1
|
Vaissiere T, Michaelson SD, Creson T, Goins J, Fürth D, Balazsfi D, Rojas C, Golovin R, Meletis K, Miller CA, O’Connor D, Fontolan L, Rumbaugh G. Syngap1 Promotes Cognitive Function through Regulation of Cortical Sensorimotor Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559787. [PMID: 37808765 PMCID: PMC10557642 DOI: 10.1101/2023.09.27.559787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, Syngap1, in cortical excitatory neurons is required for formation of somatomotor networks that promote SMI-mediated perception. Cortical Syngap1 expression was necessary and sufficient for setting tactile sensitivity, sustaining tactile object exploration, and promoting tactile learning. Mice with deficient Syngap1 expression exhibited impaired neural dynamics induced by exploratory touches within a cortical-thalamic network known to promote attention and perception. Disrupted neuronal dynamics were associated with circuit-specific long-range synaptic connectivity abnormalities. Our data support a model where autonomous Syngap1 expression in cortical excitatory neurons promotes cognitive abilities through assembly of circuits that integrate temporally-overlapping sensory and motor signals, a process that promotes perception and attention. These data provide systems-level insights into the robust association between Syngap1 expression and cognitive ability.
Collapse
Affiliation(s)
- Thomas Vaissiere
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Sheldon D. Michaelson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Thomas Creson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jessie Goins
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Daniel Fürth
- SciLifeLab, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Diana Balazsfi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Camilo Rojas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Randall Golovin
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Courtney A. Miller
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Daniel O’Connor
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorenzo Fontolan
- Aix-Marseille Université, INSERM, INMED, Turing Centre for Living Systems, Marseille, 13009, France
| | - Gavin Rumbaugh
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| |
Collapse
|
2
|
Olson WP, Chokshi VB, Kim JJ, Cowan N, O'Connor DH. Muscle spindles provide flexible sensory feedback for movement sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612899. [PMID: 39345532 PMCID: PMC11429703 DOI: 10.1101/2024.09.13.612899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Sensory feedback is essential for motor performance and must adapt to task demands. Muscle spindle afferents (MSAs) are a major primary source of feedback about movement, and their responses are readily modulated online by gain-controller fusimotor neurons and other mechanisms. They are therefore a powerful site for implementing flexible sensorimotor control. We recorded from MSAs innervating the jaw musculature during performance of a directed lick sequence task. Jaw MSAs encoded complex jaw-tongue kinematics. However, kinematic encoding alone accounted for less than half of MSA spiking variability. MSA representations of kinematics changed based on sequence progression (beginning, middle, or end of the sequence, or reward consumption), suggesting that MSAs are flexibly tuned across the task. Dynamic control of incoming feedback signals from MSAs may be a strategy for adaptable sensorimotor control during performance of complex behaviors.
Collapse
|
3
|
Colins Rodriguez A, Loft MSE, Schiessl I, Maravall M, Petersen RS. Sensory adaptation in the barrel cortex during active sensation in the behaving mouse. Sci Rep 2024; 14:21588. [PMID: 39284900 PMCID: PMC11405846 DOI: 10.1038/s41598-024-70524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024] Open
Abstract
Sensory Adaptation (SA) is a prominent aspect of how neurons respond to sensory signals, ubiquitous across species and modalities. However, SA depends on the activation state of the brain and the extent to which SA is expressed in awake, behaving animals during active sensation remains unclear. Here, we addressed this question by training head-fixed mice to detect an object using their whiskers and recording neuronal activity from barrel cortex whilst simultaneously imaging the whiskers in 3D. We found that neuronal responses decreased during the course of whisker-object touch sequences and that this was due to two factors. First, a motor effect, whereby, during a sequence of touches, later touches were mechanically weaker than early ones. Second, a sensory encoding effect, whereby neuronal tuning to touch became progressively less sensitive during the course of a touch sequence. The sensory encoding effect was whisker-specific. These results show that SA does occur during active whisker sensing and suggest that SA is fundamental to sensation during natural behaviour.
Collapse
Affiliation(s)
- Andrea Colins Rodriguez
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Michaela S E Loft
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ingo Schiessl
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, M6 8HD, UK
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK
| | - Rasmus S Petersen
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
4
|
Li S, Gao L, Liu C, Guo H, Yu J. Biomimetic Neuromorphic Sensory System via Electrolyte Gated Transistors. SENSORS (BASEL, SWITZERLAND) 2024; 24:4915. [PMID: 39123962 PMCID: PMC11314768 DOI: 10.3390/s24154915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Biomimetic neuromorphic sensing systems, inspired by the structure and function of biological neural networks, represent a major advancement in the field of sensing technology and artificial intelligence. This review paper focuses on the development and application of electrolyte gated transistors (EGTs) as the core components (synapses and neuros) of these neuromorphic systems. EGTs offer unique advantages, including low operating voltage, high transconductance, and biocompatibility, making them ideal for integrating with sensors, interfacing with biological tissues, and mimicking neural processes. Major advances in the use of EGTs for neuromorphic sensory applications such as tactile sensors, visual neuromorphic systems, chemical neuromorphic systems, and multimode neuromorphic systems are carefully discussed. Furthermore, the challenges and future directions of the field are explored, highlighting the potential of EGT-based biomimetic systems to revolutionize neuromorphic prosthetics, robotics, and human-machine interfaces. Through a comprehensive analysis of the latest research, this review is intended to provide a detailed understanding of the current status and future prospects of biomimetic neuromorphic sensory systems via EGT sensing and integrated technologies.
