1
|
Kusafuka A, Okegawa T, Yamamoto R, Miyata K, Kudo K. Two-dimensional trial-by-trial error correction for accurate baseball pitching. Sci Rep 2025; 15:12300. [PMID: 40210939 PMCID: PMC11985933 DOI: 10.1038/s41598-025-97146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
Throwing an object accurately at a target position at high-speed repeatedly is a specific human motor skill. The arrival position of the thrown ball is approximately determined by its physical state at release. In high-speed baseball pitching, reducing the variability in the ball's elevation/azimuth angle of the velocity at release (release angle) is particularly necessary to reduce the variability in the vertical/horizontal arrival position. However, as there is always variability in human movements, which increases as the speed increases, decreasing the variability is an issue. This study focused on one strategy, trial-by-trial error correction, which is to correct movements in the subsequent trials facing an undesirable outcome. Fourteen skilled baseball pitchers' intertrial changes in the elevation/azimuth release angle of 30 balls were analyzed together by transition probability analysis in addition to a separate analysis using the autocorrelation function. The results showed a difference in error correction depending on the state and direction, and Friedman's test for the transition probability from state to state showed a significant difference in the rank means [chi-squared = 25.79, df = 15, p = 0.04]. In addition, this suggests that the pitchers with large variability in the release angle made fewer corrections in the horizontal direction. These findings indicate that trial-by-trial error correction can be a strategy to decrease variability however, complicated factors are involved in error correction.
Collapse
Affiliation(s)
- Ayane Kusafuka
- Department of Intermedia Art and Science, Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
| | - Taishi Okegawa
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Rintaro Yamamoto
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Miyata
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazutoshi Kudo
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Delmas S, Tiwari A, Tseng H, Poisson SN, Diehl M, Lodha N. Amplified Intraindividual Variability in Motor Performance in Stroke Survivors: Links to Cognitive and Clinical Outcomes. Brain Behav 2025; 15:e70365. [PMID: 39972991 PMCID: PMC11839749 DOI: 10.1002/brb3.70365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Intraindividual variability (IIV) in motor performance reflects unintentional fluctuations in the motor output across repeated attempts. Behavioral variability in older adults has been linked to impaired neuronal integrity and cognitive decline. Despite this, the traditional motor assessments in stroke have neglected to characterize IIV in motor performance also known as "motor inconsistency." Therefore, the aim of this study was to investigate the impact of stroke on motor inconsistency and its relationship with cognitive and clinical outcomes. METHODS Sixty-six stroke survivors and 32 healthy older adults performed 30 trials of a goal-directed task to match a force-time target of 10 N in 180 ms. To measure motor inconsistency, we applied a well-established approach to measuring IIV from the cognitive aging literature that accounts for the inherent, systematic effects of practice and mean-level performance on IIV. In addition, participants completed domain-specific cognitive evaluations and global clinical assessments. Domain-specific cognitive evaluations assessed episodic memory, visuospatial processing, processing speed, and executive function. Global clinical assessments included years of education as a proxy of cognitive reserve, the Dementia Rating Scale-2 (DRS-2), ankle strength, and the Modified Rankin Score (mRS). RESULTS Stroke survivors exhibited greater motor inconsistency compared with healthy older adults. Declines in domain-specific cognitive function, particularly executive dysfunction, predicted motor inconsistency in stroke survivors. Cognitive reserve and mRS emerged as significant predictors of motor inconsistency. CONCLUSIONS Stroke significantly impairs the ability to perform a motor task with consistency. Compromised executive function following stroke is associated with increased motor inconsistency. Interestingly, reduced cognitive reserve and greater functional disability are linked to increased motor inconsistency in stroke survivors. These findings highlight that inconsistency is an important indicator of motor dysfunction following stroke that is linked to cognitive and clinical outcomes and may serve as an important target for stroke rehabilitation.
Collapse
Affiliation(s)
- Stefan Delmas
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Anjali Tiwari
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| | - Han‐Yun Tseng
- Department of Human Development and Family StudiesColorado State UniversityFort CollinsColoradoUSA
| | | | - Manfred Diehl
- Department of Human Development and Family StudiesColorado State UniversityFort CollinsColoradoUSA
| | - Neha Lodha
- Department of Health and Exercise ScienceColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
3
|
López-Moliner J. A comparative analysis of perceptual noise in lateral and depth motion: Evidence from eye tracking. J Vis 2025; 25:15. [PMID: 39853995 PMCID: PMC11761139 DOI: 10.1167/jov.25.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/10/2024] [Indexed: 01/26/2025] Open
Abstract
The characterization of how precisely we perceive visual speed has traditionally relied on psychophysical judgments in discrimination tasks. Such tasks are often considered laborious and susceptible to biases, particularly without the involvement of highly trained participants. Additionally, thresholds for motion-in-depth perception are frequently reported as higher compared to lateral motion, a discrepancy that contrasts with everyday visuomotor tasks. In this research, we rely on a smooth pursuit model, based on a Kalman filter, to quantify speed observational uncertainties. This model allows us to distinguish between additive and multiplicative noise across three conditions of motion dynamics within a virtual reality setting: random walk, linear motion, and nonlinear motion, incorporating both lateral and depth motion components. We aim to assess tracking performance and perceptual uncertainties for lateral versus motion-in-depth. In alignment with prior research, our results indicate diminished performance for depth motion in the random walk condition, characterized by unpredictable positioning. However, when velocity information is available and facilitates predictions of future positions, perceptual uncertainties become more consistent between lateral and in-depth motion. This consistency is particularly noticeable within ranges where retinal speeds overlap between these two dimensions. Significantly, additive noise emerges as the primary source of uncertainty, largely exceeding multiplicative noise. This predominance of additive noise is consistent with computational accounts of visual motion. Our study challenges earlier beliefs of marked differences in processing lateral versus in-depth motions, suggesting similar levels of perceptual uncertainty and underscoring the significant role of additive noise.
Collapse
Affiliation(s)
- Joan López-Moliner
- Vision and Control of Action (VISCA) Group, Department of Cognition, Development and Psychology of Education, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Roberts JW, Wakefield CJ, Owen R. Trajectory priming through obstacle avoidance in motor imagery - does motor imagery comprise the spatial characteristics of movement? Exp Brain Res 2024; 243:9. [PMID: 39617803 PMCID: PMC11609121 DOI: 10.1007/s00221-024-06951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/04/2024] [Indexed: 02/05/2025]
Abstract
Motor imagery and execution often indicate a similar trend in the temporal characteristics of movements. This finding supports the notion of functional equivalence, whereby imagery and execution use a common neural representation. However, there is comparatively limited evidence related to the spatial characteristics of movements; no doubt owing to the absence of an actual spatial trajectory during imagery. Therefore, we adapted the trajectory priming paradigm involving an obstacle, where the trajectory adopted in a trial (n) is directly contaminated by a previous trial (n-1). If imagery accurately represents the spatial characteristics, then we would predict a similar priming effect as execution. Participants completed a series of trial blocks under different imagery/execution protocols, where the test trial (n) comprised execution alone, while the previous trial (n-1) involved imagery or execution. Each block comprised pairs of trials with alternate or consistent presentations of a virtual obstacle (O) or no obstacle (N): N-N, N-O, O-N, O-O. For trial n-1 (imagery/execution), there was a more prolonged reaction and movement time for imagery compared execution. Most importantly for trial n (execution), there was an increase in early angular and peak deviation following an obstacle compared to no obstacle in trial n-1, but only when it was execution and not imagery. These findings suggest imagery holds a limited representation of the spatial characteristics, while functional equivalence may be limited to the temporal characteristics.
Collapse
Affiliation(s)
- James W Roberts
- Brain & Behaviour Research Group, Research Institute of Sport & Exercise Sciences (RISES), Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 5AF, UK.
| | - Caroline J Wakefield
- School of Health and Sport Sciences, Liverpool Hope University, Hope Park, Liverpool, L16 9JD, UK
| | - Robin Owen
- School of Health and Sport Sciences, Liverpool Hope University, Hope Park, Liverpool, L16 9JD, UK
| |
Collapse
|
5
|
Tomić I, Adamcová D, Fehér M, Bays PM. Dissecting the components of error in analogue report tasks. Behav Res Methods 2024; 56:8196-8213. [PMID: 38977610 PMCID: PMC11525414 DOI: 10.3758/s13428-024-02453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
Over the last two decades, the analogue report task has become a standard method for measuring the fidelity of visual representations across research domains including perception, attention, and memory. Despite its widespread use, there has been no methodical investigation of the different task parameters that might contribute to response variability. To address this gap, we conducted two experiments manipulating components of a typical analogue report test of memory for colour hue. We found that human response errors were independently affected by changes in storage and maintenance requirements of the task, demonstrated by a strong effect of set size even in the absence of a memory delay. In contrast, response variability remained unaffected by physical size of the colour wheel, implying negligible contribution of motor noise to task performance, or by its chroma radius, highlighting non-uniformity of the standard colour space. Comparing analogue report to a matched forced-choice task, we found variation in adjustment criterion made a limited contribution to analogue report variability, becoming meaningful only with low representational noise. Our findings validate the analogue report task as a robust measure of representational fidelity for most purposes, while also quantifying non-representational sources of noise that would limit its reliability in specialized settings.
Collapse
Affiliation(s)
- Ivan Tomić
- Department of Psychology, University of Cambridge, Cambridge, England.
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, Ivana Lucica 3, 10000, Zagreb, Croatia.
| | - Dagmar Adamcová
- Department of Psychology, University of Cambridge, Cambridge, England
| | - Máté Fehér
- Faculty of Biology, University of Cambridge, Cambridge, England
| | - Paul M Bays
- Department of Psychology, University of Cambridge, Cambridge, England
| |
Collapse
|
6
|
Roth AM, Buggeln JH, Hoh JE, Wood JM, Sullivan SR, Ngo TT, Calalo JA, Lokesh R, Morton SM, Grill S, Jeka JJ, Carter MJ, Cashaback JGA. Roles and interplay of reinforcement-based and error-based processes during reaching and gait in neurotypical adults and individuals with Parkinson's disease. PLoS Comput Biol 2024; 20:e1012474. [PMID: 39401183 PMCID: PMC11472932 DOI: 10.1371/journal.pcbi.1012474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/11/2024] [Indexed: 10/17/2024] Open
Abstract
From a game of darts to neurorehabilitation, the ability to explore and fine tune our movements is critical for success. Past work has shown that exploratory motor behaviour in response to reinforcement (reward) feedback is closely linked with the basal ganglia, while movement corrections in response to error feedback is commonly attributed to the cerebellum. While our past work has shown these processes are dissociable during adaptation, it is unknown how they uniquely impact exploratory behaviour. Moreover, converging neuroanatomical evidence shows direct and indirect connections between the basal ganglia and cerebellum, suggesting that there is an interaction between reinforcement-based and error-based neural processes. Here we examine the unique roles and interaction between reinforcement-based and error-based processes on sensorimotor exploration in a neurotypical population. We also recruited individuals with Parkinson's disease to gain mechanistic insight into the role of the basal ganglia and associated reinforcement pathways in sensorimotor exploration. Across three reaching experiments, participants were given either reinforcement feedback, error feedback, or simultaneously both reinforcement & error feedback during a sensorimotor task that encouraged exploration. Our reaching results, a re-analysis of a previous gait experiment, and our model suggests that in isolation, reinforcement-based and error-based processes respectively boost and suppress exploration. When acting in concert, we found that reinforcement-based and error-based processes interact by mutually opposing one another. Finally, we found that those with Parkinson's disease had decreased exploration when receiving reinforcement feedback, supporting the notion that compromised reinforcement-based processes reduces the ability to explore new motor actions. Understanding the unique and interacting roles of reinforcement-based and error-based processes may help to inform neurorehabilitation paradigms where it is important to discover new and successful motor actions.
