1
|
Littlefield PD, Richter C. Near-infrared stimulation of the auditory nerve: A decade of progress toward an optical cochlear implant. Laryngoscope Investig Otolaryngol 2021; 6:310-319. [PMID: 33869763 PMCID: PMC8035937 DOI: 10.1002/lio2.541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/14/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES We provide an appraisal of recent research on stimulation of the auditory system with light. In particular, we discuss direct infrared stimulation and ongoing controversies regarding the feasibility of this modality. We also discuss advancements and barriers to the development of an optical cochlear implant. METHODS This is a review article that covers relevant animal studies. RESULTS The auditory system has been stimulated with infrared light, and in a much more spatially selective manner than with electrical stimulation. However, there are experiments from other labs that have not been able to reproduce these results. This has resulted in an ongoing controversy regarding the feasibility of infrared stimulation, and the reasons for these experimental differences still require explanation. The neural response characteristics also appear to be much different than with electrical stimulation. The electrical stimulation paradigms used for modern cochlear implants do not apply well to optical stimulation and new coding strategies are under development. Stimulation with infrared light brings the risk of heat accumulation in the tissue at high pulse repetition rates, so optimal pulse shapes and combined optical/electrical stimulation are being investigated to mitigate this. Optogenetics is another promising technique, which makes neurons more sensitive to light stimulation by inserting light sensitive ion channels via viral vectors. Challenges of optogenetics include the expression of light sensitive channels in sufficient density in the target neurons, and the risk of damaging neurons by the expression of a foreign protein. CONCLUSION Optical stimulation of the nervous system is a promising new field, and there has been progress toward the development of a cochlear implant that takes advantage of the benefits of optical stimulation. There are barriers, and controversies, but so far none that seem intractable. LEVEL OF EVIDENCE NA (animal studies and basic research).
Collapse
Affiliation(s)
| | - Claus‐Peter Richter
- Department of OtolaryngologyNorthwestern UniversityChicagoIllinoisUSA
- Department of Communication Sciences and DisordersNorthwestern UniversityEvanstonIllinoisUSA
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- The Hugh Knowles Center, Department of Communication Sciences and DisordersNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
2
|
Xu Y, Xia N, Lim M, Tan X, Tran MH, Boulger E, Peng F, Young H, Rau C, Rack A, Richter CP. Multichannel optrodes for photonic stimulation. NEUROPHOTONICS 2018; 5:045002. [PMID: 30397630 PMCID: PMC6197865 DOI: 10.1117/1.nph.5.4.045002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/24/2018] [Indexed: 05/27/2023]
Abstract
An emerging method in the field of neural stimulation is the use of photons to activate neurons. The possible advantage of optical stimulation over electrical is attributable to its spatially selective activation of small neuron populations, which is promising in generating superior spatial resolution in neural interfaces. Two principal methods are explored for cochlear prostheses: direct stimulation of nerves with infrared light and optogenetics. This paper discusses basic requirements for developing a light delivery system (LDS) for the cochlea and provides examples for building such devices. The proposed device relies on small optical sources, which are assembled in an array to be inserted into the cochlea. The mechanical properties, the biocompatibility, and the efficacy of optrodes have been tested in animal models. The force required to insert optrodes into a model of the human scala tympani was comparable to insertion forces obtained for contemporary cochlear implant electrodes. Side-emitting diodes are powerful enough to evoke auditory responses in guinea pigs. Chronic implantation of the LDS did not elevate auditory brainstem responses over 26 weeks.