Collapse
Affiliation(s)
| | | | | | | | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
5
|
Oram TB, Tenzer A, Saraf-Sinik I, Yizhar O, Ahissar E. Co-coding of head and whisker movements by both VPM and POm thalamic neurons. Nat Commun 2024; 15:5883. [PMID: 39003286 PMCID: PMC11246487 DOI: 10.1038/s41467-024-50039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Rodents continuously move their heads and whiskers in a coordinated manner while perceiving objects through whisker-touch. Studies in head-fixed rodents showed that the ventroposterior medial (VPM) and posterior medial (POm) thalamic nuclei code for whisker kinematics, with POm involvement reduced in awake animals. To examine VPM and POm involvement in coding head and whisker kinematics in awake, head-free conditions, we recorded thalamic neuronal activity and tracked head and whisker movements in male mice exploring an open arena. Using optogenetic tagging, we found that in freely moving mice, both nuclei equally coded whisker kinematics and robustly coded head kinematics. The fraction of neurons coding head kinematics increased after whisker trimming, ruling out whisker-mediated coding. Optogenetic activation of thalamic neurons evoked overt kinematic changes and increased the fraction of neurons leading changes in head kinematics. Our data suggest that VPM and POm integrate head and whisker information and can influence head kinematics during tactile perception.
Collapse
Affiliation(s)
- Tess Baker Oram
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Tenzer
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Ahissar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Kim JJ, Wyche IS, Olson W, Lu J, Bakir MS, Sober SJ, O'Connor DH. Myo-optogenetics: optogenetic stimulation and electrical recording in skeletal muscles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600113. [PMID: 38979246 PMCID: PMC11230246 DOI: 10.1101/2024.06.21.600113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Complex movements involve highly coordinated control of local muscle elements. Highly controlled perturbations of motor outputs can reveal insights into the neural control of movements. Here we introduce an optogenetic method, compatible with electromyography (EMG) recordings, to perturb muscles in transgenic mice. By expressing channelrhodopsin in muscle fibers, we achieved noninvasive, focal activation of orofacial muscles, enabling detailed examination of the mechanical properties of optogenetically evoked jaw muscle contractions. We demonstrated simultaneous EMG recording and optical stimulation, revealing the electrophysiological characteristics of optogenetically triggered muscle activity. Additionally, we applied optogenetic activation of muscles in physiologically and behaviorally relevant settings, mapping precise muscle actions and perturbing active behaviors. Our findings highlight the potential of muscle optogenetics to precisely manipulate muscle activity, offering a powerful tool for probing neuromuscular control systems and advancing our understanding of motor control.
Collapse
|
7
|
Sun Y, Wang H, Xie D. Recent Advance in Synaptic Plasticity Modulation Techniques for Neuromorphic Applications. NANO-MICRO LETTERS 2024; 16:211. [PMID: 38842588 PMCID: PMC11156833 DOI: 10.1007/s40820-024-01445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artificial intelligence. However, great efforts have been devoted to exploring biomimetic mechanisms of plasticity simulation in the last few years. Recent progress in various plasticity modulation techniques has pushed the research of synaptic electronics from static plasticity simulation to dynamic plasticity modulation, improving the accuracy of neuromorphic computing and providing strategies for implementing neuromorphic sensing functions. Herein, several fascinating strategies for synaptic plasticity modulation through chemical techniques, device structure design, and physical signal sensing are reviewed. For chemical techniques, the underlying mechanisms for the modification of functional materials were clarified and its effect on the expression of synaptic plasticity was also highlighted. Based on device structure design, the reconfigurable operation of neuromorphic devices was well demonstrated to achieve programmable neuromorphic functions. Besides, integrating the sensory units with neuromorphic processing circuits paved a new way to achieve human-like intelligent perception under the modulation of physical signals such as light, strain, and temperature. Finally, considering that the relevant technology is still in the basic exploration stage, some prospects or development suggestions are put forward to promote the development of neuromorphic devices.
Collapse
Affiliation(s)
- Yilin Sun
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Huaipeng Wang
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Dan Xie
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
8
|
de Brito Van Velze M, Dhanasobhon D, Martinez M, Morabito A, Berthaux E, Pinho CM, Zerlaut Y, Rebola N. Feedforward and disinhibitory circuits differentially control activity of cortical somatostatin interneurons during behavioral state transitions. Cell Rep 2024; 43:114197. [PMID: 38733587 DOI: 10.1016/j.celrep.2024.114197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Interneurons (INs), specifically those in disinhibitory circuits like somatostatin (SST) and vasoactive intestinal peptide (VIP)-INs, are strongly modulated by the behavioral context. Yet, the mechanisms by which these INs are recruited during active states and whether their activity is consistent across sensory cortices remain unclear. We now report that in mice, locomotor activity strongly recruits SST-INs in the primary somatosensory (S1) but not the visual (V1) cortex. This diverse engagement of SST-INs cannot be explained by differences in VIP-IN function but is absent in the presence of visual input, suggesting the involvement of feedforward sensory pathways. Accordingly, inactivating the somatosensory thalamus, but not decreasing VIP-IN activity, significantly reduces the modulation of SST-INs by locomotion. Model simulations suggest that the differences in SST-INs across behavioral states can be explained by varying ratios of VIP- and thalamus-driven activity. By integrating feedforward activity with neuromodulation, SST-INs are anticipated to be crucial for adapting sensory processing to behavioral states.
