a low (<20 Hz) frequency band and tracks, with delay, the build-up of choice-predictive activity in (pre-) motor regions. Our results are consistent with choice- and frequency-specific cortical feedback signaling during decision formation.
Collapse
Affiliation(s)
- Niklas Wilming
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany.
| | - Peter R Murphy
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
| | - Florent Meyniel
- University Paris-Saclay, Inserm, CEA, NeuroSpin, Cognitive Neuroimaging Unit, 91191, Gif-sur-Yvette, France
| | - Tobias H Donner
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany.
- Bernstein Center for Computational Neuroscience, Charité Universitätsmedizin, Haus 6, Philippstraße 13, 10115, Berlin, Germany.
- Department of Psychology, University of Amsterdam, Weesperplein 4, 1018 XA, Amsterdam, The Netherlands.
- Amsterdam Brain and Cognition, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Konstantinou N, Lavie N. Effects of visual short-term memory load and attentional demand on the contrast response function. J Vis 2020; 20:6. [PMID: 33007080 PMCID: PMC7545077 DOI: 10.1167/jov.20.10.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/01/2020] [Indexed: 11/30/2022] Open
Abstract
Visual short-term memory (VSTM) load leads to impaired perception during maintenance. Here, we fitted the contrast response function to psychometric orientation discrimination data while also varying attention demand during maintenance to investigate: (1) whether VSTM load effects on perception are mediated by a modulation of the contrast threshold, consistent with contrast gain accounts, or by the function asymptote (1 lapse rate), consistent with response gain accounts; and (2) whether the VSTM load effects on the contrast response function depend on the availability of attentional resources. We manipulated VSTM load via the number of items in the memory set in a color and location VSTM task and assessed the contrast response function for an orientation discrimination task during maintenance. Attention demand was varied through spatial cuing of the orientation stimulus. Higher VSTM load increased the estimated contrast threshold of the contrast response function without affecting the estimated asymptote, but only when the discrimination task demanded attention. When attentional demand was reduced (in the cued conditions), the VSTM load effects on the contrast threshold were eliminated. The results suggest that VSTM load reduces perceptual sensitivity by increasing contrast thresholds, suggestive of a contrast gain modulation mechanism, as long as the perceptual discrimination task demands attention. These findings support recent claims that attentional resources are shared between perception and VSTM maintenance processes.
Collapse
Affiliation(s)
- Nikos Konstantinou
- Department of Rehabilitation Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Nilli Lavie
- Institute of Cognitive Neuroscience, University College London, UK
| |
Collapse
|
35
|
Lin YS, Chen CC, Greenlee MW. Lateral modulation of orientation perception in center-surround sinusoidal stimuli: Divisive inhibition in perceptual filling-in. J Vis 2020; 20:5. [PMID: 32886097 PMCID: PMC7476660 DOI: 10.1167/jov.20.9.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/30/2020] [Indexed: 12/03/2022] Open
Abstract
The perception of a target stimulus may be altered by its context. Perceptual filling-in is thought to be one example of lateral modulation, in which the percept of a central blank area is replaced by that of the surround. We investigated the mechanisms in eccentric vision underlying filling-in by selectively adapting the center (pedestal adapter), surround (annulus adapter), or both (disk adapter) in a sinusoidal grating and observed how the adaptation influences the orientation percept of a subsequently presented Gabor target, located at the same position as the adapter center. In a binary choice task, observers were to judge the orientation (clockwise or counterclockwise) of the target after adaptation. The tilt aftereffect (TAE), corresponding to an illusory tilt of a physically vertical Gabor target, depended both on the adapter orientation and the adapter type. The TAE, peaked between 10 degrees and 20 degrees adapter orientation, was strongest in the pedestal, followed by the disk, and weakest in the annulus adapter conditions. The difference between the disk and pedestal conditions implies lateral inhibition from the surround. Lacking physical overlap with the target, the annulus adapter nonetheless induced a small but significant TAE in the central area. The effect of filling-in on the TAE was estimated by comparing the results from trials with and without subjectively reported filling-in during adaptation to the annulus adapter. The TAE was greater when filling-in occurred during adaptation, suggesting a stronger lateral modulation effect on trials where filling-in was induced. The data were fit by a variant of a divisive inhibition model, in which the adaptation effect is captured by the increase of an additive constant in the denominator of the response function, whereas the surround modulation in the adapter is modeled by an excitatory sensitivity in the numerator.
