1
|
Sinha S, Tam B, Wang SM. Applications of Molecular Dynamics Simulation in Protein Study. MEMBRANES 2022; 12:844. [PMID: 36135863 PMCID: PMC9505860 DOI: 10.3390/membranes12090844] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 05/29/2023]
Abstract
Molecular Dynamics (MD) Simulations is increasingly used as a powerful tool to study protein structure-related questions. Starting from the early simulation study on the photoisomerization in rhodopsin in 1976, MD Simulations has been used to study protein function, protein stability, protein-protein interaction, enzymatic reactions and drug-protein interactions, and membrane proteins. In this review, we provide a brief review for the history of MD Simulations application and the current status of MD Simulations applications in protein studies.
Collapse
Affiliation(s)
| | | | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
2
|
Harvey SR, VanAernum ZL, Wysocki VH. Surface-Induced Dissociation of Anionic vs Cationic Native-Like Protein Complexes. J Am Chem Soc 2021; 143:7698-7706. [PMID: 33983719 DOI: 10.1021/jacs.1c00855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Characterizing protein-protein interactions, stoichiometries, and subunit connectivity is key to understanding how subunits assemble into biologically relevant, multisubunit protein complexes. Native mass spectrometry (nMS) has emerged as a powerful tool to study protein complexes due to its low sample consumption and tolerance for heterogeneity. In nMS, positive mode ionization is routinely used and charge reduction, through the addition of solution additives, is often used, as the resulting lower charge states are often considered more native-like. When fragmented by surface-induced dissociation (SID), charge reduced complexes often give increased structural information over their "normal-charged" counterparts. A disadvantage of solution phase charge reduction is that increased adduction, and hence peak broadening, is often observed. Previous studies have shown that protein complexes ionized using negative mode generally form lower charge states relative to positive mode. Here we demonstrate that the lower charged protein complex anions activated by surface collisions fragment in a manner consistent with their solved structures, hence providing substructural information. Negative mode ionization in ammonium acetate offers the advantage of charge reduction without the peak broadening associated with solution phase charge reduction additives and provides direct structural information when coupled with SID. SID of 20S human proteasome (a 28-mer comprised of four stacked heptamer rings in an αββα formation), for example, provides information on both substructure (e.g., splitting into a 7α ring and the corresponding ββα 21-mer, and into α dimers and trimers to provide connectivity around the 7 α ring) and proteoform information on monomers.
Collapse
Affiliation(s)
- Sophie R Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zachary L VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Tarun OB, Eremchev MY, Radenovic A, Roke S. Spatiotemporal Imaging of Water in Operating Voltage-Gated Ion Channels Reveals the Slow Motion of Interfacial Ions. NANO LETTERS 2019; 19:7608-7613. [PMID: 31580677 DOI: 10.1021/acs.nanolett.9b02024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ion channels are responsible for numerous physiological functions ranging from transport to chemical and electrical signaling. Although static ion channel structure has been studied following a structural biology approach, spatiotemporal investigation of the dynamic molecular mechanisms of operational ion channels has not been achieved experimentally. In particular, the role of water remains elusive. Here, we perform label-free spatiotemporal second harmonic (SH) imaging and capacitance measurements of operational voltage-gated alamethicin ion channels in freestanding lipid membranes surrounded by aqueous solution on either side. We observe changes in SH intensity upon channel activation that are traced back to changes in the orientational distribution of water molecules that reorient along the field lines of transported ions. Of the transported ions, a fraction of 10-4 arrives at the hydrated membrane interface, leading to interfacial electrostatic changes on the time scale of a second. The time scale of these interfacial changes is influenced by the density of ion channels and is subject to a crowding mechanism. Ion transport along cell membranes is often associated with the propagation of electrical signals in neurons. As our study shows that this process is taking place over seconds, a more complex mechanism is likely responsible for the propagation of neuronal electrical signals than just the millisecond movement of ions.