Collapse
Affiliation(s)
- Marcel de Brito Van Velze
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Dhanasak Dhanasobhon
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Marie Martinez
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Annunziato Morabito
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Emmanuelle Berthaux
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Cibele Martins Pinho
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Yann Zerlaut
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France.
| | - Nelson Rebola
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France.
| |
Collapse
|
9
|
Yoshinaga Y, Sato N. Reach-to-Grasp and tactile discrimination task: A new task for the study of sensory-motor learning. Behav Brain Res 2024; 466:115007. [PMID: 38648867 DOI: 10.1016/j.bbr.2024.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Although active touch in rodents arises from the forepaws as well as whiskers, most research on active touch only focuses on whiskers. This results in a paucity of tasks designed to assess the process of active touch with a forepaw. We develop a new experimental task, the Reach-to-Grasp and Tactile Discrimination task (RGTD task), to examine active touch with a forepaw in rodents, particularly changes in processes of active touch during motor skill learning. In the RGTD task, animals are required to (1) extend their forelimb to an object, (2) grasp the object, and (3) manipulate the grasped object with the forelimb. The animals must determine the direction of the manipulation based on active touch sensations arising during the period of the grasping. In experiment 1 of the present study, we showed that rats can learn the RGTD task. In experiment 2, we confirmed that the rats are capable of reversal learning of the RGTD task. The RGTD task shared most of the reaching movements involved with conventional forelimb reaching tasks. From the standpoint of a discrimination task, the RGTD task enables rigorous experimental control, for example by removing bias in the stimulus-response correspondence, and makes it possible to utilize diverse experimental procedures that have been difficult in prior tasks.
Collapse
Affiliation(s)
- Yudai Yoshinaga
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Nobuya Sato
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan; Center for Applied Psychological Science (CAPS), Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo, Japan.
| |
Collapse
|
10
|
Zhang L, Nagel M, Olson WP, Chesler AT, O'Connor DH. Trigeminal innervation and tactile responses in mouse tongue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.17.553449. [PMID: 37645855 PMCID: PMC10462066 DOI: 10.1101/2023.08.17.553449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The mammalian tongue is richly innervated with somatosensory, gustatory and motor fibers. These form the basis of many ethologically important functions such as eating, speaking and social grooming. Despite its high tactile acuity and sensitivity, the neural basis of tongue mechanosensation remains largely mysterious. Here we explored the organization of mechanosensory afferents in the tongue and found that each lingual papilla is innervated by Piezo2 + trigeminal neurons. Notably, each fungiform papilla contained highly specialized ring-like sensory neuron terminations that asymmetrically circumscribe the taste buds. Myelinated lingual afferents in the mouse lingual papillae did not form corpuscular sensory end organs but rather had only free nerve endings. In vivo single-unit recordings from the trigeminal ganglion revealed lingual low-threshold mechanoreceptors (LTMRs) with conduction velocities in the Aδ range or above and distinct adaptation properties ranging from intermediately adapting (IA) to rapidly adapting (RA). IA units were sensitive to both static indentation and stroking, while RA units had a preference for tangential forces applied by stroking. Lingual LTMRs were not directly responsive to rapid cooling or chemicals that can induce astringent or numbing sensations. Sparse labeling of lingual afferents in the tongue revealed distinct terminal morphologies and innervation patterns in fungiform and filiform papillae. Together, our results indicate that fungiform papillae are mechanosensory structures, while suggesting a simple model that links the functional and anatomical properties of tactile sensory neurons in the tongue.
Collapse
|
11
|
Ryan L, Sun-Yan A, Laughton M, Peron S. Cortical circuitry mediating interareal touch signal amplification. Cell Rep 2023; 42:113532. [PMID: 38064338 PMCID: PMC10842872 DOI: 10.1016/j.celrep.2023.113532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Sensory cortical areas are organized into topographic maps representing the sensory epithelium. Interareal projections typically connect topographically matched subregions across areas. Because matched subregions process the same stimulus, their interaction is central to many computations. Here, we ask how topographically matched subregions of primary and secondary vibrissal somatosensory cortices (vS1 and vS2) interact during active touch. Volumetric calcium imaging in mice palpating an object with two whiskers revealed a sparse population of highly responsive, broadly tuned touch neurons especially pronounced in layer 2 of both areas. These rare neurons exhibited elevated synchrony and carried most touch-evoked activity in both directions. Lesioning the subregion of either area responding to the spared whiskers degraded touch responses in the unlesioned area, with whisker-specific vS1 lesions degrading whisker-specific vS2 touch responses. Thus, a sparse population of broadly tuned touch neurons dominates vS1-vS2 communication in both directions, and topographically matched vS1 and vS2 subregions recurrently amplify whisker touch activity.
Collapse
Affiliation(s)
- Lauren Ryan
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA
| | - Andrew Sun-Yan
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA
| | - Maya Laughton
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA.
| |
Collapse
|
12
|
Chung B, Zia M, Thomas KA, Michaels JA, Jacob A, Pack A, Williams MJ, Nagapudi K, Teng LH, Arrambide E, Ouellette L, Oey N, Gibbs R, Anschutz P, Lu J, Wu Y, Kashefi M, Oya T, Kersten R, Mosberger AC, O'Connell S, Wang R, Marques H, Mendes AR, Lenschow C, Kondakath G, Kim JJ, Olson W, Quinn KN, Perkins P, Gatto G, Thanawalla A, Coltman S, Kim T, Smith T, Binder-Markey B, Zaback M, Thompson CK, Giszter S, Person A, Goulding M, Azim E, Thakor N, O'Connor D, Trimmer B, Lima SQ, Carey MR, Pandarinath C, Costa RM, Pruszynski JA, Bakir M, Sober SJ. Myomatrix arrays for high-definition muscle recording. eLife 2023; 12:RP88551. [PMID: 38113081 PMCID: PMC10730117 DOI: 10.7554/elife.88551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ('Myomatrix arrays') that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a 'motor unit,' during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and identifying pathologies of the motor system.