Collapse
Affiliation(s)
- Yih-Shiuan Lin
- Institute of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Chien-Chung Chen
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Mark W. Greenlee
- Institute of Experimental Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
36
|
Ramírez FM, Revsine C, Merriam EP. What do across-subject analyses really tell us about neural coding? Neuropsychologia 2020; 143:107489. [PMID: 32437761 PMCID: PMC8596303 DOI: 10.1016/j.neuropsychologia.2020.107489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
A key challenge in human neuroscience is to gain information about patterns of neural activity using indirect measures. Multivariate pattern analysis methods testing for generalization of information across subjects have been used to support inferences regarding neural coding. One critical assumption of an important class of such methods is that anatomical normalization is suited to align spatially-structured neural patterns across individual brains. We asked whether anatomical normalization is suited for this purpose. If not, what sources of information are such across-subject cross-validated analyses likely to reveal? To investigate these questions, we implemented two-layered feedforward randomly-connected networks. A key feature of these simulations was a gain-field with a spatial structure shared across networks. To investigate whether total-signal imbalances across conditions-e.g. differences in overall activity-affect the observed pattern of results, we manipulated the energy-profile of images conforming to a pre-specified correlation structure. To investigate whether the level of granularity of the data also influences results, we manipulated the density of connections between network layers. Simulations showed that anatomical normalization is unsuited to align neural representations. Pattern similarity-relationships were explained by the observed total-signal imbalances across conditions. Further, we observed that deceptively complex representational structures emerge from arbitrary analysis choices, such as whether the data are mean-subtracted during preprocessing. These simulations also led to testable predictions regarding the distribution of low-level features in images used in recent fMRI studies that relied on leave-one-subject-out pattern analyses. Image analyses broadly confirmed these predictions. Finally, hyperalignment emerged as a principled alternative to test across-subject generalization of spatially-structured information. We illustrate cases in which hyperalignment proved successful, as well as cases in which it only partially recovered the latent correlation structure in the pattern of responses. Our results highlight the need for robust, high-resolution measurements from individual subjects. We also offer a way forward for across-subject analyses. We suggest ways to inform hyperalignment results with estimates of the strength of the signal associated with each condition. Such information can usefully constrain ensuing inferences regarding latent representational structures as well as population tuning dimensions.
Collapse
Affiliation(s)
- Fernando M Ramírez
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Building 10, Rm 4C118, Bethesda, MD, 20892-1366, USA.
| | - Cambria Revsine
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Building 10, Rm 4C118, Bethesda, MD, 20892-1366, USA
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Building 10, Rm 4C118, Bethesda, MD, 20892-1366, USA
| |
Collapse
|
37
|
Wang M, McGraw P, Ledgeway T. Short-term monocular deprivation reduces inter-ocular suppression of the deprived eye. Vision Res 2020; 173:29-40. [PMID: 32460171 DOI: 10.1016/j.visres.2020.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
The adult visual system was traditionally thought to be relatively hard-wired, but recent studies have challenged this view by demonstrating plasticity following short-term monocular deprivation. Depriving one eye of spatial information for 2-3 h increased subsequent sensory dominance of that eye. However, the mechanism underlying this phenomenon is unclear. The present study sought to address this issue and determine the consequences of short-term monocular deprivation on inter-ocular suppression of each eye. Sensory eye dominance was examined before and after depriving an eye of all input using an opaque patch for 2.5 h, in six adult participants with normal binocular vision. We used a percept tracking task during binocular rivalry (BR) to assess the relative eye dominance, and an objective probe detection task under continuous flash suppression (CFS) to quantify each eye's susceptibility to inter-ocular suppression. The monocular contrast increment threshold of each eye was also measured using the probe task to ascertain if the altered eye dominance is accompanied by changes in monocular perception. Our BR results replicated previous findings of a shift of relative dominance towards the eye that has been deprived of form information. More crucially, using CFS we demonstrated reduced inter-ocular suppression of the deprived eye with no complementary changes in the other eye, and no monocular changes in increment threshold. These findings imply that short-term monocular deprivation alters binocular interactions. The differential effect on inter-ocular suppression between eyes may have important implications for the use of patching as a therapy to recover visual function in amblyopia.