Collapse
Affiliation(s)
- Orly B Tarun
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS) , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Maksim Yu Eremchev
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS) , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering (IBI), School of Engineering (STI) , EPFL , CH-1015 Lausanne , Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS) , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
4
|
Powers KT, Gildenberg MS, Washington MT. Modeling Conformationally Flexible Proteins With X-ray Scattering and Molecular Simulations. Comput Struct Biotechnol J 2019; 17:570-578. [PMID: 31073392 PMCID: PMC6495069 DOI: 10.1016/j.csbj.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023] Open
Abstract
Proteins and protein complexes with high conformational flexibility participate in a wide range of biological processes. These processes include genome maintenance, gene expression, signal transduction, cell cycle regulation, and many others. Gaining a structural understanding of conformationally flexible proteins and protein complexes is arguably the greatest problem facing structural biologists today. Over the last decade, some progress has been made toward understanding the conformational flexibility of such systems using hybrid approaches. One particularly fruitful strategy has been the combination of small-angle X-ray scattering (SAXS) and molecular simulations. In this article, we provide a brief overview of SAXS and molecular simulations and then discuss two general approaches for combining SAXS data and molecular simulations: minimal ensemble approaches and full ensemble approaches. In minimal ensemble approaches, one selects a minimal ensemble of structures from the simulations that best fit the SAXS data. In full ensemble approaches, one validates a full ensemble of structures from the simulations using SAXS data. We argue that full ensemble models are more realistic than minimal ensemble searches models and that full ensemble approaches should be used wherever possible.
Collapse
Key Words
- BD, Brownian dynamics
- CG, coarse-grained
- Cryo-EM, cryo-electron microscopy
- DNA polymerase
- DNA replication
- Dmax, maximal distance
- LD, Langevin dynamics
- MD, molecular dynamics
- Minimal ensemble search
- NMR, nuclear magnetic resonance
- PCNA, proliferating cell nuclear antigen
- Pol η, DNA polymerase eta
- Protein structure
- RPA, replication protein A
- Rg, radius of gyration
- SANS
- SANS, small-angle neutron scattering
- SAXS
- SAXS, small-angle X-ray scattering
- SEC, size exclusion chromatography
- SUMO, small ubiquitin-like modifie
Collapse
Affiliation(s)
| | | | - M. Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States of America
| |
Collapse
|
5
|
Hollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron 2018; 99:1129-1143. [PMID: 30236283 PMCID: PMC6209097 DOI: 10.1016/j.neuron.2018.08.011] [Citation(s) in RCA: 1052] [Impact Index Per Article: 175.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
The impact of molecular dynamics (MD) simulations in molecular biology and drug discovery has expanded dramatically in recent years. These simulations capture the behavior of proteins and other biomolecules in full atomic detail and at very fine temporal resolution. Major improvements in simulation speed, accuracy, and accessibility, together with the proliferation of experimental structural data, have increased the appeal of biomolecular simulation to experimentalists-a trend particularly noticeable in, although certainly not limited to, neuroscience. Simulations have proven valuable in deciphering functional mechanisms of proteins and other biomolecules, in uncovering the structural basis for disease, and in the design and optimization of small molecules, peptides, and proteins. Here we describe, in practical terms, the types of information MD simulations can provide and the ways in which they typically motivate further experimental work.
Collapse
Affiliation(s)
- Scott A Hollingsworth
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Lytton WW, Arle J, Bobashev G, Ji S, Klassen TL, Marmarelis VZ, Schwaber J, Sherif MA, Sanger TD. Multiscale modeling in the clinic: diseases of the brain and nervous system. Brain Inform 2017; 4:219-230. [PMID: 28488252 PMCID: PMC5709279 DOI: 10.1007/s40708-017-0067-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022] Open
Abstract
Computational neuroscience is a field that traces its origins to the efforts of Hodgkin and Huxley, who pioneered quantitative analysis of electrical activity in the nervous system. While also continuing as an independent field, computational neuroscience has combined with computational systems biology, and neural multiscale modeling arose as one offshoot. This consolidation has added electrical, graphical, dynamical system, learning theory, artificial intelligence and neural network viewpoints with the microscale of cellular biology (neuronal and glial), mesoscales of vascular, immunological and neuronal networks, on up to macroscales of cognition and behavior. The complexity of linkages that produces pathophysiology in neurological, neurosurgical and psychiatric disease will require multiscale modeling to provide understanding that exceeds what is possible with statistical analysis or highly simplified models: how to bring together pharmacotherapeutics with neurostimulation, how to personalize therapies, how to combine novel therapies with neurorehabilitation, how to interlace periodic diagnostic updates with frequent reevaluation of therapy, how to understand a physical disease that manifests as a disease of the mind. Multiscale modeling will also help to extend the usefulness of animal models of human diseases in neuroscience, where the disconnects between clinical and animal phenomenology are particularly pronounced. Here we cover areas of particular interest for clinical application of these new modeling neurotechnologies, including epilepsy, traumatic brain injury, ischemic disease, neurorehabilitation, drug addiction, schizophrenia and neurostimulation.