Collapse
Affiliation(s)
- Adam M. Roth
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - John H. Buggeln
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Joanna E. Hoh
- Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States of America
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
| | - Jonathan M. Wood
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, Delaware, United States of America
| | - Seth R. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Truc T. Ngo
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Jan A. Calalo
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Rakshith Lokesh
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Susanne M. Morton
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, Delaware, United States of America
| | - Stephen Grill
- Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States of America
- Johns Hopkins Regional Physicians, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - John J. Jeka
- Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States of America
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, Delaware, United States of America
| | - Michael J. Carter
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Joshua G. A. Cashaback
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, United States of America
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
- Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States of America
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
7
|
Roberts JW, Wakefield CJ, de Grosbois JP. Examining the Equivalence Between Imagery and Execution-Does Imagery Comprise the Intended Spatial Trajectory? J Mot Behav 2024; 57:31-42. [PMID: 39329343 DOI: 10.1080/00222895.2024.2406925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
The functional equivalence model suggests a common internal representation initiates both imagery and execution. This suggestion is supported by the mental chronometry effect, where there is a positive relation between task difficulty (as defined by the Index of Difficulty; ID) and imagined movement time. The present study extends this logic by examining whether imagery captures the spatial trajectory. Participants were initially tasked with the imagery and execution of a rapid aiming movement under different IDs. These initial attempts were adapted to configure auditory tones at early (25%) and late (75%) intervals for a separate set of imagery trials. If a tone had sounded, participants had to estimate post-trial where their imagined limb would have been located. The findings revealed increases in ID that coincided with increases in imagined and executed movement times. However, participant mean and standard deviation of estimated locations revealed limited differences between the early and late tones. Further inspection revealed some evidence for these estimated locations shifting further along in space following more rapid imagined movements. While equivalence is clearly evident within the temporal domain, there is comparatively little to suggest that this logic extends to the resolution required for simulating the spatial characteristics of movement.
Collapse
Affiliation(s)
- James W Roberts
- Psychology, Action and Learning of Movement (PALM) Laboratory, School of Health and Sport Sciences, Liverpool Hope University, Liverpool, UK
| | - Caroline J Wakefield
- Psychology, Action and Learning of Movement (PALM) Laboratory, School of Health and Sport Sciences, Liverpool Hope University, Liverpool, UK
| | - John P de Grosbois
- Baycrest Health Sciences, Rotman Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Cienfuegos M, Naceri A, Maycock J, Kõiva R, Ritter H, Schack T. Comparative analysis of motor skill acquisition in a novel bimanual task: the role of mental representation and sensorimotor feedback. Front Hum Neurosci 2024; 18:1425090. [PMID: 39323958 PMCID: PMC11422229 DOI: 10.3389/fnhum.2024.1425090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction This study investigates the multifaceted nature of motor learning in a complex bimanual task by examining the interplay between mental representation structures, biomechanics, tactile pressure, and performance. We developed a novel maze game requiring participants to maneuver a rolling sphere through a maze, exemplifying complex sequential coordination of vision and haptic control using both hands. A key component of this study is the introduction of cognitive primitives, fundamental units of cognitive and motor actions that represent specific movement patterns and strategies. Methods Participants were divided into two groups based on initial performance: poor performers (PPG) and good performers (GPG). The experimental setup employed motion capture and innovative tactile sensors to capture a detailed multimodal picture of the interaction process. Our primary aims were to (1) assess the effects of daily practice on task performance, biomechanics, and tactile pressure, (2) examine the relationship between changes in mental representation structures and skill performance, and (3) explore the interplay between biomechanics, tactile pressure, and cognitive representation in motor learning. Results Performance analysis showed that motor skills improved with practice, with the GPG outperforming the PPG in maze navigation efficiency. Biomechanical analysis revealed that the GPG demonstrated superior movement strategies, as indicated by higher peak velocities and fewer velocity peaks during task execution. Tactile feedback analysis showed that GPG participants applied more precise and focused pressure with their right-hand thumb, suggesting enhanced motor control. Cognitively, both groups refined their mental representation structures over time, but the GPG exhibited a more structured and sophisticated cognitive mapping of the task post-practice. Discussion The findings highlight the intertwined nature of biomechanical control, tactile feedback, and cognitive processing in motor skill acquisition. The results support established theories, such as the cognitive action architecture approach, emphasizing the role of mental representation in planning and executing motor actions. The integration of cognitive primitives in our analysis provides a theoretical framework that connects observable behaviors to underlying cognitive strategies, enhancing the understanding of motor learning across various contexts. Our study underscores the necessity of a holistic approach to motor learning research, recognizing the complex interaction between cognitive and motor processes in skill acquisition.
Collapse
Affiliation(s)
- Miguel Cienfuegos
- Neurocognition and Action-Biomechanics Group, Bielefeld University, Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Abdeldjallil Naceri
- Munich School of Robotics and Machine Intelligence (MSRM), Technical University of Munich (TUM), Munich, Germany
| | | | - Risto Kõiva
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Helge Ritter
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
- Neuroinformatics Group, Bielefeld University, Bielefeld, Germany
| | - Thomas Schack
- Neurocognition and Action-Biomechanics Group, Bielefeld University, Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
9
|
Cienfuegos M, Maycock J, Naceri A, Düsterhus T, Kõiva R, Schack T, Ritter H. Exploring motor skill acquisition in bimanual coordination: insights from navigating a novel maze task. Sci Rep 2024; 14:18887. [PMID: 39143119 PMCID: PMC11324764 DOI: 10.1038/s41598-024-69200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
In this study, we introduce a novel maze task designed to investigate naturalistic motor learning in bimanual coordination. We developed and validated an extended set of movement primitives tailored to capture the full spectrum of scenarios encountered in a maze game. Over a 3-day training period, we evaluated participants' performance using these primitives and a custom-developed software, enabling precise quantification of performance. Our methodology integrated the primitives with in-depth kinematic analyses and thorough thumb pressure assessments, charting the trajectory of participants' progression from novice to proficient stages. Results demonstrated consistent improvement in maze performance and significant adaptive changes in joint behaviors and strategic recalibrations in thumb pressure distribution. These findings highlight the central nervous system's adaptability in orchestrating sophisticated motor strategies and the crucial role of tactile feedback in precision tasks. The maze platform and setup emerge as a valuable foundation for future experiments, providing a tool for the exploration of motor learning and coordination dynamics. This research underscores the complexity of bimanual motor learning in naturalistic environments, enhancing our understanding of skill acquisition and task efficiency while emphasizing the necessity for further exploration and deeper investigation into these adaptive mechanisms.
Collapse
Affiliation(s)
- Miguel Cienfuegos
- Neurocognition and Action - Biomechanics Group, Bielefeld University, 33615, Bielefeld, Germany.
| | | | - Abdeldjallil Naceri
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992, Munich, Germany
| | - Tobias Düsterhus
- Neuroinformatics Group, Bielefeld University, 33619, Bielefeld, Germany
| | - Risto Kõiva
- Neuroinformatics Group, Bielefeld University, 33619, Bielefeld, Germany
| | - Thomas Schack
- Neurocognition and Action - Biomechanics Group, Bielefeld University, 33615, Bielefeld, Germany
| | - Helge Ritter
- Neuroinformatics Group, Bielefeld University, 33619, Bielefeld, Germany
| |
Collapse
|
10
|
Brand TK, Schütz AC, Müller H, Maurer H, Hegele M, Maurer LK. Sensorimotor prediction is used to direct gaze toward task-relevant locations in a goal-directed throwing task. J Neurophysiol 2024; 132:485-500. [PMID: 38919149 DOI: 10.1152/jn.00052.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Previous research has shown that action effects of self-generated movements are internally predicted before outcome feedback becomes available. To test whether these sensorimotor predictions are used to facilitate visual information uptake for feedback processing, we measured eye movements during the execution of a goal-directed throwing task. Participants could fully observe the effects of their throwing actions (ball trajectory and either hitting or missing a target) in most of the trials. In a portion of the trials, the ball trajectory was not visible, and participants only received static information about the outcome. We observed a large proportion of predictive saccades, shifting gaze toward the goal region before the ball arrived and outcome feedback became available. Fixation locations after predictive saccades systematically covaried with future ball positions in trials with continuous ball flight information, but notably also in trials with static outcome feedback and only efferent and proprioceptive information about the movement that could be used for predictions. Fixation durations at the chosen positions after feedback onset were modulated by action outcome (longer durations for misses than for hits) and outcome uncertainty (longer durations for narrow vs. clear outcomes). Combining both effects, durations were longest for narrow errors and shortest for clear hits, indicating that the chosen locations offer informational value for feedback processing. Thus, humans are able to use sensorimotor predictions to direct their gaze toward task-relevant feedback locations. Outcome-dependent saccade latency differences (miss vs. hit) indicate that also predictive valuation processes are involved in planning predictive saccades.NEW & NOTEWORTHY We elucidate the potential benefits of sensorimotor predictions, focusing on how the system actually uses this information to optimize feedback processing in goal-directed actions. Sensorimotor information is used to predict spatial parameters of movement outcomes, guiding predictive saccades toward future action effects. Saccade latencies and fixation durations are modulated by outcome quality, indicating that predictive valuation processes are considered and that the locations chosen are of high informational value for feedback processing.
Collapse
Affiliation(s)
- Theresa K Brand
- Neuromotor Behavior Laboratory, Department of Psychology and Sport Science, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Giessen, Germany
| | - Alexander C Schütz
- General and Biological Psychology, Department of Psychology, Philipps University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Giessen, Germany
| | - Hermann Müller
- Neuromotor Behavior Laboratory, Department of Psychology and Sport Science, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Giessen, Germany
| | - Heiko Maurer
- Neuromotor Behavior Laboratory, Department of Psychology and Sport Science, Justus Liebig University Giessen, Giessen, Germany
| | - Mathias Hegele
- Neuromotor Behavior Laboratory, Department of Psychology and Sport Science, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Giessen, Germany
| | - Lisa K Maurer
- Neuromotor Behavior Laboratory, Department of Psychology and Sport Science, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Giessen, Germany
| |
Collapse
|
11
|
Yacoubi B, Christou EA. Motor Output Variability in Movement Disorders: Insights From Essential Tremor. Exerc Sport Sci Rev 2024; 52:95-101. [PMID: 38445865 DOI: 10.1249/jes.0000000000000338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Findings on individuals with essential tremor suggest that tremor (within-trial movement unsteadiness) and inconsistency (trial-to-trial movement variance) stem from distinct pathologies and affect function uniquely. Nonetheless, the intricacies of inconsistency in movement disorders remain largely unexplored, as exemplified in ataxia where inconsistency below healthy levels is associated with greater pathology. We advocate for clinical assessments that quantify both tremor and inconsistency.