Collapse
Affiliation(s)
- Mengxin Wang
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
| | - Paul McGraw
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Timothy Ledgeway
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
38
|
Abstract
Our visual system is tasked with transforming variations in light within our environment into a coherent percept, typically described using properties such as luminance and contrast. Models of vision often downplay the importance of luminance in shaping cortical responses, instead prioritizing representations that do not covary with overall luminance (i.e., contrast), and yet visuocortical response properties that may reflect luminance encoding remain poorly understood. In this study, we examined whether well-established visuocortical response properties may also reflect luminance encoding, challenging the idea that luminance information itself plays no significant role in supporting visual perception. To do so, we measured functional activity in human visual cortex when presenting stimuli varying in contrast and mean luminance, and found that luminance response functions are strongly contrast dependent between 50 and 250 cd/m2, confirmed with a subsequent experiment. High-contrast stimuli produced linearly increasing responses as luminance increased logarithmically for all early visual areas, whereas low-contrast stimuli produced either flat (V1) or assorted positive linear (V2 and V3) response profiles. These results reveal that the mean luminance information of a visual signal persists within visuocortical representations, potentially reflecting an inherent imbalance of excitatory and inhibitory components that can be either contrast dependent (V1 and V2) or contrast invariant (V3). The role of luminance should be considered when the aim is to drive potent visually evoked responses and when activity is compared across studies. More broadly, overall luminance should be weighed heavily as a core feature of the visual system and should play a significant role in cortical models of vision.NEW & NOTEWORTHY This neuroimaging study investigates the influence of overall luminance on population activity in human visual cortex. We discovered that the response to a particular stimulus contrast level is reliant, in part, on the mean luminance of a signal, revealing that the mean luminance information of our environment is represented within the visual cortex. The results challenge a long-standing misconception about the role of luminance information in the processing of visual information at the cortical level.
Collapse
Affiliation(s)
- Louis N Vinke
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Sam Ling
- Psychological and Brain Sciences, Boston University, Boston, Massachusetts.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| |
Collapse
|
39
|
Lohse M, Bajo VM, King AJ, Willmore BDB. Neural circuits underlying auditory contrast gain control and their perceptual implications. Nat Commun 2020; 11:324. [PMID: 31949136 PMCID: PMC6965083 DOI: 10.1038/s41467-019-14163-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
Neural adaptation enables sensory information to be represented optimally in the brain despite large fluctuations over time in the statistics of the environment. Auditory contrast gain control represents an important example, which is thought to arise primarily from cortical processing. Here we show that neurons in the auditory thalamus and midbrain of mice show robust contrast gain control, and that this is implemented independently of cortical activity. Although neurons at each level exhibit contrast gain control to similar degrees, adaptation time constants become longer at later stages of the processing hierarchy, resulting in progressively more stable representations. We also show that auditory discrimination thresholds in human listeners compensate for changes in contrast, and that the strength of this perceptual adaptation can be predicted from physiological measurements. Contrast adaptation is therefore a robust property of both the subcortical and cortical auditory system and accounts for the short-term adaptability of perceptual judgments.
Collapse
Affiliation(s)
- Michael Lohse
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Victoria M Bajo
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Andrew J King
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Ben D B Willmore
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|
40
|
Canonical Retina-to-Cortex Vision Model Ready for Automatic Differentiation. Brain Inform 2020. [DOI: 10.1007/978-3-030-59277-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Victoria LW, Pyles JA, Tarr MJ. The relative contributions of visual and semantic information in the neural representation of object categories. Brain Behav 2019; 9:e01373. [PMID: 31560175 PMCID: PMC6790305 DOI: 10.1002/brb3.1373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION How do multiple sources of information interact to form mental representations of object categories? It is commonly held that object categories reflect the integration of perceptual features and semantic/knowledge-based features. To explore the relative contributions of these two sources of information, we used functional magnetic resonance imaging (fMRI) to identify regions involved in the representation object categories with shared visual and/or semantic features. METHODS Participants (N = 20) viewed a series of objects that varied in their degree of visual and semantic overlap in the MRI scanner. We used a blocked adaptation design to identify sensitivity to visual and semantic features in a priori visual processing regions and in a distributed network of object processing regions with an exploratory whole-brain analysis. RESULTS Somewhat surprisingly, within higher-order visual processing regions-specifically lateral occipital cortex (LOC)-we did not obtain any difference in neural adaptation for shared visual versus semantic category membership. More broadly, both visual and semantic information affected a distributed network of independently identified category-selective regions. Adaptation was seen a whole-brain network of processing regions in response to visual similarity and semantic similarity; specifically, the angular gyrus (AnG) adapted to visual similarity and the dorsomedial prefrontal cortex (DMPFC) adapted to both visual and semantic similarity. CONCLUSIONS Our findings suggest that perceptual features help organize mental categories throughout the object processing hierarchy. Most notably, visual similarity also influenced adaptation in nonvisual brain regions (i.e., AnG and DMPFC). We conclude that category-relevant visual features are maintained in higher-order conceptual representations and visual information plays an important role in both the acquisition and neural representation of conceptual object categories.