Collapse
Affiliation(s)
- William W. Lytton
- Department of Physiology and Pharmacology and Neurology, SUNY Downstate, Kings County Hospital, Brooklyn, NY 11203 USA
| | | | | | - Songbai Ji
- Thayer School of Engineering, Department of Surgery and of Orthopaedic Surgery, Geisel School of Medicine, Dartmouth College, Hanover, NH 3755 USA
| | | | | | | | - Mohamed A. Sherif
- Yale U, New Haven, CT USA
- VA Connecticut Healthcare System, West Haven, CT USA
- Ain Shams U Institute of Psychiatry, Cairo, Egypt
| | | |
Collapse
|
7
|
Abstract
Ligand binding usually moves the target protein from an ensemble of inactive states to a well-defined active conformation. Matthies et al. flip this scheme around, finding that, for the magnesium channel CorA, loss of ligand binding induces an ensemble of conformations that turn the channel on.
Collapse
Affiliation(s)
- Daniel L Minor
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics and Cellular and Molecular Pharmacology, and California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, California 94158 USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA.
| |
Collapse
|
8
|
Billen B, Brams M, Debaveye S, Remeeva A, Alpizar YA, Waelkens E, Kreir M, Brüggemann A, Talavera K, Nilius B, Voets T, Ulens C. Different ligands of the TRPV3 cation channel cause distinct conformational changes as revealed by intrinsic tryptophan fluorescence quenching. J Biol Chem 2015; 290:12964-74. [PMID: 25829496 PMCID: PMC4432310 DOI: 10.1074/jbc.m114.628925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Indexed: 11/26/2022] Open
Abstract
TRPV3 is a thermosensitive ion channel primarily expressed in epithelial tissues of the skin, nose, and tongue. The channel has been implicated in environmental thermosensation, hyperalgesia in inflamed tissues, skin sensitization, and hair growth. Although transient receptor potential (TRP) channel research has vastly increased our understanding of the physiological mechanisms of nociception and thermosensation, the molecular mechanics of these ion channels are still largely elusive. In order to better comprehend the functional properties and the mechanism of action in TRP channels, high-resolution three-dimensional structures are indispensable, because they will yield the necessary insights into architectural intimacies at the atomic level. However, structural studies of membrane proteins are currently hampered by difficulties in protein purification and in establishing suitable crystallization conditions. In this report, we present a novel protocol for the purification of membrane proteins, which takes advantage of a C-terminal GFP fusion. Using this protocol, we purified human TRPV3. We show that the purified protein is a fully functional ion channel with properties akin to the native channel using planar patch clamp on reconstituted channels and intrinsic tryptophan fluorescence spectroscopy. Using intrinsic tryptophan fluorescence spectroscopy, we reveal clear distinctions in the molecular interaction of different ligands with the channel. Altogether, this study provides powerful tools to broaden our understanding of ligand interaction with TRPV channels, and the availability of purified human TRPV3 opens up perspectives for further structural and functional studies.
Collapse
Affiliation(s)
- Bert Billen
- From the Laboratory of Structural Neurobiology and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 601, 3000 Leuven, Belgium,
| | - Marijke Brams
- From the Laboratory of Structural Neurobiology and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 601, 3000 Leuven, Belgium
| | - Sarah Debaveye
- From the Laboratory of Structural Neurobiology and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 601, 3000 Leuven, Belgium
| | - Alina Remeeva
- From the Laboratory of Structural Neurobiology and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 601, 3000 Leuven, Belgium
| | - Yeranddy A Alpizar
- the Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 802, 3000 Leuven, Belgium
| | - Etienne Waelkens
- the Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 901, 3000 Leuven, Belgium, and
| | - Mohamed Kreir
- Nanion Technologies GmbH, Gabrielenstrasse 9, D-80636 Munich, Germany
| | - Andrea Brüggemann
- Nanion Technologies GmbH, Gabrielenstrasse 9, D-80636 Munich, Germany
| | - Karel Talavera
- the Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 802, 3000 Leuven, Belgium
| | - Bernd Nilius
- the Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 802, 3000 Leuven, Belgium
| | - Thomas Voets
- the Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 802, 3000 Leuven, Belgium
| | - Chris Ulens
- From the Laboratory of Structural Neurobiology and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49 Box 601, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Insights into the molecular foundations of electrical excitation. J Mol Biol 2015; 427:1-2. [PMID: 25542854 DOI: 10.1016/j.jmb.2014.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/22/2014] [Accepted: 10/12/2014] [Indexed: 01/04/2023]
|
10
|
Quintyn RS, Harvey SR, Wysocki VH. Illustration of SID-IM-SID (surface-induced dissociation-ion mobility-SID) mass spectrometry: homo and hetero model protein complexes. Analyst 2015; 140:7012-9. [DOI: 10.1039/c5an01095k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface collisions generate subcomplexes, which are then separated by ion mobility and dissociated into their individual subunitsviaa second stage of surface collisions to elucidate protein complex architecture and assembly.