Collapse
|
12
|
Diao H, Ma J, Jia Y, Jia H, Wei K. Abnormalities in motor adaptation to different types of perturbations in schizophreniaperturbations in schizophrenia. Schizophr Res 2024; 267:291-300. [PMID: 38599141 DOI: 10.1016/j.schres.2024.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Schizophrenia is a mental health disorder that often includes psychomotor disturbances, impacting how individuals adjust their motor output based on the cause of motor errors. While previous motor adaptation studies on individuals with schizophrenia have largely focused on large and consistent perturbations induced by abrupt experimental manipulations, such as donning prism goggles, the adaptation process to random perturbations, either caused by intrinsic motor noise or external disturbances, has not been examined - despite its ecological relevance. Here, we used a unified behavioral task paradigm to examine motor adaptation to perturbations of three causal structures among individuals in the remission stage of schizophrenia, youth with ultra-high risk of psychosis, adults with active symptoms, and age-matched controls. Results showed that individuals with schizophrenia had reduced trial-by-trial adaptation and large error variance when adapting to their own motor noise. When adapting to random but salient perturbations, they showed intact adaptation and normal causal inference of errors. This contrasted with reduced adaptation to large yet consistent perturbations, which could reflect difficulties in forming cognitive strategies rather than the often-assumed impairments in procedural learning or sense of agency. Furthermore, the observed adaptation effects were correlated with the severity of positive symptoms across the diagnosis groups. Our findings suggest that individuals with schizophrenia face challenges in accommodating intrinsic perturbations when motor errors are ambiguous but adapt with intact causal attribution when errors are salient.
Collapse
Affiliation(s)
- Henan Diao
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing 100080, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 10080, China
| | - Jiajun Ma
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing 100080, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 10080, China
| | - Yuan Jia
- The National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Hongxiao Jia
- The National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China.
| | - Kunlin Wei
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing 100080, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 10080, China.
| |
Collapse
|
13
|
Roth AM, Lokesh R, Tang J, Buggeln JH, Smith C, Calalo JA, Sullivan SR, Ngo T, Germain LS, Carter MJ, Cashaback JGA. Punishment Leads to Greater Sensorimotor Learning But Less Movement Variability Compared to Reward. Neuroscience 2024; 540:12-26. [PMID: 38220127 PMCID: PMC10922623 DOI: 10.1016/j.neuroscience.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
When a musician practices a new song, hitting a correct note sounds pleasant while striking an incorrect note sounds unpleasant. Such reward and punishment feedback has been shown to differentially influence the ability to learn a new motor skill. Recent work has suggested that punishment leads to greater movement variability, which causes greater exploration and faster learning. To further test this idea, we collected 102 participants over two experiments. Unlike previous work, in Experiment 1 we found that punishment did not lead to faster learning compared to reward (n = 68), but did lead to a greater extent of learning. Surprisingly, we also found evidence to suggest that punishment led to less movement variability, which was related to the extent of learning. We then designed a second experiment that did not involve adaptation, allowing us to further isolate the influence of punishment feedback on movement variability. In Experiment 2, we again found that punishment led to significantly less movement variability compared to reward (n = 34). Collectively our results suggest that punishment feedback leads to less movement variability. Future work should investigate whether punishment feedback leads to a greater knowledge of movement variability and or increases the sensitivity of updating motor actions.
Collapse
Affiliation(s)
- Adam M Roth
- Department of Mechanical Engineering, University of Delaware, United States
| | - Rakshith Lokesh
- Department of Biomedical Engineering, University of Delaware, United States
| | - Jiaqiao Tang
- Department of Kinesiology, McMaster University, Canada
| | - John H Buggeln
- Department of Biomedical Engineering, University of Delaware, United States
| | - Carly Smith
- Department of Biomedical Engineering, University of Delaware, United States
| | - Jan A Calalo
- Department of Mechanical Engineering, University of Delaware, United States
| | - Seth R Sullivan
- Department of Biomedical Engineering, University of Delaware, United States
| | - Truc Ngo
- Department of Biomedical Engineering, University of Delaware, United States
| | | | | | - Joshua G A Cashaback
- Department of Mechanical Engineering, University of Delaware, United States; Department of Biomedical Engineering, University of Delaware, United States; Kinesiology and Applied Physiology, University of Delaware, United States; Interdisciplinary Neuroscience Graduate Program, University of Delaware, United States; Biomechanics and Movement Science Program, University of Delaware, United States; Department of Kinesiology, McMaster University, Canada.
| |
Collapse
|
14
|
Roth AM, Calalo JA, Lokesh R, Sullivan SR, Grill S, Jeka JJ, van der Kooij K, Carter MJ, Cashaback JGA. Reinforcement-based processes actively regulate motor exploration along redundant solution manifolds. Proc Biol Sci 2023; 290:20231475. [PMID: 37848061 PMCID: PMC10581769 DOI: 10.1098/rspb.2023.1475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
From a baby's babbling to a songbird practising a new tune, exploration is critical to motor learning. A hallmark of exploration is the emergence of random walk behaviour along solution manifolds, where successive motor actions are not independent but rather become serially dependent. Such exploratory random walk behaviour is ubiquitous across species' neural firing, gait patterns and reaching behaviour. The past work has suggested that exploratory random walk behaviour arises from an accumulation of movement variability and a lack of error-based corrections. Here, we test a fundamentally different idea-that reinforcement-based processes regulate random walk behaviour to promote continual motor exploration to maximize success. Across three human reaching experiments, we manipulated the size of both the visually displayed target and an unseen reward zone, as well as the probability of reinforcement feedback. Our empirical and modelling results parsimoniously support the notion that exploratory random walk behaviour emerges by utilizing knowledge of movement variability to update intended reach aim towards recently reinforced motor actions. This mechanism leads to active and continuous exploration of the solution manifold, currently thought by prominent theories to arise passively. The ability to continually explore muscle, joint and task redundant solution manifolds is beneficial while acting in uncertain environments, during motor development or when recovering from a neurological disorder to discover and learn new motor actions.
Collapse
Affiliation(s)
- Adam M. Roth
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jan A. Calalo
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Rakshith Lokesh
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Seth R. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Stephen Grill
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA
| | - John J. Jeka
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE 19716, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| | - Katinka van der Kooij
- Faculty of Behavioural and Movement Science, Vrije University Amsterdam, Amsterdam, 1081HV, The Netherlands
| | - Michael J. Carter
- Department of Kinesiology, McMaster University, Room 203, Ivor Wynne Centre, Hamilton, L8S 4L8, Ontario, Canada
| | - Joshua G. A. Cashaback
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19716, USA
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE 19716, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
15
|
Nardi F, Haar S, Faisal AA. Bill-EVR: An Embodied Virtual Reality Framework for Reward-and-Error-Based Motor Rehab-Learning. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941230 DOI: 10.1109/icorr58425.2023.10304742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
VR rehabilitation is an established field by now, however, it often refers to computer screen-based interactive rehabilitation activities. In recent years, there was an increased use of VR-headsets, which can provide an immersive virtual environment for real-world tasks, but they are lacking any physical interaction with the task objects and any proprioceptive feedback. Here, we focus on Embodied Virtual Reality (EVR), an emerging field where not only the visual input via VR-headset but also the haptic feedback is physically correct. This happens because subjects interact with physical objects that are veridically aligned in Virtual Reality. This technology lets us manipulate motor performance and motor learning through visual feedback perturbations. Bill-EVR is a framework that allows interventions in the performance of real-world tasks, such as playing pool billiard, engaging end-users in motivating life-like situations to trigger motor (re)learning - subjects see in VR and handle the real-world cue stick, the pool table and shoot physical balls. Specifically, we developed our platform to isolate and evaluate different mechanisms of motor learning to investigate its two main components, error-based and reward-based motor adaptation. This understanding can provide insights for improvements in neurorehabilitation: indeed, reward-based mechanisms are putatively impaired by degradation of the dopaminergic system, such as in Parkinson's disease, while error-based mechanisms are essential for recovering from stroke-induced movement errors. Due to its fully customisable features, our EVR framework can be used to facilitate the improvement of several conditions, providing a valid extension of VR-based implementations and constituting a motor learning tool that can be completely tailored to the individual needs of patients.
Collapse
|
16
|
Matsuda N, Abe MO. Error Size Shape Relationships between Motor Variability and Implicit Motor Adaptation. BIOLOGY 2023; 12:biology12030404. [PMID: 36979096 PMCID: PMC10045141 DOI: 10.3390/biology12030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Previous studies have demonstrated the effects of motor variability on motor adaptation. However, their findings have been inconsistent, suggesting that various factors affect the relationship between motor variability and adaptation. This study focused on the size of errors driving motor adaptation as one of the factors and examined the relationship between different error sizes. Thirty-one healthy young adults participated in a visuomotor task in which they made fast-reaching movements toward a target. Motor variability was measured in the baseline phase when a veridical feedback cursor was presented. In the adaptation phase, the feedback cursor was sometimes not reflected in the hand position and deviated from the target by 0°, 3°, 6°, or 12° counterclockwise or clockwise (i.e., error-clamp feedback). Movements during trials following trials with error-clamp feedback were measured to quantify implicit adaptation. Implicit adaptation was driven by errors presented through error-clamp feedback. Moreover, motor variability significantly correlated with implicit adaptation driven by a 12° error. The results suggested that motor variability accelerates implicit adaptation when a larger error occurs. As such a trend was not observed when smaller errors occurred, the relationship between motor variability and motor adaptation might have been affected by the error size driving implicit adaptation.
Collapse
Affiliation(s)
- Naoyoshi Matsuda
- Graduate School of Education, Hokkaido University, Sapporo 060-0811, Japan
- Correspondence: (N.M.); (M.O.A.); Tel.: +81-11-706-5442 (M.O.A.)
| | - Masaki O. Abe
- Faculty of Education, Hokkaido University, Sapporo 060-0811, Japan
- Correspondence: (N.M.); (M.O.A.); Tel.: +81-11-706-5442 (M.O.A.)
| |
Collapse
|
17
|
The spontaneous emergence of rhythmic coordination in turn taking. Sci Rep 2023; 13:3259. [PMID: 36828878 PMCID: PMC9958099 DOI: 10.1038/s41598-022-18480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/12/2022] [Indexed: 02/26/2023] Open
Abstract
Turn-taking is a feature of many social interactions such as group music-making, where partners must alternate turns with high precision and accuracy. In two studies of musical rhythm coordination, we investigated how joint action partners learn to coordinate the timing of turn-taking. Musically inexperienced individuals learned to tap at the rate of a pacing cue individually or jointly (in turn with a partner), where each tap produced the next tone in a melodic sequence. In Study 1, partners alternated turns every tap, whereas in Study 2 partners alternated turns every two taps. Findings revealed that partners did not achieve the same level of performance accuracy or precision of inter-tap intervals (ITIs) when producing tapping sequences jointly relative to individually, despite showing learning (increased ITI accuracy and precision across the experiment) in both tasks. Strikingly, partners imposed rhythmic patterns onto jointly produced sequences that captured the temporal structure of turns. Together, learning to produce novel temporal sequences in turn with a partner appears to be more challenging than learning to produce the same sequences alone. Critically, partners may impose rhythmic structures onto turn-taking sequences as a strategy for facilitating coordination.