Collapse
Affiliation(s)
- Yingyue Xu
- Northwestern University Feinberg School of Medicine, Department of Otolaryngology, Chicago, Illinois, United States
- Northwestern University, Department of Communication Sciences and Disorders, Evanston, Illinois, United States
| | - Nan Xia
- Qingdao University, Institute for Digital Medicine and Computer-assisted Surgery, Qingdao, China
| | - Michelle Lim
- Northwestern University Feinberg School of Medicine, Department of Otolaryngology, Chicago, Illinois, United States
| | - Xiaodong Tan
- Northwestern University Feinberg School of Medicine, Department of Otolaryngology, Chicago, Illinois, United States
| | - Minh Ha Tran
- Northwestern University Feinberg School of Medicine, Department of Otolaryngology, Chicago, Illinois, United States
| | - Erin Boulger
- Northwestern University Feinberg School of Medicine, Department of Otolaryngology, Chicago, Illinois, United States
| | - Fei Peng
- Chongqing University, Bioengineering College, Chongqing, China
| | - Hunter Young
- Northwestern University Feinberg School of Medicine, Department of Otolaryngology, Chicago, Illinois, United States
| | - Christoph Rau
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Alexander Rack
- Structure of Materials Group-ID19, European Synchrotron Radiation Facility, Cedex 9, France
| | - Claus-Peter Richter
- Northwestern University Feinberg School of Medicine, Department of Otolaryngology, Chicago, Illinois, United States
- Northwestern University, Department of Communication Sciences and Disorders, Evanston, Illinois, United States
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
- Northwestern University, Hugh Knowles Center for Clinical and Basic Sciences in Hearing, Evanston, Illinois, United States
| |
Collapse
|
3
|
Xia N, Tan X, Xu Y, Hou W, Mao T, Richter CP. Pressure in the Cochlea During Infrared Irradiation. IEEE Trans Biomed Eng 2016; 65:1575-1584. [PMID: 27959792 DOI: 10.1109/tbme.2016.2636149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The purpose of the study is to demonstrate laser-evoked pressure waves in small confined volumes such as the cochlea. METHODS Custom-fabricated pressure probes were used to determine the pressure in front of the optical fiber in a small dish and patch pipettes to measure temperature changes. Pressure probes were inserted into scala tympani (ST) or vestibuli during laser stimulation. With a sensitive microphone the pressure was measured in the outer ear canal. RESULTS Heating was spatially confined. The heat relaxation time was 35 ms. During laser stimulation in the cochlea at 17 μJ/pulse, the pressure in the outer ear canal (EC) was 43.5 dB (re 20 μPa). The corresponding intracochlear pressure was calculated to be about 78.5 dB (re 20 μPa) using the middle ear reverse transfer function of -35 dB. At 164 μJ/pulse, the pressure in the EC was on average 63 dB (re 20 μPa) and the intracochlear pressure was estimated to be 98 dB (re 20 μPa), which is similar to the value obtained with the pressure probe, 100 dB (re 20 μPa). Side-emitting optical fibers were used to steer the beam path. The pressure values were independent of the orientation of the beam path. Evoked compound action potentials of the auditory nerve were maximum when spiral ganglion neurons were in the beam path. CONCLUSION Pressure waves are generated during infrared laser stimulation. The intracochlear pressure was independent from the orientation of the beam path. SIGNIFICANCE Neural responses required the spiral ganglion neurons to be directly irradiated.
Collapse
|
4
|
Münster-Wandowski A, Zander JF, Richter K, Ahnert-Hilger G. Co-existence of Functionally Different Vesicular Neurotransmitter Transporters. Front Synaptic Neurosci 2016; 8:4. [PMID: 26909036 PMCID: PMC4754932 DOI: 10.3389/fnsyn.2016.00004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/01/2016] [Indexed: 01/25/2023] Open
Abstract
The vesicular transmitter transporters VGLUT, VGAT, VMAT2 and VAChT, define phenotype and physiological properties of neuronal subtypes. VGLUTs concentrate the excitatory amino acid glutamate, VGAT the inhibitory amino acid GABA, VMAT2 monoamines, and VAChT acetylcholine (ACh) into synaptic vesicle (SV). Following membrane depolarization SV release their content into the synaptic cleft. A strict segregation of vesicular transporters is mandatory for the precise functioning of synaptic communication and of neuronal circuits. In the last years, evidence accumulates that subsets of neurons express more than one of these transporters leading to synaptic co-release of different and functionally opposing transmitters and modulation of synaptic plasticity. Synaptic co-existence of transporters may change during pathological scenarios in order to ameliorate misbalances in neuronal activity. In addition, evidence increases that transporters also co-exist on the same vesicle providing another layer of regulation. Generally, vesicular transmitter loading relies on an electrochemical gradient ΔμH+ driven by the proton ATPase rendering the lumen of the vesicle with respect to the cytosol positive (Δψ) and acidic (ΔpH). While the activity of VGLUT mainly depends on the Δψ component, VMAT, VGAT and VAChT work best at a high ΔpH. Thus, a vesicular synergy of transporters depending on the combination may increase or decrease the filling of SV with the principal transmitter. We provide an overview on synaptic co-existence of vesicular transmitter transporters including changes in the excitatory/inhibitory balance under pathological conditions. Additionally, we discuss functional aspects of vesicular synergy of transmitter transporters.
Collapse
Affiliation(s)
| | | | - Karin Richter
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
5
|
Yang CQ, Duan LP, Qiao PT, Zhao L, Guo LL. Increased VGLUT3 involved in visceral hyperalgesia in a rat model of irritable bowel syndrome. World J Gastroenterol 2015; 21:2959-2966. [PMID: 25780293 PMCID: PMC4356915 DOI: 10.3748/wjg.v21.i10.2959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/10/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the activity of vesicular glutamate transporter-3 (VGLUT3) in a visceral hyperalgesia rat model of irritable bowel syndrome, and the role of mast cells (MCs).