Collapse
Affiliation(s)
- Royston S. Quintyn
- Department of Chemistry and Biochemistry
- Ohio State University
- Columbus
- USA
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry
- Ohio State University
- Columbus
- USA
- School of Chemistry
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry
- Ohio State University
- Columbus
- USA
| |
Collapse
|
11
|
Payandeh J, Minor DL. Bacterial voltage-gated sodium channels (BacNa(V)s) from the soil, sea, and salt lakes enlighten molecular mechanisms of electrical signaling and pharmacology in the brain and heart. J Mol Biol 2014; 427:3-30. [PMID: 25158094 DOI: 10.1016/j.jmb.2014.08.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels (Na(V)s) provide the initial electrical signal that drives action potential generation in many excitable cells of the brain, heart, and nervous system. For more than 60years, functional studies of Na(V)s have occupied a central place in physiological and biophysical investigation of the molecular basis of excitability. Recently, structural studies of members of a large family of bacterial voltage-gated sodium channels (BacNa(V)s) prevalent in soil, marine, and salt lake environments that bear many of the core features of eukaryotic Na(V)s have reframed ideas for voltage-gated channel function, ion selectivity, and pharmacology. Here, we analyze the recent advances, unanswered questions, and potential of BacNa(V)s as templates for drug development efforts.
Collapse
Affiliation(s)
- Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Daniel L Minor
- Cardiovascular Research Institute, Departments of Biochemistry and Biophysics and Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 93858-2330, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Baker MAB, Rojko N, Cronin B, Anderluh G, Wallace MI. Photobleaching Reveals Heterogeneous Stoichiometry for Equinatoxin II Oligomers. Chembiochem 2014; 15:2139-45. [DOI: 10.1002/cbic.201300799] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Indexed: 01/19/2023]
|
13
|
Abstract
Membrane proteins remain challenging targets for structural biologists, despite recent technical developments regarding sample preparation and structure determination. We review recent progress towards a structural understanding of TRP channels and the techniques used to that end. We discuss available low-resolution structures from electron microscopy (EM), X-ray crystallography, and nuclear magnetic resonance (NMR) and review the resulting insights into TRP channel function for various subfamily members. The recent high-resolution structure of TRPV1 is discussed in more detail in Chapter 11. We also consider the opportunities and challenges of using the accumulating structural information on TRPs and homologous proteins for deducing full-length structures of different TRP channel subfamilies, such as building homology models. Finally, we close by summarizing the outlook of the "holy grail" of understanding in atomic detail the diverse functions of TRP channels.
Collapse
|
14
|
Isacoff EY, Jan LY, Minor DL. Conduits of life's spark: a perspective on ion channel research since the birth of neuron. Neuron 2013; 80:658-74. [PMID: 24183018 DOI: 10.1016/j.neuron.2013.10.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heartbeats, muscle twitches, and lightning-fast thoughts are all manifestations of bioelectricity and rely on the activity of a class of membrane proteins known as ion channels. The basic function of an ion channel can be distilled into, "The hole opens. Ions go through. The hole closes." Studies of the fundamental mechanisms by which this process happens and the consequences of such activity in the setting of excitable cells remains the central focus of much of the field. One might wonder after so many years of detailed poking at such a seemingly simple process, is there anything left to learn?
Collapse
Affiliation(s)
- Ehud Y Isacoff
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
15
|
Saigo M, Tronconi MA, Gerrard Wheeler MC, Alvarez CE, Drincovich MF, Andreo CS. Biochemical approaches to C4 photosynthesis evolution studies: the case of malic enzymes decarboxylases. PHOTOSYNTHESIS RESEARCH 2013; 117:177-187. [PMID: 23832612 DOI: 10.1007/s11120-013-9879-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
C4 photosynthesis enables the capture of atmospheric CO2 and its concentration at the site of RuBisCO, thus counteracting the negative effects of low atmospheric levels of CO2 and high atmospheric levels of O2 (21 %) on photosynthesis. The evolution of this complex syndrome was a multistep process. It did not occur by simply recruiting pre-exiting components of the pathway from C3 ancestors which were already optimized for C4 function. Rather it involved modifications in the kinetics and regulatory properties of pre-existing isoforms of non-photosynthetic enzymes in C3 plants. Thus, biochemical studies aimed at elucidating the functional adaptations of these enzymes are central to the development of an integrative view of the C4 mechanism. In the present review, the most important biochemical approaches that we currently use to understand the evolution of the C4 isoforms of malic enzyme are summarized. It is expected that this information will help in the rational design of the best decarboxylation processes to provide CO2 for RuBisCO in engineering C3 species to perform C4 photosynthesis.