Collapse
Affiliation(s)
- Lindsay W Victoria
- Department of Psychology, The Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - John A Pyles
- Department of Psychology, The Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Michael J Tarr
- Department of Psychology, The Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Goddard E, Chang DHF, Hess RF, Mullen KT. Color contrast adaptation: fMRI fails to predict behavioral adaptation. Neuroimage 2019; 201:116032. [PMID: 31326574 DOI: 10.1016/j.neuroimage.2019.116032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/04/2019] [Accepted: 07/17/2019] [Indexed: 11/15/2022] Open
Abstract
fMRI-adaptation is a valuable tool for inferring the selectivity of neural responses. Here we use it in human color vision to test the selectivity of responses to S-cone opponent (blue-yellow), L/M-cone opponent (red-green), and achromatic (Ach) contrast across nine regions of interest in visual cortex. We measure psychophysical adaptation, using comparable stimuli to the fMRI-adaptation, and find significant selective adaptation for all three stimulus types, implying separable visual responses to each. For fMRI-adaptation, we find robust adaptation but, surprisingly, much less selectivity due to high levels of cross-stimulus adaptation in all conditions. For all BY and Ach test/adaptor pairs, selectivity is absent across all ROIs. For RG/Ach stimulus pairs, this paradigm has previously shown selectivity for RG in ventral areas and for Ach in dorsal areas. For chromatic stimulus pairs (RG/BY), we find a trend for selectivity in ventral areas. In conclusion, we find an overall lack of correspondence between BOLD and behavioral adaptation suggesting they reflect different aspects of the underlying neural processes. For example, raised cross-stimulus adaptation in fMRI may reflect adaptation of the broadly-tuned normalization pool. Finally, we also identify a longer-timescale adaptation (1h) in both BOLD and behavioral data. This is greater for chromatic than achromatic contrast. The longer-timescale BOLD effect was more evident in the higher ventral areas than in V1, consistent with increasing windows of temporal integration for higher-order areas.
Collapse
Affiliation(s)
- Erin Goddard
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, QC, H3G1A4, Canada
| | - Dorita H F Chang
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, QC, H3G1A4, Canada
| | - Robert F Hess
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, QC, H3G1A4, Canada
| | - Kathy T Mullen
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, QC, H3G1A4, Canada.
| |
Collapse
|
43
|
Costagli M, Lancione M, Cecchetti L, Pietrini P, Cosottini M, Ricciardi E, Tosetti M. Quantitative Susceptibility Mapping of Brain Function During Auditory Stimulation. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2019.2894262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Cardoso MMB, Lima B, Sirotin YB, Das A. Task-related hemodynamic responses are modulated by reward and task engagement. PLoS Biol 2019; 17:e3000080. [PMID: 31002659 PMCID: PMC6493772 DOI: 10.1371/journal.pbio.3000080] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/01/2019] [Accepted: 03/29/2019] [Indexed: 01/18/2023] Open
Abstract
Hemodynamic recordings from visual cortex contain powerful endogenous task-related responses that may reflect task-related arousal, or "task engagement" distinct from attention. We tested this hypothesis with hemodynamic measurements (intrinsic-signal optical imaging) from monkey primary visual cortex (V1) while the animals' engagement in a periodic fixation task over several hours was varied through reward size and as animals took breaks. With higher rewards, animals appeared more task-engaged; task-related responses were more temporally precise at the task period (approximately 10-20 seconds) and modestly stronger. The 2-5 minute blocks of high-reward trials led to ramp-like decreases in mean local blood volume; these reversed with ramp-like increases during low reward. The blood volume increased even more sharply when the animal shut his eyes and disengaged completely from the task (5-10 minutes). We propose a mechanism that controls vascular tone, likely along with local neural responses in a manner that reflects task engagement over the full range of timescales tested.