Collapse
Affiliation(s)
- Bryce Chung
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Muneeb Zia
- School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Kyle A Thomas
- Graduate Program in Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | | | - Amanda Jacob
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Andrea Pack
- Neuroscience Graduate Program, Emory UniversityAtlantaUnited States
| | - Matthew J Williams
- Graduate Program in Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | | | - Lay Heng Teng
- Department of Biology, Emory UniversityAtlantaUnited States
| | | | | | - Nicole Oey
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Rhuna Gibbs
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Philip Anschutz
- Graduate Program in BioEngineering, Georgia TechAtlantaUnited States
| | - Jiaao Lu
- Graduate Program in Electrical and Computer Engineering, Georgia TechAtlantaUnited States
| | - Yu Wu
- School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Mehrdad Kashefi
- Department of Physiology and Pharmacology, Western UniversityLondonCanada
| | - Tomomichi Oya
- Department of Physiology and Pharmacology, Western UniversityLondonCanada
| | - Rhonda Kersten
- Department of Physiology and Pharmacology, Western UniversityLondonCanada
| | - Alice C Mosberger
- Zuckerman Mind Brain Behavior Institute at Columbia UniversityNew YorkUnited States
| | - Sean O'Connell
- Graduate Program in Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | - Runming Wang
- Department of Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | - Hugo Marques
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | - Ana Rita Mendes
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | - Constanze Lenschow
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | | | - Jeong Jun Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - William Olson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Kiara N Quinn
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Pierce Perkins
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Graziana Gatto
- Salk Institute for Biological StudiesLa JollaUnited States
| | | | - Susan Coltman
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Taegyo Kim
- Department of Neurobiology & Anatomy, Drexel University, College of MedicinePhiladelphiaUnited States
| | - Trevor Smith
- Department of Neurobiology & Anatomy, Drexel University, College of MedicinePhiladelphiaUnited States
| | - Ben Binder-Markey
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University College of Nursing and Health ProfessionsPhiladelphiaUnited States
| | - Martin Zaback
- Department of Health and Rehabilitation Sciences, Temple UniversityPhiladelphiaUnited States
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple UniversityPhiladelphiaUnited States
| | - Simon Giszter
- Department of Neurobiology & Anatomy, Drexel University, College of MedicinePhiladelphiaUnited States
| | - Abigail Person
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
- Allen InstituteSeattleUnited States
| | | | - Eiman Azim
- Salk Institute for Biological StudiesLa JollaUnited States
| | - Nitish Thakor
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Daniel O'Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Barry Trimmer
- Department of Biology, Tufts UniversityMedfordUnited States
| | - Susana Q Lima
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | - Megan R Carey
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | - Chethan Pandarinath
- Department of Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute at Columbia UniversityNew YorkUnited States
| | | | - Muhannad Bakir
- School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Samuel J Sober
- Department of Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
13
|
Alisha A, Bettina V, Simon P. Representational drift in barrel cortex is receptive field dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563381. [PMID: 37961727 PMCID: PMC10634719 DOI: 10.1101/2023.10.20.563381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cortical populations often exhibit changes in activity even when behavior is stable. How behavioral stability is maintained in the face of such 'representational drift' remains unclear. One possibility is that some neurons are stable despite broader instability. We examine whisker touch responses in superficial layers of primary vibrissal somatosensory cortex (vS1) over several weeks in mice stably performing an object detection task with two whiskers. While the number of touch neurons remained constant, individual neurons changed with time. Touch-responsive neurons with broad receptive fields were more stable than narrowly tuned neurons. Transitions between functional types were non-random: before becoming broadly tuned neurons, unresponsive neurons first pass through a period of narrower tuning. Broadly tuned neurons with higher pairwise correlations to other touch neurons were more stable than neurons with lower correlations. Thus, a small population of broadly tuned and synchronously active touch neurons exhibit elevated stability and may be particularly important for downstream readout.
Collapse
Affiliation(s)
- Ahmed Alisha
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Voelcker Bettina
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Peron Simon
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| |
Collapse
|
14
|
Chung B, Zia M, Thomas KA, Michaels JA, Jacob A, Pack A, Williams MJ, Nagapudi K, Teng LH, Arrambide E, Ouellette L, Oey N, Gibbs R, Anschutz P, Lu J, Wu Y, Kashefi M, Oya T, Kersten R, Mosberger AC, O'Connell S, Wang R, Marques H, Mendes AR, Lenschow C, Kondakath G, Kim JJ, Olson W, Quinn KN, Perkins P, Gatto G, Thanawalla A, Coltman S, Kim T, Smith T, Binder-Markey B, Zaback M, Thompson CK, Giszter S, Person A, Goulding M, Azim E, Thakor N, O'Connor D, Trimmer B, Lima SQ, Carey MR, Pandarinath C, Costa RM, Pruszynski JA, Bakir M, Sober SJ. Myomatrix arrays for high-definition muscle recording. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529200. [PMID: 36865176 PMCID: PMC9980060 DOI: 10.1101/2023.02.21.529200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ("Myomatrix arrays") that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a "motor unit", during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and in identifying pathologies of the motor system.