Collapse
|
18
|
Brenner E, de la Malla C, Smeets JBJ. Tapping on a target: dealing with uncertainty about its position and motion. Exp Brain Res 2023; 241:81-104. [PMID: 36371477 PMCID: PMC9870842 DOI: 10.1007/s00221-022-06503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
Reaching movements are guided by estimates of the target object's location. Since the precision of instantaneous estimates is limited, one might accumulate visual information over time. However, if the object is not stationary, accumulating information can bias the estimate. How do people deal with this trade-off between improving precision and reducing the bias? To find out, we asked participants to tap on targets. The targets were stationary or moving, with jitter added to their positions. By analysing the response to the jitter, we show that people continuously use the latest available information about the target's position. When the target is moving, they combine this instantaneous target position with an extrapolation based on the target's average velocity during the last several hundred milliseconds. This strategy leads to a bias if the target's velocity changes systematically. Having people tap on accelerating targets showed that the bias that results from ignoring systematic changes in velocity is removed by compensating for endpoint errors if such errors are consistent across trials. We conclude that combining simple continuous updating of visual information with the low-pass filter characteristics of muscles, and adjusting movements to compensate for errors made in previous trials, leads to the precise and accurate human goal-directed movements.
Collapse
Affiliation(s)
- Eli Brenner
- grid.12380.380000 0004 1754 9227Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Cristina de la Malla
- grid.12380.380000 0004 1754 9227Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands ,grid.5841.80000 0004 1937 0247Vision and Control of Action Group, Department of Cognition, Development, and Psychology of Education, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jeroen B. J. Smeets
- grid.12380.380000 0004 1754 9227Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| |
Collapse
|
19
|
Esfandiari J, Razavizadeh S, Stenner MP. Can moving in a redundant workspace accelerate motor adaptation? J Neurophysiol 2022; 128:1634-1645. [PMID: 36416444 PMCID: PMC9799134 DOI: 10.1152/jn.00458.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Variability in behavior can be a manifestation of unwanted noise. However, variability can also reflect exploration and benefit learning. For example, it has been shown that interindividual differences in motor learning can be partly explained by differences in movement variability at baseline. Here, we examined whether permitting versus constraining movement variability via target shape alters motor learning rate in one and the same individual. Healthy young subjects made reaching movements to visual targets in two-dimensional space with their unseen hand. During an initial priming phase, the shape of targets allowed for movement variability either in direction (arc-shaped targets), or, in a separate session, in extent (radially oriented line-shaped targets), while requiring highly precise movements in the other spatial dimension, respectively. In subsequent test phases in each session, we quantified the rate of (single-trial) motor adaptation to visuomotor perturbations along these two spatial dimensions (rotation and gain). During priming, we observed higher variability in movement direction for arc-shaped targets, compared with radial line-shaped targets, and vice versa for variability in movement extent. As predicted, participants adapted more to a visuomotor rotation following priming with arc-shaped targets, compared with radial line-shaped targets, and vice versa for adaptation to a change in visuomotor gain. This effect was prominent in the part of the examined workspace where variability in initial movement trajectories was highest, suggesting high planning noise. Our results suggest that workspace redundancy can modulate motor adaptation in a spatially specific manner, however, this modulation may depend on the level of planning noise.NEW & NOTEWORTHY Interindividual differences in motor adaptation are partly explained by differences in movement variability. Movement variability is higher in a redundant workspace. Can workspace redundancy increase adaptation? In a within-subject experiment, we show that moving in a workspace that permits versus constrains movement variability in a given spatial dimension modulates adaptation rate in that dimension, at least in part of the workspace where initial movement trajectories vary most, indicating planning noise. Redundant workspaces might aid rehabilitation.
Collapse
Affiliation(s)
- Jahangir Esfandiari
- 1Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany,2Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Seyedsina Razavizadeh
- 1Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany,2Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Max-Philipp Stenner
- 1Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany,2Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany,3Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
20
|
Phataraphruk P, Rahman Q, Lakshminarayanan K, Fruchtman M, Buneo CA. Posture dependent factors influence movement variability when reaching to nearby virtual objects. Front Neurosci 2022; 16:971382. [PMID: 36389217 PMCID: PMC9641121 DOI: 10.3389/fnins.2022.971382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2023] Open
Abstract
Reaching movements are subject to noise arising during the sensing, planning and execution phases of movement production, which contributes to movement variability. When vision of the moving hand is available, reach endpoint variability appears to be strongly influenced by internal noise associated with the specification and/or online updating of movement plans in visual coordinates. In contrast, without hand vision, endpoint variability appears more dependent upon movement direction, suggesting a greater influence of execution noise. Given that execution noise acts in part at the muscular level, we hypothesized that reaching variability should depend not only on movement direction but initial arm posture as well. Moreover, given that the effects of execution noise are more apparent when hand vision is unavailable, we reasoned that postural effects would be more evident when visual feedback was withheld. To test these hypotheses, participants planned memory-guided reaching movements to three frontal plane targets using one of two initial arm postures ("adducted" or "abducted"), attained by rotating the arm about the shoulder-hand axis. In this way, variability was examined for two sets of movements that were largely identical in endpoint coordinates but different in joint/muscle-based coordinates. We found that patterns of reaching variability differed in several respects when movements were initiated with different arm postures. These postural effects were evident shortly after movement onset, near the midpoints of the movements, and again at the endpoints. At the endpoints, posture dependent effects interacted with effects of visual feedback to determine some aspects of variability. These results suggest that posture dependent execution noise interacts with feedback control mechanisms and biomechanical factors to determine patterns of reach endpoint variability in 3D space.
Collapse
Affiliation(s)
| | | | | | | | - Christopher A. Buneo
- Visuomotor Learning Laboratory, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
21
|
Soghoyan G, Aksiotis V, Rusinova A, Myachykov A, Tumyalis A. An adaptive paradigm for detecting the individual duration of the preparatory period in the choice reaction time task. PLoS One 2022; 17:e0273234. [PMID: 36083888 PMCID: PMC9462575 DOI: 10.1371/journal.pone.0273234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
According to the sequential stage model, the selection and the execution of a motor response are two distinct independent processes. Here, we propose a new adaptive paradigm for identifying the individual duration of the response preparatory period based on the motor reaction time (RT) data. The results are compared using the paradigm with constant values of the preparatory period. Two groups of participants performed on either an easy (Group 1) or a hard (Group 2) response selection task with two types of stimuli based on the preparatory period parameters: (1) stimuli with a constant preparatory period duration of 0 or 1200 ms and (2) stimuli with adaptive preparatory period durations. Our analysis showed an increase in the duration of the response selection process as a function of increasing task complexity when using both paradigms with constant and adaptive values of the preparatory period duration. We conclude that the adaptive paradigm proposed in the current paper has several important advantages over the constant paradigm in terms of measuring the response accuracy while being equally efficiently in capturing other critical response parameters.
Collapse
Affiliation(s)
- Gurgen Soghoyan
- Center for Bioelectric Interfaces, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow, Russian Federation
| | - Vladislav Aksiotis
- Center for Bioelectric Interfaces, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow, Russian Federation
| | - Anna Rusinova
- Center for Bioelectric Interfaces, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow, Russian Federation
| | - Andriy Myachykov
- Department of Psychology, Northumbria University, Newcastle-upon-Tyne, United Kingdom
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow, Russian Federation
| | - Alexey Tumyalis
- Center for Bioelectric Interfaces, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow, Russian Federation
| |
Collapse
|
22
|
de Brouwer AJ, Areshenkoff CN, Rashid MR, Flanagan JR, Poppenk J, Gallivan JP. Human Variation in Error-Based and Reinforcement Motor Learning Is Associated With Entorhinal Volume. Cereb Cortex 2022; 32:3423-3440. [PMID: 34963128 PMCID: PMC9376876 DOI: 10.1093/cercor/bhab424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
Error-based and reward-based processes are critical for motor learning and are thought to be mediated via distinct neural pathways. However, recent behavioral work in humans suggests that both learning processes can be bolstered by the use of cognitive strategies, which may mediate individual differences in motor learning ability. It has been speculated that medial temporal lobe regions, which have been shown to support motor sequence learning, also support the use of cognitive strategies in error-based and reinforcement motor learning. However, direct evidence in support of this idea remains sparse. Here we first show that better overall learning during error-based visuomotor adaptation is associated with better overall learning during the reward-based shaping of reaching movements. Given the cognitive contribution to learning in both of these tasks, these results support the notion that strategic processes, associated with better performance, drive intersubject variation in both error-based and reinforcement motor learning. Furthermore, we show that entorhinal cortex volume is larger in better learning individuals-characterized across both motor learning tasks-compared with their poorer learning counterparts. These results suggest that individual differences in learning performance during error and reinforcement learning are related to neuroanatomical differences in entorhinal cortex.
Collapse
Affiliation(s)
- Anouk J de Brouwer
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Corson N Areshenkoff
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Mohammad R Rashid
- School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Jordan Poppenk
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
- School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
23
|
Kim OA, Forrence AD, McDougle SD. Motor learning without movement. Proc Natl Acad Sci U S A 2022; 119:e2204379119. [PMID: 35858450 PMCID: PMC9335319 DOI: 10.1073/pnas.2204379119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/09/2022] [Indexed: 01/21/2023] Open
Abstract
Prediction errors guide many forms of learning, providing teaching signals that help us improve our performance. Implicit motor adaptation, for instance, is thought to be driven by sensory prediction errors (SPEs), which occur when the expected and observed consequences of a movement differ. Traditionally, SPE computation is thought to require movement execution. However, recent work suggesting that the brain can generate sensory predictions based on motor imagery or planning alone calls this assumption into question. Here, by measuring implicit motor adaptation during a visuomotor task, we tested whether motor planning and well-timed sensory feedback are sufficient for adaptation. Human participants were cued to reach to a target and were, on a subset of trials, rapidly cued to withhold these movements. Errors displayed both on trials with and without movements induced single-trial adaptation. Learning following trials without movements persisted even when movement trials had never been paired with errors and when the direction of movement and sensory feedback trajectories were decoupled. These observations indicate that the brain can compute errors that drive implicit adaptation without generating overt movements, leading to the adaptation of motor commands that are not overtly produced.
Collapse
Affiliation(s)
- Olivia A. Kim
- Department of Psychology, Princeton University, Princeton, NJ 08544
| | | | - Samuel D. McDougle
- Department of Psychology, Yale University, New Haven, CT 06511
- Wu Tsai Institute, Yale University, New Haven, CT 06511
| |
Collapse
|
24
|
Wang H, Max L. Inter-Trial Formant Variability in Speech Production Is Actively Controlled but Does Not Affect Subsequent Adaptation to a Predictable Formant Perturbation. Front Hum Neurosci 2022; 16:890065. [PMID: 35874163 PMCID: PMC9300893 DOI: 10.3389/fnhum.2022.890065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Despite ample evidence that speech production is associated with extensive trial-to-trial variability, it remains unclear whether this variability represents merely unwanted system noise or an actively regulated mechanism that is fundamental for maintaining and adapting accurate speech movements. Recent work on upper limb movements suggest that inter-trial variability may be not only actively regulated based on sensory feedback, but also provide a type of workspace exploration that facilitates sensorimotor learning. We therefore investigated whether experimentally reducing or magnifying inter-trial formant variability in the real-time auditory feedback during speech production (a) leads to adjustments in formant production variability that compensate for the manipulation, (b) changes the temporal structure of formant adjustments across productions, and (c) enhances learning in a subsequent adaptation task in which a predictable formant-shift perturbation is applied to the feedback signal. Results show that subjects gradually increased formant variability in their productions when hearing auditory feedback with reduced variability, but subsequent formant-shift adaptation was not affected by either reducing or magnifying the perceived variability. Thus, findings provide evidence for speakers’ active control of inter-trial formant variability based on auditory feedback from previous trials, but–at least for the current short-term experimental manipulation of feedback variability–not for a role of this variability regulation mechanism in subsequent auditory-motor learning.