Collapse
Affiliation(s)
- Mariana M. B. Cardoso
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- Center for Neural Science, New York University, New York, New York, United States of America
| | - Bruss Lima
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yevgeniy B. Sirotin
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- Identity and Data Science Laboratory of Science Applications International Corporation, Annapolis Junction, Maryland, United States of America
| | - Aniruddha Das
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Gong M, Liu T. Continuous and discrete representations of feature-based attentional priority in human frontoparietal network. Cogn Neurosci 2019; 11:47-59. [PMID: 30922203 DOI: 10.1080/17588928.2019.1601074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies suggest that human frontoparietal network represents feature-based attentional priority, yet the precise nature of the priority signals remains unclear. Here, we examined whether priority signals vary continuously or discretely as a function of feature similarity. In an fMRI experiment, we presented two superimposed dot fields moving along two linear directions (leftward and rightward) while varying the angular separation between the two directions. Subjects were cued to attend to one of the two dot fields and respond to a possible speed-up in the cued direction. We used multivariate analysis to evaluate how priority representation of the attended direction changes with feature similarity. We found that in early visual areas as well as posterior intraparietal sulcus and inferior frontal junction, the patterns of neural activity became more different as the feature similarity decreased, indicating a continuous representation of the attended feature. In contrast, patterns of neural activity in anterior intraparietal sulcus and frontal eye field remained invariant to changes in feature similarity, indicating a discrete representation of the attended feature. Such distinct neural coding of attentional priority across the frontoparietal network may make complementary contributions to enable flexible attentional control.
Collapse
Affiliation(s)
- Mengyuan Gong
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Taosheng Liu
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
46
|
Gardner JL, Liu T. Inverted Encoding Models Reconstruct an Arbitrary Model Response, Not the Stimulus. eNeuro 2019; 6:ENEURO.0363-18.2019. [PMID: 30923743 PMCID: PMC6437661 DOI: 10.1523/eneuro.0363-18.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 01/24/2023] Open
Abstract
Probing how large populations of neurons represent stimuli is key to understanding sensory representations as many stimulus characteristics can only be discerned from population activity and not from individual single-units. Recently, inverted encoding models have been used to produce channel response functions from large spatial-scale measurements of human brain activity that are reminiscent of single-unit tuning functions and have been proposed to assay "population-level stimulus representations" (Sprague et al., 2018a). However, these channel response functions do not assay population tuning. We show by derivation that the channel response function is only determined up to an invertible linear transform. Thus, these channel response functions are arbitrary, one of an infinite family and therefore not a unique description of population representation. Indeed, simulations demonstrate that bimodal, even random, channel basis functions can account perfectly well for population responses without any underlying neural response units that are so tuned. However, the approach can be salvaged by extending it to reconstruct the stimulus, not the assumed model. We show that when this is done, even using bimodal and random channel basis functions, a unimodal function peaking at the appropriate value of the stimulus is recovered which can be interpreted as a measure of population selectivity. More precisely, the recovered function signifies how likely any value of the stimulus is, given the observed population response. Whether an analysis is recovering the hypothetical responses of an arbitrary model rather than assessing the selectivity of population representations is not an issue unique to the inverted encoding model and human neuroscience, but a general problem that must be confronted as more complex analyses intervene between measurement of population activity and presentation of data.