Collapse
Affiliation(s)
- Bryce Chung
- Department of Biology, Emory University (Atlanta, GA, USA)
| | - Muneeb Zia
- School of Electrical and Computer Engineering, Georgia Institute of Technology (Atlanta, GA, USA)
| | - Kyle A Thomas
- Graduate Program in Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | - Jonathan A Michaels
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Amanda Jacob
- Department of Biology, Emory University (Atlanta, GA, USA)
| | - Andrea Pack
- Neuroscience Graduate Program, Emory University (Atlanta, GA, USA)
| | - Matthew J Williams
- Graduate Program in Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | | | - Lay Heng Teng
- Department of Biology, Emory University (Atlanta, GA, USA)
| | | | | | - Nicole Oey
- Department of Biology, Emory University (Atlanta, GA, USA)
| | - Rhuna Gibbs
- Department of Biology, Emory University (Atlanta, GA, USA)
| | - Philip Anschutz
- Graduate Program in BioEngineering, Georgia Tech (Atlanta, GA, USA)
| | - Jiaao Lu
- Graduate Program in Electrical and Computer Engineering, Georgia Tech (Atlanta, GA, USA)
| | - Yu Wu
- School of Electrical and Computer Engineering, Georgia Institute of Technology (Atlanta, GA, USA)
| | - Mehrdad Kashefi
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Tomomichi Oya
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Rhonda Kersten
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Alice C Mosberger
- Zuckerman Mind Brain Behavior Institute at Columbia University (New York, NY, USA)
| | - Sean O'Connell
- Graduate Program in Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | - Runming Wang
- Department of Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | - Hugo Marques
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
| | - Ana Rita Mendes
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
| | - Constanze Lenschow
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
- current address: Institute of Biology, Otto-von-Guericke University, (Magdeburg, Germany)
| | | | - Jeong Jun Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - William Olson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Kiara N Quinn
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Pierce Perkins
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Graziana Gatto
- Salk Institute for Biological Studies (La Jolla, CA, USA)
- current address: Department of Neurology, University Hospital of Cologne (Cologne, Germany)
| | | | - Susan Coltman
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus (Aurora, CO, USA)
| | - Taegyo Kim
- Department of Neurobiology & Anatomy, Drexel University, College of Medicine (Philadelphia, PA, USA)
| | - Trevor Smith
- Department of Neurobiology & Anatomy, Drexel University, College of Medicine (Philadelphia, PA, USA)
| | - Ben Binder-Markey
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University College of Nursing and Health Professions (Philadelphia, PA)
| | - Martin Zaback
- Department of Health and Rehabilitation Sciences, Temple University (Philadelphia, PA, USA)
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple University (Philadelphia, PA, USA)
| | - Simon Giszter
- Department of Neurobiology & Anatomy, Drexel University, College of Medicine (Philadelphia, PA, USA)
| | - Abigail Person
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus (Aurora, CO, USA)
| | | | - Eiman Azim
- Salk Institute for Biological Studies (La Jolla, CA, USA)
| | - Nitish Thakor
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Daniel O'Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Barry Trimmer
- Department of Biology, Tufts University (Medford, MA, USA)
| | - Susana Q Lima
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
| | - Megan R Carey
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
| | - Chethan Pandarinath
- Department of Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute at Columbia University (New York, NY, USA)
- Allen Institute (Seattle, WA, USA)
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Muhannad Bakir
- School of Electrical and Computer Engineering, Georgia Institute of Technology (Atlanta, GA, USA)
| | - Samuel J Sober
- Department of Biology, Emory University (Atlanta, GA, USA)
| |
Collapse
|
15
|
Ding Y, Vlasov Y. Pre-neuronal processing of haptic sensory cues via dispersive high-frequency vibrational modes. Sci Rep 2023; 13:14370. [PMID: 37658126 PMCID: PMC10474056 DOI: 10.1038/s41598-023-40675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Sense of touch is one of the major perception channels. Neural coding of object textures conveyed by rodents' whiskers has been a model to study early stages of haptic information uptake. While high-precision spike timing has been observed during whisker sweeping across textured surfaces, the exact nature of whisker micromotions that spikes encode remains elusive. Here, we discovered that a single micro-collision of a whisker with surface features generates vibrational eigenmodes spanning frequencies up to 10 kHz. While propagating along the whisker, these high-frequency modes can carry up to 80% of shockwave energy, exhibit 100× smaller damping ratio, and arrive at the follicle 10× faster than low frequency components. The mechano-transduction of these energy bursts into time-sequenced population spike trains may generate temporally unique "bar code" with ultra-high information capacity. This hypothesis of pre-neuronal processing of haptic signals based on dispersive temporal separation of the vibrational modal frequencies can shed light on neural coding of haptic signals in many whisker-like sensory organs across the animal world as well as in texture perception in primate's glabrous skin.
Collapse
Affiliation(s)
- Yu Ding
- Department of Physics, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA
| | - Yurii Vlasov
- Department of Physics, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA.