Collapse
Affiliation(s)
- Hantao Wang
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Ludo Max
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
- Haskins Laboratories, New Haven, CT, United States
- *Correspondence: Ludo Max,
| |
Collapse
|
25
|
Statistical determinants of visuomotor adaptation along different dimensions during naturalistic 3D reaches. Sci Rep 2022; 12:10198. [PMID: 35715529 PMCID: PMC9205902 DOI: 10.1038/s41598-022-13866-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Neurorehabilitation in patients suffering from motor deficits relies on relearning or re-adapting motor skills. Yet our understanding of motor learning is based mostly on results from one or two-dimensional experimental paradigms with highly confined movements. Since everyday movements are conducted in three-dimensional space, it is important to further our understanding about the effect that gravitational forces or perceptual anisotropy might or might not have on motor learning along all different dimensions relative to the body. Here we test how well existing concepts of motor learning generalize to movements in 3D. We ask how a subject’s variability in movement planning and sensory perception influences motor adaptation along three different body axes. To extract variability and relate it to adaptation rate, we employed a novel hierarchical two-state space model using Bayesian modeling via Hamiltonian Monte Carlo procedures. Our results show that differences in adaptation rate occur between the coronal, sagittal and horizontal planes and can be explained by the Kalman gain, i.e., a statistically optimal solution integrating planning and sensory information weighted by the inverse of their variability. This indicates that optimal integration theory for error correction holds for 3D movements and explains adaptation rate variation between movements in different planes.
Collapse
|
26
|
Sutter K, Oostwoud Wijdenes L, van Beers RJ, Medendorp WP. Even well-practiced movements benefit from repetition. J Neurophysiol 2022; 127:1407-1416. [PMID: 35443142 DOI: 10.1152/jn.00003.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Professional golf players spend years practicing, but will still perform one or two practice swings without a ball before executing the actual swing. Why do they do this? In this study we tested the hypothesis that repeating a well-practiced movement leads to a reduction of movement variability. To operationalize this hypothesis, participants were tested in a center-out reaching task with four different targets, on four different days. To probe the effect of repetition they performed random sequences from one to six movements to the same target. Our findings show that, with repetition, movements are not only initiated earlier but their variability is reduced across the entire movement trajectory. Furthermore, this effect is present within and across the four sessions. Together, our results suggest that movement repetition changes the tradeoff between movement initiation and movement precision.
Collapse
Affiliation(s)
- Katrin Sutter
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Leonie Oostwoud Wijdenes
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Robert J van Beers
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W Pieter Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
27
|
Kusafuka A, Onagawa R, Kimura A, Kudo K. Changes in Error-Correction Behavior According to Visuomotor Maps in Goal-Directed Projection Tasks. J Neurophysiol 2022; 127:1171-1184. [PMID: 35320021 PMCID: PMC9037704 DOI: 10.1152/jn.00121.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans can move objects to target positions, out of their reach with certain accuracy by throwing or hitting them with tools. However, the outcome - the final object position - after the same movement varies due to various internal and external factors. Therefore, to improve outcome accuracy, humans correct their movements in the following trial as necessary by estimating the relationship between movement and visual outcome (visuomotor map). In the present study, we compared participants' error-correction behaviors to visual errors under three conditions, wherein the relationship between joystick movement direction and cursor projection direction on the monitor covertly differed. This allowed us to examine whether the error-correction behavior changed depending on the visuomotor map. Moreover, to determine whether participants maintain the visuomotor map regardless of the visual error size (cursor projection) and proprioceptive errors (joystick movement), we for the first time focused on whether temporary visual errors deviating from the conventional relationship between joystick movement direction and cursor projection direction (i.e., visual perturbation) are ignored. The visual information was occasionally perturbed in two ways to create a situation wherein the visual error was larger or smaller than the proprioceptive error. We found that participants changed their error-correction behaviors according to the conditions and could ignore visual perturbations. This suggests that humans can be implicitly aware of differences in visuomotor maps and adapt accordingly to visual errors.
Collapse
Affiliation(s)
- Ayane Kusafuka
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryoji Onagawa
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Arata Kimura
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Kazutoshi Kudo
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Therrien AS, Wong AL. Mechanisms of Human Motor Learning Do Not Function Independently. Front Hum Neurosci 2022; 15:785992. [PMID: 35058767 PMCID: PMC8764186 DOI: 10.3389/fnhum.2021.785992] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Human motor learning is governed by a suite of interacting mechanisms each one of which modifies behavior in distinct ways and rely on different neural circuits. In recent years, much attention has been given to one type of motor learning, called motor adaptation. Here, the field has generally focused on the interactions of three mechanisms: sensory prediction error SPE-driven, explicit (strategy-based), and reinforcement learning. Studies of these mechanisms have largely treated them as modular, aiming to model how the outputs of each are combined in the production of overt behavior. However, when examined closely the results of some studies also suggest the existence of additional interactions between the sub-components of each learning mechanism. In this perspective, we propose that these sub-component interactions represent a critical means through which different motor learning mechanisms are combined to produce movement; understanding such interactions is critical to advancing our knowledge of how humans learn new behaviors. We review current literature studying interactions between SPE-driven, explicit, and reinforcement mechanisms of motor learning. We then present evidence of sub-component interactions between SPE-driven and reinforcement learning as well as between SPE-driven and explicit learning from studies of people with cerebellar degeneration. Finally, we discuss the implications of interactions between learning mechanism sub-components for future research in human motor learning.
Collapse
|
29
|
Roberts JW, Elliott D, Burkitt JJ. Optimization in Manual Aiming: Relating Inherent Variability and Target Size, and Its Influence on Tendency. J Mot Behav 2021; 54:503-514. [PMID: 34906031 DOI: 10.1080/00222895.2021.2016574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
For manual aiming, the optimized submovement model predicts a tendency toward target-center of primary movement endpoints (probabilistic strategy), while the minimization model predicts target undershooting ("play-it-safe" strategy). The spatial variability of primary movement endpoints directed toward a cross-hair (400-500 ms) (Session 1) were scaled by a multiplicative factor (x1 - 4) to form circular targets of different sizes (Session 2). In recognition of both models, it was predicted that the more that inherent variability exceeded the target size, the greater the tendency to shift from target-center aiming to target undershooting. The central tendency of primary movement endpoints was not influenced by the targets, while it neared target-center. These findings concur with a probabilistic strategy, although we speculate on factors that might otherwise foster a "play-it-safe" strategy.
Collapse
Affiliation(s)
- James W Roberts
- School of Health Sciences, Liverpool Hope University, Psychology, Action and Learning of Movement (PALM) Laboratory, Liverpool, United Kingdom
| | - Digby Elliott
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James J Burkitt
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
30
|
Jonker ZD, van der Vliet R, Maquelin G, van der Cruijsen J, Ribbers GM, Selles RW, Donchin O, Frens MA. Individual differences in error-related frontal midline theta activity during visuomotor adaptation. Neuroimage 2021; 245:118699. [PMID: 34788661 DOI: 10.1016/j.neuroimage.2021.118699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/26/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022] Open
Abstract
Post-feedback frontal midline EEG activity has been found to correlate with error magnitude during motor adaptation. However, the role of this neuronal activity remains to be elucidated. It has been hypothesized that post-feedback frontal midline activity may represent a prediction error, which in turn may be directly related to the adaptation process or to an unspecific orienting response. To address these hypotheses, we replicated a previous visuomotor adaptation experiment with very small perturbations, likely to invoke implicit adaptation, in a new group of 60 participants and combined it with EEG recordings. We found error-related peaks in the frontal midline electrodes in the time domain. However, these were best understood as modulations of frontal midline theta activity (FMT, 4-8 Hz). Trial-level differences in FMT correlated with error magnitude. This correlation was robust even for very small errors as well as in the absence of imposed perturbations, indicating that FMT does not depend on explicit or strategic re-aiming. Within participants, trial-level differences in FMT were not related to between-trial error corrections. Between participants, individual differences in FMT-error-sensitivity did not predict differences in adaptation rate. Taken together, these results imply that FMT does not drive implicit motor adaptation. Finally, individual differences in FMT-error-sensitivity negatively correlate to motor execution noise. This suggests that FMT reflects saliency: larger execution noise means a larger standard deviation of errors so that a fixed error magnitude is less salient. In conclusion, this study suggests that frontal midline theta activity represents a saliency signal and does not directly drive motor adaptation.
Collapse
Affiliation(s)
- Zeb D Jonker
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN, The Netherlands; Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN, The Netherlands; Rijndam Rehabilitation, 3015LJ Rotterdam, The Netherlands.
| | - Rick van der Vliet
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN, The Netherlands; Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN, The Netherlands
| | - Guido Maquelin
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN, The Netherlands
| | - Joris van der Cruijsen
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN, The Netherlands
| | - Gerard M Ribbers
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN, The Netherlands; Rijndam Rehabilitation, 3015LJ Rotterdam, The Netherlands
| | - Ruud W Selles
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN, The Netherlands; Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN, The Netherlands
| | - Opher Donchin
- Department of Biomedical Engineering and Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, 8499000, Be'er Sheva, Israel
| | - Maarten A Frens
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN, The Netherlands
| |
Collapse
|
31
|
Herrojo Ruiz M, Maudrich T, Kalloch B, Sammler D, Kenville R, Villringer A, Sehm B, Nikulin VV. Modulation of neural activity in frontopolar cortex drives reward-based motor learning. Sci Rep 2021; 11:20303. [PMID: 34645848 PMCID: PMC8514446 DOI: 10.1038/s41598-021-98571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/26/2021] [Indexed: 12/03/2022] Open
Abstract
The frontopolar cortex (FPC) contributes to tracking the reward of alternative choices during decision making, as well as their reliability. Whether this FPC function extends to reward gradients associated with continuous movements during motor learning remains unknown. We used anodal transcranial direct current stimulation (tDCS) over the right FPC to investigate its role in reward-based motor learning. Nineteen healthy human participants practiced novel sequences of finger movements on a digital piano with corresponding auditory feedback. Their aim was to use trialwise reward feedback to discover a hidden performance goal along a continuous dimension: timing. We additionally modulated the contralateral motor cortex (left M1) activity, and included a control sham stimulation. Right FPC-tDCS led to faster learning compared to lM1-tDCS and sham through regulation of motor variability. Bayesian computational modelling revealed that in all stimulation protocols, an increase in the trialwise expectation of reward was followed by greater exploitation, as shown previously. Yet, this association was weaker in lM1-tDCS suggesting a less efficient learning strategy. The effects of frontopolar stimulation were dissociated from those induced by lM1-tDCS and sham, as motor exploration was more sensitive to inferred changes in the reward tendency (volatility). The findings suggest that rFPC-tDCS increases the sensitivity of motor exploration to updates in reward volatility, accelerating reward-based motor learning.