Collapse
Affiliation(s)
- Mariana Saigo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha, 531, Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
16
|
Wlodawer A, Minor W, Dauter Z, Jaskolski M. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS J 2013; 280:5705-36. [PMID: 24034303 DOI: 10.1111/febs.12495] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/12/2013] [Accepted: 08/20/2013] [Indexed: 12/28/2022]
Abstract
The number of macromolecular structures deposited in the Protein Data Bank now approaches 100,000, with the vast majority of them determined by crystallographic methods. Thousands of papers describing such structures have been published in the scientific literature, and 20 Nobel Prizes in chemistry or medicine have been awarded for discoveries based on macromolecular crystallography. New hardware and software tools have made crystallography appear to be an almost routine (but still far from being analytical) technique and many structures are now being determined by scientists with very limited experience in the practical aspects of the field. However, this apparent ease is sometimes illusory and proper procedures need to be followed to maintain high standards of structure quality. In addition, many noncrystallographers may have problems with the critical evaluation and interpretation of structural results published in the scientific literature. The present review provides an outline of the technical aspects of crystallography for less experienced practitioners, as well as information that might be useful for users of macromolecular structures, aiming to show them how to interpret (but not overinterpret) the information present in the coordinate files and in their description. A discussion of the extent of information that can be gleaned from the atomic coordinates of structures solved at different resolution is provided, as well as problems and pitfalls encountered in structure determination and interpretation.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, NCI at Frederick, Frederick, MD, USA
| | | | | | | |
Collapse
|
17
|
Honarparvar B, Govender T, Maguire GEM, Soliman MES, Kruger HG. Integrated Approach to Structure-Based Enzymatic Drug Design: Molecular Modeling, Spectroscopy, and Experimental Bioactivity. Chem Rev 2013; 114:493-537. [DOI: 10.1021/cr300314q] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bahareh Honarparvar
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Thavendran Govender
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Glenn E. M. Maguire
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mahmoud E. S. Soliman
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Hendrik G. Kruger
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| |
Collapse
|
18
|
Bagaria A, Jaravine V, Güntert P. Estimating structure quality trends in the Protein Data Bank by equivalent resolution. Comput Biol Chem 2013; 46:8-15. [PMID: 23751279 DOI: 10.1016/j.compbiolchem.2013.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/29/2013] [Indexed: 01/01/2023]
Abstract
The quality of protein structures obtained by different experimental and ab-initio calculation methods varies considerably. The methods have been evolving over time by improving both experimental designs and computational techniques, and since the primary aim of these developments is the procurement of reliable and high-quality data, better techniques resulted on average in an evolution toward higher quality structures in the Protein Data Bank (PDB). Each method leaves a specific quantitative and qualitative "trace" in the PDB entry. Certain information relevant to one method (e.g. dynamics for NMR) may be lacking for another method. Furthermore, some standard measures of quality for one method cannot be calculated for other experimental methods, e.g. crystal resolution or NMR bundle RMSD. Consequently, structures are classified in the PDB by the method used. Here we introduce a method to estimate a measure of equivalent X-ray resolution (e-resolution), expressed in units of Å, to assess the quality of any type of monomeric, single-chain protein structure, irrespective of the experimental structure determination method. We showed and compared the trends in the quality of structures in the Protein Data Bank over the last two decades for five different experimental techniques, excluding theoretical structure predictions. We observed that as new methods are introduced, they undergo a rapid method development evolution: within several years the e-resolution score becomes similar for structures obtained from the five methods and they improve from initially poor performance to acceptable quality, comparable with previously established methods, the performance of which is essentially stable.