- Department of BioEngineering, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Elbaz MA, Demers M, Kleinfeld D, Ethier C, Deschênes M. Interchangeable Role of Motor Cortex and Reafference for the Stable Execution of an Orofacial Action. J Neurosci 2023; 43:5521-5536. [PMID: 37400255 PMCID: PMC10376937 DOI: 10.1523/jneurosci.2089-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Animals interact with their environment through mechanically active, mobile sensors. The efficient use of these sensory organs implies the ability to track their position; otherwise, perceptual stability or prehension would be profoundly impeded. The nervous system may keep track of the position of a sensorimotor organ via two complementary feedback mechanisms-peripheral reafference (external, sensory feedback) and efference copy (internal feedback). Yet, the potential contributions of these mechanisms remain largely unexplored. By training male rats to place one of their vibrissae within a predetermined angular range without contact, a task that depends on knowledge of vibrissa position relative to their face, we found that peripheral reafference is not required. The presence of motor cortex is not required either, except in the absence of peripheral reafference to maintain motor stability. Finally, the red nucleus, which receives descending inputs from motor cortex and cerebellum and projects to facial motoneurons, is critically involved in the execution of the vibrissa positioning task. All told, our results point toward the existence of an internal model that requires either peripheral reafference or motor cortex to optimally drive voluntary motion.SIGNIFICANCE STATEMENT How does an animal know where a mechanically active, mobile sensor lies relative to its body? We address this basic question in sensorimotor integration using the motion of the vibrissae in rats. We show that rats can learn to reliably position their vibrissae in the absence of sensory feedback or in the absence of motor cortex. Yet, when both sensory feedback and motor cortex are absent, motor precision is degraded. This suggests the existence of an internal model able to operate in closed- and open-loop modes, requiring either motor cortex or sensory feedback to maintain motor stability.
Collapse
Affiliation(s)
- Michaël A Elbaz
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - Maxime Demers
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - David Kleinfeld
- Departments of Physics
- Neurobiology, University of California, San Diego, La Jolla, California 92093
| | - Christian Ethier
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| | - Martin Deschênes
- CERVO Brain Research Center, Laval University, Québec City, Québec G1J 2G3, Canada
| |
Collapse
|
17
|
Ryan L, Sun-Yan A, Laughton M, Peron S. Cortical circuitry mediating inter-areal touch signal amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543886. [PMID: 37333308 PMCID: PMC10274616 DOI: 10.1101/2023.06.06.543886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Sensory cortical areas are often organized into topographic maps which represent the sensory epithelium1,2. Individual areas are richly interconnected3, in many cases via reciprocal projections that respect the topography of the underlying map4,5. Because topographically matched cortical patches process the same stimulus, their interaction is likely central to many neural computations6-10. Here, we ask how topographically matched subregions of primary and secondary vibrissal somatosensory cortices (vS1 and vS2) interact during whisker touch. In the mouse, whisker touch-responsive neurons are topographically organized in both vS1 and vS2. Both areas receive thalamic touch input and are topographically interconnected4. Volumetric calcium imaging in mice actively palpating an object with two whiskers revealed a sparse population of highly active, broadly tuned touch neurons responsive to both whiskers. These neurons were especially pronounced in superficial layer 2 in both areas. Despite their rarity, these neurons served as the main conduits of touch-evoked activity between vS1 and vS2 and exhibited elevated synchrony. Focal lesions of the whisker touch-responsive region in vS1 or vS2 degraded touch responses in the unlesioned area, with whisker-specific vS1 lesions degrading whisker-specific vS2 touch responses. Thus, a sparse and superficial population of broadly tuned touch neurons recurrently amplifies touch responses across vS1 and vS2.
Collapse
Affiliation(s)
- Lauren Ryan
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Andrew Sun-Yan
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Maya Laughton
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| |
Collapse
|
18
|
Pancholi R, Sun-Yan A, Peron S. Microstimulation of sensory cortex engages natural sensory representations. Curr Biol 2023; 33:1765-1777.e5. [PMID: 37130521 PMCID: PMC10246453 DOI: 10.1016/j.cub.2023.03.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 05/04/2023]
Abstract
Cortical activity patterns occupy a small subset of possible network states. If this is due to intrinsic network properties, microstimulation of sensory cortex should evoke activity patterns resembling those observed during natural sensory input. Here, we use optical microstimulation of virally transfected layer 2/3 pyramidal neurons in the mouse primary vibrissal somatosensory cortex to compare artificially evoked activity with natural activity evoked by whisker touch and movement ("whisking"). We find that photostimulation engages touch- but not whisking-responsive neurons more than expected by chance. Neurons that respond to photostimulation and touch or to touch alone exhibit higher spontaneous pairwise correlations than purely photoresponsive neurons. Exposure to several days of simultaneous touch and optogenetic stimulation raises both overlap and spontaneous activity correlations among touch and photoresponsive neurons. We thus find that cortical microstimulation engages existing cortical representations and that repeated co-presentation of natural and artificial stimulation enhances this effect.
Collapse
Affiliation(s)
- Ravi Pancholi
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003, USA
| | - Andrew Sun-Yan
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003, USA
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003, USA.
| |
Collapse
|
19
|
Diamond ME, Toso A. Tactile cognition in rodents. Neurosci Biobehav Rev 2023; 149:105161. [PMID: 37028580 DOI: 10.1016/j.neubiorev.2023.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Since the discovery 50 years ago of the precisely ordered representation of the whiskers in somatosensory cortex, the rodent tactile sensory system has been a fertile ground for the study of sensory processing. With the growing sophistication of touch-based behavioral paradigms, together with advances in neurophysiological methodology, a new approach is emerging. By posing increasingly complex perceptual and memory problems, in many cases analogous to human psychophysical tasks, investigators now explore the operations underlying rodent problem solving. We define the neural basis of tactile cognition as the transformation from a stage in which neuronal activity encodes elemental features, local in space and in time, to a stage in which neuronal activity is an explicit representation of the behavioral operations underlying the current task. Selecting a set of whisker-based behavioral tasks, we show that rodents achieve high level performance through the workings of neuronal circuits that are accessible, decodable, and manipulatable. As a means towards exploring tactile cognition, this review presents leading psychophysical paradigms and, where known, their neural correlates.