Collapse
Affiliation(s)
- M Herrojo Ruiz
- Psychology Department, Goldsmiths University of London, London, UK. .,Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russian Federation. .,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - T Maudrich
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - B Kalloch
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - D Sammler
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - R Kenville
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - A Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - B Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, University Hospital Halle (Saale), Halle, Germany
| | - V V Nikulin
- Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russian Federation. .,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
32
|
Coltman SK, van Beers RJ, Medendorp WP, Gribble PL. Sensitivity to error during visuomotor adaptation is similarly modulated by abrupt, gradual and random perturbation schedules. J Neurophysiol 2021; 126:934-945. [PMID: 34379553 DOI: 10.1152/jn.00269.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been suggested that sensorimotor adaptation involves at least two processes (i.e., fast and slow) that differ in retention and error sensitivity. Previous work has shown that repeated exposure to an abrupt force field perturbation results in greater error sensitivity for both the fast and slow processes. While this implies that the faster relearning is associated with increased error sensitivity, it remains unclear what aspects of prior experience modulate error sensitivity. In the present study, we manipulated the initial training using different perturbation schedules, thought to differentially affect fast and slow learning processes based on error magnitude, and then observed what effect prior learning had on subsequent adaptation. During initial training of a visuomotor rotation task, we exposed three groups of participants to either an abrupt, a gradual, or a random perturbation schedule. During a testing session, all three groups were subsequently exposed to an abrupt perturbation schedule. Comparing the two sessions of the control group who experienced repetition of the same perturbation, we found an increased error sensitivity for both processes. We found that the error sensitivity was increased for both the fast and slow processes, with no reliable changes in the retention, for both the gradual and structural learning groups when compared to the first session of the control group. We discuss the findings in the context of how fast and slow learning processes respond to a history of errors.
Collapse
Affiliation(s)
- Susan K Coltman
- Graduate Program in Neuroscience, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Robert J van Beers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands.,Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Paul L Gribble
- Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Haskins Laboratories, New Haven CT, USA
| |
Collapse
|
33
|
van Mastrigt NM, van der Kooij K, Smeets JBJ. Pitfalls in quantifying exploration in reward-based motor learning and how to avoid them. BIOLOGICAL CYBERNETICS 2021; 115:365-382. [PMID: 34341885 PMCID: PMC8382626 DOI: 10.1007/s00422-021-00884-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
When learning a movement based on binary success information, one is more variable following failure than following success. Theoretically, the additional variability post-failure might reflect exploration of possibilities to obtain success. When average behavior is changing (as in learning), variability can be estimated from differences between subsequent movements. Can one estimate exploration reliably from such trial-to-trial changes when studying reward-based motor learning? To answer this question, we tried to reconstruct the exploration underlying learning as described by four existing reward-based motor learning models. We simulated learning for various learner and task characteristics. If we simply determined the additional change post-failure, estimates of exploration were sensitive to learner and task characteristics. We identified two pitfalls in quantifying exploration based on trial-to-trial changes. Firstly, performance-dependent feedback can cause correlated samples of motor noise and exploration on successful trials, which biases exploration estimates. Secondly, the trial relative to which trial-to-trial change is calculated may also contain exploration, which causes underestimation. As a solution, we developed the additional trial-to-trial change (ATTC) method. By moving the reference trial one trial back and subtracting trial-to-trial changes following specific sequences of trial outcomes, exploration can be estimated reliably for the three models that explore based on the outcome of only the previous trial. Since ATTC estimates are based on a selection of trial sequences, this method requires many trials. In conclusion, if exploration is a binary function of previous trial outcome, the ATTC method allows for a model-free quantification of exploration.
Collapse
Affiliation(s)
- Nina M van Mastrigt
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Katinka van der Kooij
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen B J Smeets
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Dal'Bello LR, Izawa J. Task-relevant and task-irrelevant variability causally shape error-based motor learning. Neural Netw 2021; 142:583-596. [PMID: 34352492 DOI: 10.1016/j.neunet.2021.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/25/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Abstract
Recent studies of motor learning show dissociable roles of reward- and sensory-prediction errors in updating motor commands by using typical adaptation paradigms where force or visual perturbations are imposed on hand movements. Such classic adaptation paradigms ignore a problem of redundancy inherently embedded in the motor pathways where the central nervous system has to find a unique solution in the high-dimensional motor command space. Computationally, a possible way of solving such a redundancy problem is exploring and updating motor commands based on the learned knowledge of the structures of both the motor pathways and the tasks. However, the effects of task-irrelevant motor command exploration in structure learning and its effects on reward-based and error-based learning have yet to be examined. Here, we used a redundant motor task where participants manipulated a cursor on a monitor screen with their hand gesture movements and then analyzed single-trial motor learning by fitting models consisting of reward-based and error-based learning contributions. We found that the error-based learning rate positively correlated with both task-relevant and task-irrelevant variability, likely reflecting the effect of motor exploration in structure learning. Further modeling results show that the effects of both task-relevant and task-irrelevant variability are simultaneous, and not mediated by one another. In contrast, the reward-based learning rate correlated with neither task-relevant nor task-irrelevant variability. Thus, although not having a direct influence on the task outcome, exploration in the task-irrelevant space late in training has a significant effect on the learning of a task structure used for error-based learning. This suggests that motor exploration, in both task-relevant and task-irrelevant spaces, has an essential role in error-based motor learning in a redundant motor mechanism.
Collapse
Affiliation(s)
- Lucas Rebelo Dal'Bello
- School of Integrative and Global Majors, 3A201 Dai-san Area, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| | - Jun Izawa
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
35
|
Sutter K, Oostwoud Wijdenes L, van Beers RJ, Medendorp WP. Movement preparation time determines movement variability. J Neurophysiol 2021; 125:2375-2383. [PMID: 34038240 DOI: 10.1152/jn.00087.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Faster movements are typically more variable-a speed-accuracy trade-off known as Fitts' law. Are movements that are initiated faster also more variable? Neurophysiological work has associated larger neural variability during motor preparation with longer reaction time (RT) and larger movement variability, implying that movement variability decreases with increasing RT. Here, we recorded over 30,000 reaching movements in 11 human participants who moved to visually cued targets. Half of the visual cues were accompanied by a beep to evoke a wide RT range in each participant. Results show that initial reach variability decreases with increasing RT, for voluntarily produced RTs up to ∼300 ms, whereas other kinematic aspects and endpoint accuracy remained unaffected. We conclude that movement preparation time determines initial movement variability. We suggest that the chosen movement preparation time reflects a trade-off between movement initiation and precision.NEW & NOTEWORTHY Fitts' law describes the speed-accuracy trade-off in the execution of human movements. We examined whether there is also a trade-off between movement planning time and initial movement precision. We show that shorter reaction times result in higher initial movement variability. In other words, movement preparation time determines movement variability.
Collapse
Affiliation(s)
- Katrin Sutter
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Leonie Oostwoud Wijdenes
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Robert J van Beers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Dissociating the Influence of Perceptual Biases and Contextual Artifacts Within Target Configurations During the Planning and Control of Visually Guided Action. Motor Control 2021; 25:349-368. [PMID: 33811190 DOI: 10.1123/mc.2020-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/18/2022]
Abstract
The failure of perceptual illusions to elicit corresponding biases within movement supports the view of two visual pathways separately contributing to perception and action. However, several alternative findings may contest this overarching framework. The present study aimed to examine the influence of perceptual illusions within the planning and control of aiming. To achieve this, we manipulated and measured the planning/control phases by respectively perturbing the target illusion (relative size-contrast illusion; Ebbinghaus/Titchener circles) following movement onset and detecting the spatiotemporal characteristics of the movement trajectory. The perceptual bias that was indicated by the perceived target size estimates failed to correspondingly manifest within the effective target size. While movement time (specifically, time after peak velocity) was affected by the target configuration, this outcome was not consistent with the direction of the perceptual illusions. These findings advocate an influence of the surrounding contextual information (e.g., annuli) on movement control that is independent of the direction predicted by the illusion.
Collapse
|
37
|
Tanae M, Ota K, Takiyama K. Competition Rather Than Observation and Cooperation Facilitates Optimal Motor Planning. Front Sports Act Living 2021; 3:637225. [PMID: 33733236 PMCID: PMC7959757 DOI: 10.3389/fspor.2021.637225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Humans tend to select motor planning with a high reward and low success compared with motor planning, which has a small reward and high success rate. Previous studies have shown such a risk-seeking property in motor decision tasks. However, it is unclear how to facilitate a shift from risk-seeking to optimal motor planning that maximizes the expected reward. Here, we investigate the effect of interacting with virtual partners/opponents on motor plans since interpersonal interaction has a powerful influence on human perception, action, and cognition. This study compared three types of interactions (competition, cooperation, and observation) and two types of virtual partners/opponents (those engaged in optimal motor planning and those engaged in risk-averse motor planning). As reported in previous studies, the participants took a risky aim point when they performed a motor decision task alone. However, we found that the participant's aim point was significantly modulated when they performed the same task while competing with a risk-averse opponent (p = 0.018) and that there was no significant difference from the optimal aim point (p = 0.63). No significant modulation in the aim points was observed during the cooperation and observation tasks. These results highlight the importance of competition for modulating suboptimal decision-making and optimizing motor performance.
Collapse
Affiliation(s)
- Mamoru Tanae
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Keiji Ota
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Psychology, New York University, New York, NY, United States.,Center for Neural Science, New York University, New York, NY, United States
| | - Ken Takiyama
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
38
|
Zobeiri OA, Ostrander B, Roat J, Agrawal Y, Cullen KE. Loss of peripheral vestibular input alters the statistics of head movement experienced during natural self-motion. J Physiol 2021; 599:2239-2254. [PMID: 33599981 DOI: 10.1113/jp281183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Sensory systems are adapted to the statistical structure of natural stimuli, thereby optimizing neural coding. Head motion during natural activities is first sensed and then processed by central vestibulo-motor pathways to influence subsequent behaviour, thereby establishing a feedback loop. To investigate the role of this vestibular feedback on the statistical structure of the head movements, we compared head movements in patients with unilateral vestibular loss and healthy controls. We show that the loss of vestibular feedback substantially alters the statistical structure of head motion for activities that require rapid online feedback control and predict this change by modelling the effects of increased movement variability. Our findings suggest that, following peripheral vestibular loss, changes in the reliability of the sensory input to central pathways impact the statistical structure of head motion during voluntary behaviours. ABSTRACT It is widely believed that sensory systems are adapted to optimize neural coding of their natural stimuli. Recent evidence suggests that this is the case for the vestibular system, which senses head movement and contributes to essential functions ranging from the most automatic reflexes to voluntary motor control. During everyday behaviours, head motion is sensed by the vestibular system. In turn, this sensory feedback influences subsequent behaviour, raising the questions of whether and how real-time feedback provided by the vestibular system alters the statistical structure of head movements. We predicted that a reduction in vestibular feedback would alter head movement statistics, particularly for tasks reliant on rapid vestibular feedback. To test this proposal, we recorded six-dimensional head motion in patients with variable degrees of unilateral vestibular loss during standard balance and gait tasks, as well as dynamic self-paced activities. While distributions of linear accelerations and rotational velocities were comparable for patients and age-matched healthy controls, comparison of power spectra revealed significant differences during more dynamic and challenging activities. Specifically, consistent with our prediction, head movement power spectra were significantly altered in patients during two tasks that required rapid online vestibular feedback: active repetitive jumping and walking on foam. Using computational methods, we analysed concurrently measured torso motion and identified increases in head-torso movement variability. Taken together, our results demonstrate that vestibular loss significantly alters head movement statistics and further suggest that increased variability and impaired feedback to internal models required for accurate motor control contribute to the observed changes.