Collapse
Affiliation(s)
- Anurag Bagaria
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
19
|
Xu Q, Chang A, Tolia A, Minor DL. Structure of a Ca(2+)/CaM:Kv7.4 (KCNQ4) B-helix complex provides insight into M current modulation. J Mol Biol 2012. [PMID: 23178170 DOI: 10.1016/j.jmb.2012.11.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calmodulin (CaM) is an important regulator of Kv7.x (KCNQx) voltage-gated potassium channels. Channels from this family produce neuronal M currents and cardiac and auditory I(KS) currents and harbor mutations that cause arrhythmias, epilepsy, and deafness. Despite extensive functional characterization, biochemical and structural details of the interaction between CaM and the channel have remained elusive. Here, we show that both apo-CaM and Ca(2+)/CaM bind to the C-terminal tail of the neuronal channel Kv7.4 (KCNQ4), which is involved in both hearing and mechanosensation. Interactions between apo-CaM and the Kv7.4 tail involve two C-terminal tail segments, known as the A and B segments, whereas the interaction between Ca(2+)/CaM and the Kv7.4 C-terminal tail requires only the B segment. Biochemical studies show that the calcium dependence of the CaM:B segment interaction is conserved in all Kv7 subtypes. X-ray crystallographic determination of the structure of the Ca(2+)/CaM:Kv7.4 B segment complex shows that Ca(2+)/CaM wraps around the Kv7.4 B segment, which forms an α-helix, in an antiparallel orientation that embodies a variation of the classic 1-14 Ca(2+)/CaM interaction motif. Taken together with the context of prior studies, our data suggest a model for modulation of neuronal Kv7 channels involving a calcium-dependent conformational switch from an apo-CaM form that bridges the A and B segments to a Ca(2+)/CaM form bound to the B-helix. The structure presented here also provides a context for a number of disease-causing mutations and for further dissection of the mechanisms by which CaM controls Kv7 function.
Collapse
Affiliation(s)
- Qiang Xu
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2156, USA
| | | | | | | |
Collapse
|
20
|
Berjanskii M, Zhou J, Liang Y, Lin G, Wishart DS. Resolution-by-proxy: a simple measure for assessing and comparing the overall quality of NMR protein structures. JOURNAL OF BIOMOLECULAR NMR 2012; 53:167-180. [PMID: 22678091 DOI: 10.1007/s10858-012-9637-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/15/2012] [Indexed: 06/01/2023]
Abstract
In protein X-ray crystallography, resolution is often used as a good indicator of structural quality. Diffraction resolution of protein crystals correlates well with the number of X-ray observables that are used in structure generation and, therefore, with protein coordinate errors. In protein NMR, there is no parameter identical to X-ray resolution. Instead, resolution is often used as a synonym of NMR model quality. Resolution of NMR structures is often deduced from ensemble precision, torsion angle normality and number of distance restraints per residue. The lack of common techniques to assess the resolution of X-ray and NMR structures complicates the comparison of structures solved by these two methods. This problem is sometimes approached by calculating "equivalent resolution" from structure quality metrics. However, existing protocols do not offer a comprehensive assessment of protein structure as they calculate equivalent resolution from a relatively small number (<5) of protein parameters. Here, we report a development of a protocol that calculates equivalent resolution from 25 measurable protein features. This new method offers better performance (correlation coefficient of 0.92, mean absolute error of 0.28 Å) than existing predictors of equivalent resolution. Because the method uses coordinate data as a proxy for X-ray diffraction data, we call this measure "Resolution-by-Proxy" or ResProx. We demonstrate that ResProx can be used to identify under-restrained, poorly refined or inaccurate NMR structures, and can discover structural defects that the other equivalent resolution methods cannot detect. The ResProx web server is available at http://www.resprox.ca.
Collapse
Affiliation(s)
- Mark Berjanskii
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
21
|
Abstract
Voltage-gated sodium channels underlie the rapid regenerative upstroke of action potentials and are modulated by cytoplasmic calcium ions through a poorly understood mechanism. We describe the 1.35 Å crystal structure of Ca(2+)-bound calmodulin (Ca(2+)/CaM) in complex with the inactivation gate (DIII-IV linker) of the cardiac sodium channel (Na(V)1.5). The complex harbors the positions of five disease mutations involved with long Q-T type 3 and Brugada syndromes. In conjunction with isothermal titration calorimetry, we identify unique inactivation-gate mutations that enhance or diminish Ca(2+)/CaM binding, which, in turn, sensitize or abolish Ca(2+) regulation of full-length channels in electrophysiological experiments. Additional biochemical experiments support a model whereby a single Ca(2+)/CaM bridges the C-terminal IQ motif to the DIII-IV linker via individual N and C lobes, respectively. The data suggest that Ca(2+)/CaM destabilizes binding of the inactivation gate to its receptor, thus biasing inactivation toward more depolarized potentials.