METHODS: Transient intestinal infection was induced by oral administration of Trichinella spiralis larvae in rats. On the 100th day post-infection (PI), the rats were divided into an acute cold restraint stress (ACRS) group and a non-stressed group. Age-matched untreated rats served as controls. The abdominal withdrawal reflex was used to measure the visceromotor response to colorectal distension (CRD). The expression levels of VGLUT3 in peripheral and central neurons were analyzed by immunofluorescence and western blotting.
RESULTS: VGLUT3 expression in the L6S1 dorsal root ganglion cells was significantly higher in the PI group than in the control group (0.32 ± 0.009 vs 0.22 ± 0.008, P < 0.01), and there was no significant difference in the expression of VGLUT3 between MC-deficient rats and their normal wild-type littermates. Immunofluorescence showed that the expression levels of VGLUT3 in PI + ACRS rats were enhanced in the prefrontal cortex of the brain compared with the control group.
CONCLUSION: VGLUT3 is involved in the pathogenesis of visceral hyperalgesia. Coexpression of c-fos, 5-hydroxytryptamine and VGLUT3 after CRD was observed in associated neuronal pathways. Increased VGLUT3 induced by transient intestinal infection was found in peripheral nerves, and was independent of MCs. Moreover, the expression of VGLUT3 was enhanced in the prefrontal cortex in rats with induced infection and stress.
Collapse
|
6
|
Yamakawa GR, Antle MC. Phenotype and function of raphe projections to the suprachiasmatic nucleus. Eur J Neurosci 2010; 31:1974-83. [PMID: 20604802 DOI: 10.1111/j.1460-9568.2010.07228.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The circadian clock, located in the suprachiasmatic nucleus (SCN), receives a major afferent from the median raphe nucleus (MRN). In the Syrian hamster, only about 50% of the cells giving rise to this afferent contain serotonin. There is mixed evidence as to whether the serotonergic portion of this projection is involved in non-photic phase shifting of circadian locomotor rhythms. In order to better characterize the non-serotonergic projections, we conducted retrograde tract tracing using the beta subunit of cholera toxin combined with multi-label immunohistochemistry. Similar to previous findings, almost half of the retrogradely labeled cells contained serotonin. Additionally, approximately 30% of the retrogradely labeled cells contained vesicular glutamate transporter 3 (VGLUT3), but not serotonin. Surprisingly, some dorsal raphe cholera toxin labeling was also noted, particularly in animals with central-SCN injections. To determine if the non-serotonergic projections were important for non-photic phase shifts elicited by MRN stimulation, the MRN was electrically stimulated in animals pretreated with SCN injection of either the serotonin neurotoxin 5,7-dihydroxytryptamine or vehicle control. Intact animals phase advanced to midday electrical stimulation of the raphe while lesioned animals did not. Together, these results show that although some of the non-serotonergic raphe projections to the SCN contain VGLUT3, it is the serotonergic raphe innervation of the SCN that is critical for non-photic phase shifting elicited by MRN stimulation.
Collapse
Affiliation(s)
- Glenn R Yamakawa
- Brain and Cognitive Sciences Research Group, Department of Psychology, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
7
|
Meza G. Modalities of GABA and glutamate neurotransmission in the vertebrate inner ear vestibule. Neurochem Res 2008; 33:1634-42. [PMID: 18516677 DOI: 10.1007/s11064-008-9734-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 04/29/2008] [Indexed: 11/30/2022]
Abstract
GABA and glutamate have been postulated as afferent neurotransmitters at the sensory periphery inner ear vestibule in vertebrates. GABA has fulfilled the main criteria to act as afferent neurotransmitter but may also be a putative efferent neurotransmitter, mainly due to cellular localization of its synthesizing enzyme glutamate decarboxylase derived from biochemical, immunocytochemical, in situ hybridization and molecular biological techniques, whereas glutamate afferent neurotransmission role is supported mainly by pharmacological evidences. GABA and Glu could also act as afferent co-neurotransmitters based upon immunocytochemical techniques. This multiplicity was not considered earlier and postulates a peripheral modulation of afferent information being sent to higher vestibular centers. In order to make a definitive cellular assignation to these putative neurotransmitters it is necessary to have evidences derived from immunocytochemical and pharmacological experiments in which both substances are tested simultaneously.
Collapse
Affiliation(s)
- Graciela Meza
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico, DF, Mexico.
| |
Collapse
|