Collapse
Affiliation(s)
| | - Taosheng Liu
- Department of Psychology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
47
|
Binda P, Kurzawski JW, Lunghi C, Biagi L, Tosetti M, Morrone MC. Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD. eLife 2018; 7:40014. [PMID: 30475210 PMCID: PMC6298775 DOI: 10.7554/elife.40014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
Sensory deprivation during the post-natal ‘critical period’ leads to structural reorganization of the developing visual cortex. In adulthood, the visual cortex retains some flexibility and adapts to sensory deprivation. Here we show that short-term (2 hr) monocular deprivation in adult humans boosts the BOLD response to the deprived eye, changing ocular dominance of V1 vertices, consistent with homeostatic plasticity. The boost is strongest in V1, present in V2, V3 and V4 but absent in V3a and hMT+. Assessment of spatial frequency tuning in V1 by a population Receptive-Field technique shows that deprivation primarily boosts high spatial frequencies, consistent with a primary involvement of the parvocellular pathway. Crucially, the V1 deprivation effect correlates across participants with the perceptual increase of the deprived eye dominance assessed with binocular rivalry, suggesting a common origin. Our results demonstrate that visual cortex, particularly the ventral pathway, retains a high potential for homeostatic plasticity in the human adult. The world around us changes all the time, and the brain must adapt to these changes. This process, known as neuroplasticity, peaks during development. Abnormal sensory input early in life can therefore cause lasting changes to the structure of the brain. One example of this is amblyopia or ‘lazy eye’. Infants who receive insufficient input to one eye – for example, because of cataracts – can lose their sight in that eye, even if the cataracts are later removed. This is because the brain reorganizes itself to ignore messages from the affected eye. Does the adult visual system also show neuroplasticity? To explore this question, Binda, Kurzawski et al. asked healthy adult volunteers to lie inside a high-resolution brain scanner with a patch covering one eye. At the start of the experiment, roughly half of the brain’s primary visual cortex responded to sensory input from each eye. But when the volunteers removed the patch two hours later, this was no longer the case. Some areas of the visual cortex that had previously responded to stimuli presented to the non-patched eye now responded to stimuli presented to the patched eye instead. The patched eye had also become more sensitive to visual stimuli. Indeed, these changes in visual sensitivity correlated with changes in brain activity in a pathway called the ventral visual stream. This pathway processes the fine details of images. Groups of neurons within this pathway that responded to stimuli presented to the patched eye were more sensitive to fine details after patching than before. Visual regions of the adult brain thus retain a high degree of neuroplasticity. They adapt rapidly to changes in the environment, in this case by increasing their activity to compensate for a lack of input. Notably, these changes are in the opposite direction to those that occur as a result of visual deprivation during development. This has important implications because lazy eye syndrome is currently considered untreatable in adulthood.
Collapse
Affiliation(s)
| | - Jan W Kurzawski
- Department of Neuroscience, University of Florence, Florence, Italy.,IRCCS Stella Maris, Pisa, Italy
| | - Claudia Lunghi
- University of Pisa, Pisa, Italy.,Département d'études cognitives, École normale supérieure, Laboratoire des systèmes perceptifs, PSL Research University, CNRS, Paris, France
| | | | | | | |
Collapse
|
48
|
Birman D, Gardner JL. A quantitative framework for motion visibility in human cortex. J Neurophysiol 2018; 120:1824-1839. [PMID: 29995608 DOI: 10.1152/jn.00433.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite the central use of motion visibility to reveal the neural basis of perception, perceptual decision making, and sensory inference there exists no comprehensive quantitative framework establishing how motion visibility parameters modulate human cortical response. Random-dot motion stimuli can be made less visible by reducing image contrast or motion coherence, or by shortening the stimulus duration. Because each of these manipulations modulates the strength of sensory neural responses they have all been extensively used to reveal cognitive and other nonsensory phenomena such as the influence of priors, attention, and choice-history biases. However, each of these manipulations is thought to influence response in different ways across different cortical regions and a comprehensive study is required to interpret this literature. Here, human participants observed random-dot stimuli varying across a large range of contrast, coherence, and stimulus durations as we measured blood-oxygen-level dependent responses. We developed a framework for modeling these responses that quantifies their functional form and sensitivity across areas. Our framework demonstrates the sensitivity of all visual areas to each parameter, with early visual areas V1-V4 showing more parametric sensitivity to changes in contrast and V3A and the human middle temporal area to coherence. Our results suggest that while motion contrast, coherence, and duration share cortical representation, they are encoded with distinct functional forms and sensitivity. Thus, our quantitative framework serves as a reference for interpretation of the vast perceptual literature manipulating these parameters and shows that different manipulations of visibility will have different effects across human visual cortex and need to be interpreted accordingly. NEW & NOTEWORTHY Manipulations of motion visibility have served as a key tool for understanding the neural basis for visual perception. Here we measured human cortical response to changes in visibility across a comprehensive range of motion visibility parameters and modeled these with a quantitative framework. Our quantitative framework can be used as a reference for linking human cortical response to perception and underscores that different manipulations of motion visibility can have greatly different effects on cortical representation.