Collapse
Affiliation(s)
- Mathew E Diamond
- Cognitive Neuroscience, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy.
| | - Alessandro Toso
- Cognitive Neuroscience, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
20
|
Elias LJ, Succi IK, Schaffler MD, Foster W, Gradwell MA, Bohic M, Fushiki A, Upadhyay A, Ejoh LL, Schwark R, Frazer R, Bistis B, Burke JE, Saltz V, Boyce JE, Jhumka A, Costa RM, Abraira VE, Abdus-Saboor I. Touch neurons underlying dopaminergic pleasurable touch and sexual receptivity. Cell 2023; 186:577-590.e16. [PMID: 36693373 PMCID: PMC9898224 DOI: 10.1016/j.cell.2022.12.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023]
Abstract
Pleasurable touch is paramount during social behavior, including sexual encounters. However, the identity and precise role of sensory neurons that transduce sexual touch remain unknown. A population of sensory neurons labeled by developmental expression of the G protein-coupled receptor Mrgprb4 detects mechanical stimulation in mice. Here, we study the social relevance of Mrgprb4-lineage neurons and reveal that these neurons are required for sexual receptivity and sufficient to induce dopamine release in the brain. Even in social isolation, optogenetic stimulation of Mrgprb4-lineage neurons through the back skin is sufficient to induce a conditioned place preference and a striking dorsiflexion resembling the lordotic copulatory posture. In the absence of Mrgprb4-lineage neurons, female mice no longer find male mounts rewarding: sexual receptivity is supplanted by aggression and a coincident decline in dopamine release in the nucleus accumbens. Together, these findings establish that Mrgprb4-lineage neurons initiate a skin-to-brain circuit encoding the rewarding quality of social touch.
Collapse
Affiliation(s)
- Leah J Elias
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Isabella K Succi
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Melanie D Schaffler
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - William Foster
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Mark A Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Manon Bohic
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Akira Fushiki
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Aman Upadhyay
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Lindsay L Ejoh
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Schwark
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rachel Frazer
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Brittany Bistis
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jessica E Burke
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Victoria Saltz
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jared E Boyce
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Anissa Jhumka
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Victoria E Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Ishmail Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
21
|
Bataille A, Le Gall C, Misery L, Talagas M. Merkel Cells Are Multimodal Sensory Cells: A Review of Study Methods. Cells 2022; 11:cells11233827. [PMID: 36497085 PMCID: PMC9737130 DOI: 10.3390/cells11233827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Merkel cells (MCs) are rare multimodal epidermal sensory cells. Due to their interactions with slowly adapting type 1 (SA1) Aβ low-threshold mechanoreceptor (Aβ-LTMRs) afferents neurons to form Merkel complexes, they are considered to be part of the main tactile terminal organ involved in the light touch sensation. This function has been explored over time by ex vivo, in vivo, in vitro, and in silico approaches. Ex vivo studies have made it possible to characterize the topography, morphology, and cellular environment of these cells. The interactions of MCs with surrounding cells continue to be studied by ex vivo but also in vitro approaches. Indeed, in vitro models have improved the understanding of communication of MCs with other cells present in the skin at the cellular and molecular levels. As for in vivo methods, the sensory role of MC complexes can be demonstrated by observing physiological or pathological behavior after genetic modification in mouse models. In silico models are emerging and aim to elucidate the sensory coding mechanisms of these complexes. The different methods to study MC complexes presented in this review may allow the investigation of their involvement in other physiological and pathophysiological mechanisms, despite the difficulties in exploring these cells, in particular due to their rarity.
Collapse
Affiliation(s)
- Adeline Bataille
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Correspondence:
| | - Christelle Le Gall
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| | - Laurent Misery
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| | - Matthieu Talagas
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| |
Collapse
|
22
|
Columnar Lesions in Barrel Cortex Persistently Degrade Object Location Discrimination Performance. eNeuro 2022; 9:ENEURO.0393-22.2022. [PMID: 36316120 PMCID: PMC9665881 DOI: 10.1523/eneuro.0393-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Primary sensory cortices display functional topography, suggesting that even small cortical volumes may underpin perception of specific stimuli. Traditional loss-of-function approaches have a relatively large radius of effect (>1 mm), and few studies track recovery following loss-of-function perturbations. Consequently, the behavioral necessity of smaller cortical volumes remains unclear. In the mouse primary vibrissal somatosensory cortex (vS1), "barrels" with a radius of ∼150 μm receive input predominantly from a single whisker, partitioning vS1 into a topographic map of well defined columns. Here, we train animals implanted with a cranial window over vS1 to perform single-whisker perceptual tasks. We then use high-power laser exposure centered on the barrel representing the spared whisker to produce lesions with a typical volume of one to two barrels. These columnar-scale lesions impair performance in an object location discrimination task for multiple days without disrupting vibrissal kinematics. Animals with degraded location discrimination performance can immediately perform a whisker touch detection task with high accuracy. Animals trained de novo on both simple and complex whisker touch detection tasks showed no permanent behavioral deficits following columnar-scale lesions. Thus, columnar-scale lesions permanently degrade performance in object location discrimination tasks.