Collapse
|
22
|
Cheng CI, Chang YP, Chu YH. Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem Soc Rev 2012; 41:1947-71. [DOI: 10.1039/c1cs15168a] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Minor DL, Findeisen F. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 2011; 4:459-74. [PMID: 21139419 DOI: 10.4161/chan.4.6.12867] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.
Collapse
Affiliation(s)
- Daniel L Minor
- Cardiovascular Research Institute, University of California-San Francisco, CA, USA.
| | | |
Collapse
|
24
|
Multiple C-terminal tail Ca(2+)/CaMs regulate Ca(V)1.2 function but do not mediate channel dimerization. EMBO J 2010; 29:3924-38. [PMID: 20953164 DOI: 10.1038/emboj.2010.260] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/24/2010] [Indexed: 11/09/2022] Open
Abstract
Interactions between voltage-gated calcium channels (Ca(V)s) and calmodulin (CaM) modulate Ca(V) function. In this study, we report the structure of a Ca(2+)/CaM Ca(V)1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca(2+)/CaMs and two Ca(2+)/CaM-IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca(2+)/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes Ca(V)1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca(2+)/CaMs in the complex have different properties. Ca(2+)/CaM bound to the PreIQ C-region is labile, whereas Ca(2+)/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca(2+)/CaMs can bind the Ca(V)1.2 tail simultaneously and indicate a functional role for Ca(2+)/CaM at the C-region site.
Collapse
|
25
|
Abstract
Macromolecules drive the complex behavior of neurons. For example, channels and transporters control the movements of ions across membranes, SNAREs direct the fusion of vesicles at the synapse, and motors move cargo throughout the cell. Understanding the structure, assembly, and conformational movements of these and other neuronal proteins is essential to understanding the brain. Developments in fluorescence have allowed the architecture and dynamics of proteins to be studied in real time and in a cellular context with great accuracy. In this review, we cover classic and recent methods for studying protein structure, assembly, and dynamics with fluorescence. These methods include fluorescence and luminescence resonance energy transfer, single-molecule bleaching analysis, intensity measurements, colocalization microscopy, electron transfer, and bimolecular complementation analysis. We present the principles of these methods, highlight recent work that uses the methods, and discuss a framework for interpreting results as they apply to molecular neurobiology.
Collapse
|
26
|
Minor DL. Searching for interesting channels: pairing selection and molecular evolution methods to study ion channel structure and function. MOLECULAR BIOSYSTEMS 2009; 5:802-10. [PMID: 19603113 DOI: 10.1039/b901708a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pairing of selection and screening methods with randomly mutated libraries can be an exceptionally powerful means for probing the functions of biological molecules and for developing novel regents from random libraries of peptides and oligonucleotides. The use of such approaches is beginning to permeate the ion channel field where they are being deployed to uncover fundamental aspects about ion channel structure and gating, small molecule-channel interactions, and the development of novel agents to control channel activity.
Collapse
Affiliation(s)
- Daniel L Minor
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158-2330, USA.
| |
Collapse
|
27
|
Gaudet R. Divide and conquer: high resolution structural information on TRP channel fragments. ACTA ACUST UNITED AC 2009; 133:231-7. [PMID: 19237587 PMCID: PMC2654082 DOI: 10.1085/jgp.200810137] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 01238, USA.
| |
Collapse
|
28
|
United we stand: combining structural methods. Curr Opin Struct Biol 2008; 18:617-22. [DOI: 10.1016/j.sbi.2008.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 07/29/2008] [Indexed: 01/20/2023]
|
29
|
Molecular modeling of the full-length human TRPV1 channel in closed and desensitized states. J Membr Biol 2008; 223:161-72. [PMID: 18791833 DOI: 10.1007/s00232-008-9123-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
The transient receptor potential vanilloid subtype 1 (TRPV1) is a member of the TRP family gated by vanilloids, heat, and protons. Structurally, TRPV1 subunits have a modular architecture underlying different functionalities, namely stimuli recognition, channel gating, ion selectivity, subunit oligomerization, and regulation by intracellular signaling molecules. Considering modular organization and recent structural information in the ion channel field, we have modeled a full-length TRPV1 by assembly of its major modules: the cytosolic N-terminal, C-terminal, and membrane-spanning region. For N-terminal, we used the ankyrin repeat structure fused with the N-end segment. The membrane domain was modeled with the structure of the eukaryotic, voltage-gated Kv1.2 K+ channel. The C-terminus was cast using the coordinates of HCN channels. The extensive structure-function data available for TRPV1 was used to validate the models in terms of the location of molecular determinants of function in the structure. Additionally, the current information allowed the modeling of the vanilloid receptor in the closed and desensitized states. The closed state shows the N-terminal module highly exposed and accessible to adenosine triphosphate and the C-terminal accessible to phosphoinositides. In contrast, the desensitized state depicts the N-terminal and C-terminal modules close together, compatible with an interaction mediated by Ca2+ -calmodulin complex. These models identify potential previously unrecognized intra- and interdomain interactions that may play an important functional role. Although the molecular models should be taken with caution, they provide a helpful tool that yields testable hypothesis that further our understanding on ion channels work in terms of underlying protein structure.