Collapse
Affiliation(s)
- Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Benjamin Ostrander
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jessica Roat
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuri Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathleen E Cullen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
39
|
Roberts JW, Maiden J, Lawrence GP. Sequential aiming in pairs: the multiple levels of joint action. Exp Brain Res 2021; 239:1479-1488. [PMID: 33683404 PMCID: PMC8144087 DOI: 10.1007/s00221-021-06060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/09/2021] [Indexed: 11/28/2022]
Abstract
The task constraints imposed upon a co-actor can often influence our own actions. Likewise, the observation of somebody else's movements can involuntarily contaminate the execution of our own movements. These joint action outcomes have rarely been considered in unison. The aim of the present study was to simultaneously examine the underlying processes contributing to joint action. We had pairs of participants work together to execute sequential aiming movements between two targets-the first person's movement was contingent upon the anticipation of the second person's movement (leader), while the second person's movement was contingent upon the direct observation of the first person's movement (follower). Participants executed separate blocks of two-target aiming movements under different contexts; that is, solely on their own using one (2T1L) and two (2T2L) of their upper limbs, or with another person (2T2P). The first movement segment generally indicated a more abrupt approach (shorter time after peak velocity, greater displacement and magnitude of peak velocity), which surprisingly coincided with lower spatial variability, for the 2T2P context. Meanwhile, the second segment indicated a similar kinematic profile as the first segment for the 2T2P context. The first movement of the leader appeared to accommodate the follower for their movement, while the second movement of the follower was primed by the observation of the leader's movement. These findings collectively advocate two distinct levels of joint action including the anticipation (top-down) and mapping (bottom-up) of other people's actions.
Collapse
Affiliation(s)
- James W Roberts
- Psychology, Action and Learning of Movement Laboratory (PALM), School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool, L16 9JD, UK. .,Brain and Behaviour Laboratory, Research Institute of Sport and Exercise Sciences (RISES) Tom Reilly Building, Liverpool John Moores University, Byrom Street, Liverpool, L3 5AF, UK.
| | - James Maiden
- Psychology, Action and Learning of Movement Laboratory (PALM), School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool, L16 9JD, UK
| | - Gavin P Lawrence
- School of Sport, Health and Exercise Sciences, Institute for the Psychology of Elite Performance, Bangor University, George Building, Bangor, LL57 2PZ, UK
| |
Collapse
|
40
|
Nagamori A, Laine CM, Loeb GE, Valero-Cuevas FJ. Force variability is mostly not motor noise: Theoretical implications for motor control. PLoS Comput Biol 2021; 17:e1008707. [PMID: 33684099 PMCID: PMC7971898 DOI: 10.1371/journal.pcbi.1008707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/18/2021] [Accepted: 01/15/2021] [Indexed: 11/19/2022] Open
Abstract
Variability in muscle force is a hallmark of healthy and pathological human behavior. Predominant theories of sensorimotor control assume 'motor noise' leads to force variability and its 'signal dependence' (variability in muscle force whose amplitude increases with intensity of neural drive). Here, we demonstrate that the two proposed mechanisms for motor noise (i.e. the stochastic nature of motor unit discharge and unfused tetanic contraction) cannot account for the majority of force variability nor for its signal dependence. We do so by considering three previously underappreciated but physiologically important features of a population of motor units: 1) fusion of motor unit twitches, 2) coupling among motoneuron discharge rate, cross-bridge dynamics, and muscle mechanics, and 3) a series-elastic element to account for the aponeurosis and tendon. These results argue strongly against the idea that force variability and the resulting kinematic variability are generated primarily by 'motor noise.' Rather, they underscore the importance of variability arising from properties of control strategies embodied through distributed sensorimotor systems. As such, our study provides a critical path toward developing theories and models of sensorimotor control that provide a physiologically valid and clinically useful understanding of healthy and pathologic force variability.
Collapse
Affiliation(s)
- Akira Nagamori
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
| | - Christopher M. Laine
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, United States of America
| | - Gerald E. Loeb
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Francisco J. Valero-Cuevas
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
41
|
Cámara C, López-Moliner J, Brenner E, de la Malla C. Looking away from a moving target does not disrupt the way in which the movement toward the target is guided. J Vis 2021; 20:5. [PMID: 32407436 PMCID: PMC7409596 DOI: 10.1167/jov.20.5.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
People usually follow a moving object with their gaze if they intend to interact with it. What would happen if they did not? We recorded eye and finger movements while participants moved a cursor toward a moving target. An unpredictable delay in updating the position of the cursor on the basis of that of the invisible finger made it essential to use visual information to guide the finger's ongoing movement. Decreasing the contrast between the cursor and the background from trial to trial made it difficult to see the cursor without looking at it. In separate experiments, either participants were free to hit the target anywhere along its trajectory or they had to move along a specified path. In the two experiments, participants tracked the cursor rather than the target with their gaze on 13% and 32% of the trials, respectively. They hit fewer targets when the contrast was low or a path was imposed. Not looking at the target did not disrupt the visual guidance that was required to deal with the delays that we imposed. Our results suggest that peripheral vision can be used to guide one item to another, irrespective of which item one is looking at.
Collapse
|
42
|
Eggert T, Henriques DYP, 't Hart BM, Straube A. Modeling inter-trial variability of pointing movements during visuomotor adaptation. BIOLOGICAL CYBERNETICS 2021; 115:59-86. [PMID: 33575896 PMCID: PMC7925509 DOI: 10.1007/s00422-021-00858-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Trial-to-trial variability during visuomotor adaptation is usually explained as the result of two different sources, planning noise and execution noise. The estimation of the underlying variance parameters from observations involving varying feedback conditions cannot be achieved by standard techniques (Kalman filter) because they do not account for recursive noise propagation in a closed-loop system. We therefore developed a method to compute the exact likelihood of the output of a time-discrete and linear adaptation system as has been used to model visuomotor adaptation (Smith et al. in PLoS Biol 4(6):e179, 2006), observed under closed-loop and error-clamp conditions. We identified the variance parameters by maximizing this likelihood and compared the model prediction of the time course of variance and autocovariance with empiric data. The observed increase in variability during the early training phase could not be explained by planning noise and execution noise with constant variances. Extending the model by signal-dependent components of either execution noise or planning noise showed that the observed temporal changes of the trial-to-trial variability can be modeled by signal-dependent planning noise rather than signal-dependent execution noise. Comparing the variance time course between different training schedules showed that the signal-dependent increase of planning variance was specific for the fast adapting mechanism, whereas the assumption of constant planning variance was sufficient for the slow adapting mechanisms.
Collapse
Affiliation(s)
- Thomas Eggert
- Department of Neurology, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152, Planegg, Martinsried, Germany.
| | - Denise Y P Henriques
- School of Kinesiology and Health Science, Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Bernard M 't Hart
- Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Andreas Straube
- Department of Neurology and German Center for Vertigo and Balance Disorders-DSGZ, University Hospital LMU, Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
43
|
Lee S, Franklin S, Hassani FA, Yokota T, Nayeem MOG, Wang Y, Leib R, Cheng G, Franklin DW, Someya T. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 2021; 370:966-970. [PMID: 33214278 DOI: 10.1126/science.abc9735] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022]
Abstract
Monitoring of finger manipulation without disturbing the inherent functionalities is critical to understand the sense of natural touch. However, worn or attached sensors affect the natural feeling of the skin. We developed nanomesh pressure sensors that can monitor finger pressure without detectable effects on human sensation. The effect of the sensor on human sensation was quantitatively investigated, and the sensor-applied finger exhibits comparable grip forces with those of the bare finger, even though the attachment of a 2-micrometer-thick polymeric film results in a 14% increase in the grip force after adjusting for friction. Simultaneously, the sensor exhibits an extreme mechanical durability against cyclic shearing and friction greater than hundreds of kilopascals.
Collapse
Affiliation(s)
- Sunghoon Lee
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sae Franklin
- Institute for Cognitive Systems, Department of Electrical and Computer Engineering, Technical University of Munich, Karlstraße 45/II, 80333 München, Germany
| | - Faezeh Arab Hassani
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Md Osman Goni Nayeem
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yan Wang
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Raz Leib
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60/62, 80992 München, Germany
| | - Gordon Cheng
- Institute for Cognitive Systems, Department of Electrical and Computer Engineering, Technical University of Munich, Karlstraße 45/II, 80333 München, Germany
| | - David W Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60/62, 80992 München, Germany
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. .,Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748 Garching, Germany
| |
Collapse
|
44
|
Kraeutner SN, McArthur JL, Kraeutner PH, Westwood DA, Boe SG. Leveraging the effector independent nature of motor imagery when it is paired with physical practice. Sci Rep 2020; 10:21335. [PMID: 33288785 PMCID: PMC7721807 DOI: 10.1038/s41598-020-78120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 12/04/2022] Open
Abstract
While considered analogous to physical practice, the nature of imagery-based skill acquisition—specifically whether or not both effector independent and dependent encoding occurs through motor imagery—is not well understood. Here, motor imagery-based training was applied prior to or after physical practice-based training to probe the nature of imagery-based skill acquisition. Three groups of participants (N = 38) engaged in 10 days of training of a dart throwing task: 5 days of motor imagery prior to physical practice (MIP-PP), motor imagery following physical practice (PP-MIP), or physical practice only (PP-PP). Performance-related outcomes were assessed throughout. Brain activity was measured at three time points using fMRI (pre/mid/post-training; MIP-PP and PP-MIP groups). In contrast with physical practice, motor imagery led to changes in global versus specific aspects of the movement. Following 10 days of training, performance was greater when motor imagery preceded physical practice, although remained inferior to performance resulting from physical practice alone. Greater activation of regions that support effector dependent encoding was observed mid-, but not post-training for the PP-MIP group. Findings indicate that changes driven by motor imagery reflect effector independent encoding, providing new information regarding how motor imagery may be leveraged for skill acquisition.