Collapse
Affiliation(s)
- Daniel Birman
- Department of Psychology, Stanford University , Stanford, California
| | - Justin L Gardner
- Department of Psychology, Stanford University , Stanford, California
| |
Collapse
|
49
|
Kaliukhovich DA, Op de Beeck H. Hierarchical stimulus processing in rodent primary and lateral visual cortex as assessed through neuronal selectivity and repetition suppression. J Neurophysiol 2018; 120:926-941. [PMID: 29742022 DOI: 10.1152/jn.00673.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Similar to primates, visual cortex in rodents appears to be organized in two distinct hierarchical streams. However, there is still little known about how visual information is processed along those streams in rodents. In this study, we examined how repetition suppression and position and clutter tolerance of the neuronal representations evolve along the putative ventral visual stream in rats. To address this question, we recorded multiunit spiking activity in primary visual cortex (V1) and the more downstream visual laterointermediate (LI) area of head-restrained Long-Evans rats. We employed a paradigm reminiscent of the continuous carry-over design used in human neuroimaging. In both areas, stimulus repetition attenuated the early phase of the neuronal response to the repeated stimulus, with this response suppression being greater in area LI. Furthermore, stimulus preferences were more similar across positions (position tolerance) in area LI than in V1, even though the absolute responses in both areas were very sensitive to changes in position. In contrast, the neuronal representations in both areas were equally good at tolerating the presence of limited visual clutter, as modeled by the presentation of a single flank stimulus. When probing tolerance of the neuronal representations with stimulus-specific adaptation, we detected no position tolerance in either examined brain area, whereas, on the contrary, we revealed clutter tolerance in both areas. Overall, our data demonstrate similarities and discrepancies in processing of visual information along the ventral visual stream of rodents and primates. Moreover, our results stress caution in using neuronal adaptation to probe tolerance of the neuronal representations. NEW & NOTEWORTHY Rodents are emerging as a popular animal model that complement primates for studying higher level visual functions. Similar to findings in primates, we demonstrate a greater repetition suppression and position tolerance of the neuronal representations in the downstream laterointermediate area of Long-Evans rats compared with primary visual cortex. However, we report no difference in the degree of clutter tolerance between the areas. These findings provide additional evidence for hierarchical processing of visual stimuli in rodents.
Collapse
Affiliation(s)
- Dzmitry A Kaliukhovich
- Laboratory of Biological Psychology, University of Leuven (KU Leuven) , Leuven , Belgium
| | - Hans Op de Beeck
- Laboratory of Biological Psychology, University of Leuven (KU Leuven) , Leuven , Belgium
| |
Collapse
|
50
|
Breitmeyer BG, Tripathy SP, Brown JM. Can Contrast-Response Functions Indicate Visual Processing Levels? Vision (Basel) 2018; 2:vision2010014. [PMID: 31735878 PMCID: PMC6835543 DOI: 10.3390/vision2010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 11/27/2022] Open
Abstract
Many visual effects are believed to be processed at several functional and anatomical levels of cortical processing. Determining if and how the levels contribute differentially to these effects is a leading problem in visual perception and visual neuroscience. We review and analyze a combination of extant psychophysical findings in the context of neurophysiological and brain-imaging results. Specifically using findings relating to visual illusions, crowding, and masking as exemplary cases, we develop a theoretical rationale for showing how relative levels of cortical processing contributing to these effects can already be deduced from the psychophysically determined functions relating respectively the illusory, crowding and masking strengths to the contrast of the illusion inducers, of the flankers producing the crowding, and of the mask. The wider implications of this rationale show how it can help to settle or clarify theoretical and interpretive inconsistencies and how it can further psychophysical, brain-recording and brain-imaging research geared to explore the relative functional and cortical levels at which conscious and unconscious processing of visual information occur. Our approach also allows us to make some specific predictions for future studies, whose results will provide empirical tests of its validity.
Collapse
Affiliation(s)
- Bruno G. Breitmeyer
- Department of Psychology, University of Houston, Houston, TX 77204, USA
- Correspondence: ; Tel.: +1-713-743-8570
| | - Srimant P. Tripathy
- School of Optometry & Visual Science, University of Bradford, Bradford BD7 1DP, UK
| | - James M. Brown
- Department of Psychology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|