Collapse
|
30
|
Chakrapani S, Cuello LG, Cortes DM, Perozo E. Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer. Structure 2008; 16:398-409. [PMID: 18334215 DOI: 10.1016/j.str.2007.12.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/30/2007] [Accepted: 12/16/2007] [Indexed: 10/22/2022]
Abstract
A strong interplay between the voltage-sensor domain (VSD) and the pore domain (PD) underlies voltage-gated channel functions. In a few voltage-sensitive proteins, the VSD has been shown to function without a canonical PD, although its structure and oligomeric state remain unknown. Here, using EPR spectroscopy, we show that the isolated VSD of KvAP can remain monomeric in a reconstituted bilayer and retain a transmembrane conformation. We find that water-filled crevices extending deep into the membrane around S3, a scaffold conducive to transport of protons/cations, are intrinsic to the VSD. Differences in solvent accessibility in comparison to the full-length KvAP allowed us to define an interacting footprint of the PD on the VSD. This interaction is centered around S1 and S2 and suggests a rotation of 70 degrees -100 degrees relative to Kv1.2-Kv2.1 chimera. Sequence-conservation patterns in Kv channels, Hv channels, and voltage-sensitive phosphatases reveal several near-universal features suggesting a common molecular architecture for all VSDs.
Collapse
Affiliation(s)
- Sudha Chakrapani
- Institute for Biophysical Dynamics, Center for Integrative Science, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Transient receptor potential (TRP) channels are important in many neuronal and non-neuronal physiological processes. The past 2 years have seen much progress in the use of structural biology techniques to elucidate molecular mechanisms of TRP channel gating and regulation. Two approaches have proven fruitful: (i) a divide-and-conquer strategy has provided high-resolution structural details of TRP channel fragments although it fails to explain how these fragments are integrated in the full channel; and (ii) electron microscopy of entire TRP channels has yielded low-resolution images that provide a basis for testable models of TRP channel architecture. The results of each approach, summarized in this review, provide a preview of what the future holds in TRP channel structural biology.
Collapse
Affiliation(s)
- Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 01238, USA.
| |
Collapse
|
32
|
Gaudet R. A primer on ankyrin repeat function in TRP channels and beyond. MOLECULAR BIOSYSTEMS 2008; 4:372-9. [PMID: 18414734 PMCID: PMC3006086 DOI: 10.1039/b801481g] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transient receptor potential (TRP) channels are rapidly gaining attention as important receptors and transducers of diverse sensory and environmental cues. Recent progress in the field has provided new insights into the structure and function of the ankyrin repeat motifs present in the N-terminal cytosolic domain of many TRP channels. The topics addressed in this Highlight include the structural features of canonical ankyrin repeats, new clues into the functions these repeats perform in cells, and how this information can be applied to develop further experiments on TRP channels and other proteins containing ankyrin repeats.
Collapse
Affiliation(s)
- Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 01238, USA.
| |
Collapse
|
33
|
McClintock C, Kertesz V, Hettich RL. Development of an Electrochemical Oxidation Method for Probing Higher Order Protein Structure with Mass Spectrometry. Anal Chem 2008; 80:3304-17. [DOI: 10.1021/ac702493a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Carlee McClintock
- Graduate School of Genome Science and Technology, University of TennesseeOak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, Tennessee 37830, and Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6131, Oak Ridge, Tennessee 37831
| | - Vilmos Kertesz
- Graduate School of Genome Science and Technology, University of TennesseeOak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, Tennessee 37830, and Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6131, Oak Ridge, Tennessee 37831
| | - Robert L. Hettich
- Graduate School of Genome Science and Technology, University of TennesseeOak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, Tennessee 37830, and Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6131, Oak Ridge, Tennessee 37831
| |
Collapse
|