Collapse
Affiliation(s)
- Sarah N Kraeutner
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Department of Physical Therapy, University of British Columbia, Vancouver, BC, V6T1Z3, Canada
| | - Jennifer L McArthur
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, B3H4R1, Canada
| | - Paul H Kraeutner
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, B3H4R1, Canada
| | - David A Westwood
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H4R2, Canada.,School of Health and Human Performance, Dalhousie University, Halifax, NS, B3H4R2, Canada
| | - Shaun G Boe
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, B3H4R1, Canada. .,Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H4R2, Canada. .,School of Health and Human Performance, Dalhousie University, Halifax, NS, B3H4R2, Canada. .,School of Physiotherapy, Dalhousie University, Rm 407, 4th Floor Forrest Building, 5869 University Avenue, PO Box 15000, Halifax, NS, B3H4R2, Canada.
| |
Collapse
|
45
|
Wang J, Hosseini E, Meirhaeghe N, Akkad A, Jazayeri M. Reinforcement regulates timing variability in thalamus. eLife 2020; 9:55872. [PMID: 33258769 PMCID: PMC7707818 DOI: 10.7554/elife.55872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023] Open
Abstract
Learning reduces variability but variability can facilitate learning. This paradoxical relationship has made it challenging to tease apart sources of variability that degrade performance from those that improve it. We tackled this question in a context-dependent timing task requiring humans and monkeys to flexibly produce different time intervals with different effectors. We identified two opposing factors contributing to timing variability: slow memory fluctuation that degrades performance and reward-dependent exploratory behavior that improves performance. Signatures of these opposing factors were evident across populations of neurons in the dorsomedial frontal cortex (DMFC), DMFC-projecting neurons in the ventrolateral thalamus, and putative target of DMFC in the caudate. However, only in the thalamus were the performance-optimizing regulation of variability aligned to the slow performance-degrading memory fluctuations. These findings reveal how variability caused by exploratory behavior might help to mitigate other undesirable sources of variability and highlight a potential role for thalamocortical projections in this process.
Collapse
Affiliation(s)
- Jing Wang
- Department of Bioengineering, University of Missouri, Columbia, United States.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Eghbal Hosseini
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Nicolas Meirhaeghe
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, United States
| | - Adam Akkad
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
46
|
Perry CM, Singh T, Springer KG, Harrison AT, McLain AC, Herter TM. Multiple processes independently predict motor learning. J Neuroeng Rehabil 2020; 17:151. [PMID: 33203416 PMCID: PMC7670816 DOI: 10.1186/s12984-020-00766-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/02/2020] [Indexed: 11/19/2022] Open
Abstract
Background Our ability to acquire, refine and adapt skilled limb movements is a hallmark of human motor learning that allows us to successfully perform many daily activities. The capacity to acquire, refine and adapt other features of motor performance, such as visual search, eye-hand coordination and visuomotor decisions, may also contribute to motor learning. However, the extent to which refinements of multiple behavioral features and their underlying neural processes independently contribute to motor learning remains unknown. In the current study, we used an ethological approach to test the hypothesis that practice-related refinements of multiple behavioral features would be independently predictive of motor learning. Methods Eighteen healthy, young adults used an upper-limb robot with eye-tracking to practice six trials of a continuous, visuomotor task once a week for six consecutive weeks. Participants used virtual paddles to hit away 200 “Targets” and avoid hitting 100 “Distractors” that continuously moved towards them from the back of the workspace. Motor learning was inferred from trial-by-trial acquisition and week-by-week retention of improvements on two measures of task performance related to motor execution and motor inhibition. Adaptations involving underlying neural processes were inferred from trial-by-trial acquisition and week-by-week retention of refinements on measures of skilled limb movement, visual search, eye-hand coordination and visuomotor decisions. We tested our hypothesis by quantifying the extent to which refinements on measures of multiple behavioral features (predictors) were independently predictive of improvements on our two measures of task performance (outcomes) after removing all shared variance between predictors. Results We found that refinements on measures of skilled limb movement, visual search and eye-hand coordination were independently predictive of improvements on our measure of task performance related to motor execution. In contrast, only refinements of eye-hand coordination were independently predictive of improvements on our measure of task performance related to motor inhibition. Conclusion Our results provide indirect evidence that refinements involving multiple, neural processes may independently contribute to motor learning, and distinct neural processes may underlie improvements in task performance related to motor execution and motor inhibition. This also suggests that refinements involving multiple, neural processes may contribute to motor recovery after stroke, and rehabilitation interventions should be designed to produce refinements of all behavioral features that may contribute to motor recovery.
Collapse
Affiliation(s)
- Christopher M Perry
- Department of Exercise Science, University of South Carolina, Columbia, SC, 29208, USA
| | - Tarkeshwar Singh
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kayla G Springer
- Department of Exercise Science, University of South Carolina, Columbia, SC, 29208, USA
| | - Adam T Harrison
- Department of Exercise Science, University of South Carolina, Columbia, SC, 29208, USA
| | - Alexander C McLain
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, 29208, USA
| | - Troy M Herter
- Department of Exercise Science, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
47
|
Roberts JW, Wood G, Wakefield CJ. Examining the equivalence between imagery and execution within the spatial domain - Does motor imagery account for signal-dependent noise? Exp Brain Res 2020; 238:2983-2992. [PMID: 33084933 PMCID: PMC7644523 DOI: 10.1007/s00221-020-05939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/30/2020] [Indexed: 12/01/2022]
Abstract
Motor imagery is suggested to be functionally equivalent to physical execution as they each utilise a common neural representation. The present study examined whether motor imagery correspondingly reflects the spatial characteristics of physically executed movements, including the signal-dependent noise that typically manifests in more variable end locations (as indicated by effective target width; We). Participants executed or imagined a single, upper-limb target-directed aim in the horizontal medio-lateral direction. The start and end of the imagined movements were indexed by the lifting and lowering of the limb over the home position, respectively. Following each imagined movement, participants had to additionally estimate their imagined end location relative to the target. All the movements had to be completed at a pre-specified criterion time (400 ms, 600 ms, 800 ms). The results indicated that the We increased following a decrease in movement time for execution, but not imagery. Moreover, the total error of imagined movements was greater than the actual error of executed movements. While motor imagery may comprise a neural representation that also contributes to the execution of movements, it is unable to closely reflect the random sources of variability. This limitation of motor imagery may be attributed to the comparatively limited efferent motor signals.
Collapse
Affiliation(s)
- James W Roberts
- Psychology, Action and Learning of Movement (PALM) Laboratory, School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool, L16 9JD, UK. .,Brain and Behaviour Laboratory, Research Institute of Sport and Exercise Sciences (RISES), Liverpool John Moores University, Byrom Street, Tom Reilly Building, Liverpool, L3 5AF, UK.
| | - Greg Wood
- Department of Sport and Exercise Science, Faculty of Science and Engineering, Research Centre for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, UK
| | - Caroline J Wakefield
- Psychology, Action and Learning of Movement (PALM) Laboratory, School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool, L16 9JD, UK
| |
Collapse
|
48
|
Haar S, Faisal AA. Brain Activity Reveals Multiple Motor-Learning Mechanisms in a Real-World Task. Front Hum Neurosci 2020; 14:354. [PMID: 32982707 PMCID: PMC7492608 DOI: 10.3389/fnhum.2020.00354] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/05/2020] [Indexed: 11/22/2022] Open
Abstract
Many recent studies found signatures of motor learning in neural beta oscillations (13-30 Hz), and specifically in the post-movement beta rebound (PMBR). All these studies were in controlled laboratory-tasks in which the task designed to induce the studied learning mechanism. Interestingly, these studies reported opposing dynamics of the PMBR magnitude over learning for the error-based and reward-based tasks (increase vs. decrease, respectively). Here, we explored the PMBR dynamics during real-world motor-skill-learning in a billiards task using mobile-brain-imaging. Our EEG recordings highlight the opposing dynamics of PMBR magnitudes (increase vs. decrease) between different subjects performing the same task. The groups of subjects, defined by their neural dynamics, also showed behavioral differences expected for different learning mechanisms. Our results suggest that when faced with the complexity of the real-world different subjects might use different learning mechanisms for the same complex task. We speculate that all subjects combine multi-modal mechanisms of learning, but different subjects have different predominant learning mechanisms.
Collapse
Affiliation(s)
- Shlomi Haar
- Brain and Behaviour Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
- Behaviour Analytics Lab, Data Science Institute, Imperial College London, London, United Kingdom
| | - A. Aldo Faisal
- Brain and Behaviour Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
- Behaviour Analytics Lab, Data Science Institute, Imperial College London, London, United Kingdom
- Department of Computing, Imperial College London, London, United Kingdom
- MRC London Institute of Medical Sciences, London, United Kingdom
| |
Collapse
|
49
|
Exploring disturbance as a force for good in motor learning. PLoS One 2020; 15:e0224055. [PMID: 32433704 PMCID: PMC7239483 DOI: 10.1371/journal.pone.0224055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/27/2020] [Indexed: 11/19/2022] Open
Abstract
Disturbance forces facilitate motor learning, but theoretical explanations for this counterintuitive phenomenon are lacking. Smooth arm movements require predictions (inference) about the force-field associated with a workspace. The Free Energy Principle (FEP) suggests that such 'active inference' is driven by 'surprise'. We used these insights to create a formal model that explains why disturbance might help learning. In two experiments, participants undertook a continuous tracking task where they learned how to move their arm in different directions through a novel 3D force field. We compared baseline performance before and after exposure to the novel field to quantify learning. In Experiment 1, the exposure phases (but not the baseline measures) were delivered under three different conditions: (i) robot haptic assistance; (ii) no guidance; (iii) robot haptic disturbance. The disturbance group showed the best learning as our model predicted. Experiment 2 further tested our FEP inspired model. Assistive and/or disturbance forces were applied as a function of performance (low surprise), and compared to a random error manipulation (high surprise). The random group showed the most improvement as predicted by the model. Thus, motor learning can be conceptualised as a process of entropy reduction. Short term motor strategies (e.g. global impedance) can mitigate unexpected perturbations, but continuous movements require active inference about external force-fields in order to create accurate internal models of the external world (motor learning). Our findings reconcile research on the relationship between noise, variability, and motor learning, and show that information is the currency of motor learning.
Collapse
|
50
|
van Mastrigt NM, Smeets JBJ, van der Kooij K. Quantifying exploration in reward-based motor learning. PLoS One 2020; 15:e0226789. [PMID: 32240174 PMCID: PMC7117770 DOI: 10.1371/journal.pone.0226789] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/16/2020] [Indexed: 01/14/2023] Open
Abstract
Exploration in reward-based motor learning is observable in experimental data as increased variability. In order to quantify exploration, we compare three methods for estimating other sources of variability: sensorimotor noise. We use a task in which participants could receive stochastic binary reward feedback following a target-directed weight shift. Participants first performed six baseline blocks without feedback, and next twenty blocks alternating with and without feedback. Variability was assessed based on trial-to-trial changes in movement endpoint. We estimated sensorimotor noise by the median squared trial-to-trial change in movement endpoint for trials in which no exploration is expected. We identified three types of such trials: trials in baseline blocks, trials in the blocks without feedback, and rewarded trials in the blocks with feedback. We estimated exploration by the median squared trial-to-trial change following non-rewarded trials minus sensorimotor noise. As expected, variability was larger following non-rewarded trials than following rewarded trials. This indicates that our reward-based weight-shifting task successfully induced exploration. Most importantly, our three estimates of sensorimotor noise differed: the estimate based on rewarded trials was significantly lower than the estimates based on the two types of trials without feedback. Consequently, the estimates of exploration also differed. We conclude that the quantification of exploration depends critically on the type of trials used to estimate sensorimotor noise. We recommend the use of variability following rewarded trials.
Collapse
Affiliation(s)
- Nina M. van Mastrigt
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Jeroen B. J. Smeets
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Katinka van der Kooij
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|