Collapse
|
23
|
Sonkodi B. Psoriasis, Is It a Microdamage of Our "Sixth Sense"? A Neurocentric View. Int J Mol Sci 2022; 23:11940. [PMID: 36233237 PMCID: PMC9569707 DOI: 10.3390/ijms231911940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
Psoriasis is considered a multifactorial and heterogeneous systemic disease with many underlying pathologic mechanisms having been elucidated; however, the pathomechanism is far from entirely known. This opinion article will demonstrate the potential relevance of the somatosensory Piezo2 microinjury-induced quad-phasic non-contact injury model in psoriasis through a multidisciplinary approach. The primary injury is suggested to be on the Piezo2-containing somatosensory afferent terminals in the Merkel cell−neurite complex, with the concomitant impairment of glutamate vesicular release machinery in Merkel cells. Part of the theory is that the Merkel cell−neurite complex contributes to proprioception; hence, to the stretch of the skin. Piezo2 channelopathy could result in the imbalanced control of Piezo1 on keratinocytes in a clustered manner, leading to dysregulated keratinocyte proliferation and differentiation. Furthermore, the author proposes the role of mtHsp70 leakage from damaged mitochondria through somatosensory terminals in the initiation of autoimmune and autoinflammatory processes in psoriasis. The secondary phase is harsher epidermal tissue damage due to the primary impaired proprioception. The third injury phase refers to re-injury and sensitization with the derailment of healing to a state when part of the wound healing is permanently kept alive due to genetical predisposition and environmental risk factors. Finally, the quadric damage phase is associated with the aging process and associated inflammaging. In summary, this opinion piece postulates that the primary microinjury of our “sixth sense”, or the Piezo2 channelopathy of the somatosensory terminals contributing to proprioception, could be the principal gateway to pathology due to the encroachment of our preprogrammed genetic encoding.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Sciences, 1123 Budapest, Hungary
| |
Collapse
|
24
|
Voelcker B, Pancholi R, Peron S. Transformation of primary sensory cortical representations from layer 4 to layer 2. Nat Commun 2022; 13:5484. [PMID: 36123376 PMCID: PMC9485231 DOI: 10.1038/s41467-022-33249-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Sensory input arrives from thalamus in cortical layer (L) 4, which outputs predominantly to superficial layers. L4 to L2 thus constitutes one of the earliest cortical feedforward networks. Despite extensive study, the transformation performed by this network remains poorly understood. We use two-photon calcium imaging to record neural activity in L2-4 of primary vibrissal somatosensory cortex (vS1) as mice perform an object localization task with two whiskers. Touch responses sparsen and become more reliable from L4 to L2, with nearly half of the superficial touch response confined to ~1 % of excitatory neurons. These highly responsive neurons have broad receptive fields and can more accurately decode stimulus features. They participate disproportionately in ensembles, small subnetworks with elevated pairwise correlations. Thus, from L4 to L2, cortex transitions from distributed probabilistic coding to sparse and robust ensemble-based coding, resulting in more efficient and accurate representations.
Collapse
Affiliation(s)
- Bettina Voelcker
- Center for Neural Science, New York University, 4 Washington Place Rm. 621, New York, NY, 10003, USA.,Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
| | - Ravi Pancholi
- Center for Neural Science, New York University, 4 Washington Place Rm. 621, New York, NY, 10003, USA.,Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Place Rm. 621, New York, NY, 10003, USA. .,Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA.
| |
Collapse
|
25
|
Demonstration of three-dimensional contact point determination and contour reconstruction during active whisking behavior of an awake rat. PLoS Comput Biol 2022; 18:e1007763. [PMID: 36108064 PMCID: PMC9477318 DOI: 10.1371/journal.pcbi.1007763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
The rodent vibrissal (whisker) system has been studied for decades as a model of active touch sensing. There are no sensors along the length of a whisker; all sensing occurs at the whisker base. Therefore, a large open question in many neuroscience studies is how an animal could estimate the three-dimensional (3D) location at which a whisker makes contact with an object. In the present work we simulated the shape of a real rat whisker to demonstrate the existence of several unique mappings from triplets of mechanical signals at the whisker base to the three-dimensional whisker-object contact point. We then used high speed video to record whisker deflections as an awake rat whisked against a peg, and used the mechanics resulting from those deflections to extract the contact points along the peg surface. These results demonstrate that measurement of specific mechanical triplets at the base of a biological whisker can enable 3D contact point determination during natural whisking behavior. The approach is viable even though the biological whisker has non-ideal, non-planar curvature, and even given the rat’s real-world choices of whisking parameters. Visual intuition for the quality of the approach is provided in a video that shows the contour of the peg gradually emerging during active whisking behavior.
Collapse
|
26
|
Lemercier CE, Krieger P. Reducing Merkel cell activity in the whisker follicle disrupts cortical encoding of whisker movement amplitude and velocity. IBRO Neurosci Rep 2022; 13:356-363. [PMID: 36281438 PMCID: PMC9586890 DOI: 10.1016/j.ibneur.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Merkel cells (MCs) and associated primary sensory afferents of the whisker follicle-sinus complex, accurately code whisker self-movement, angle, and whisk phase during whisking. However, little is known about their roles played in cortical encoding of whisker movement. To this end, the spiking activity of primary somatosensory barrel cortex (wS1) neurons was measured in response to varying the whisker deflection amplitude and velocity in transgenic mice with previously established reduced mechanoelectrical coupling at MC-associated afferents. Under reduced MC activity, wS1 neurons exhibited increased sensitivity to whisker deflection. This appeared to arise from a lack of variation in response magnitude to varying the whisker deflection amplitude and velocity. This latter effect was further indicated by weaker variation in the temporal profile of the evoked spiking activity when either whisker deflection amplitude or velocity was varied. Nevertheless, under reduced MC activity, wS1 neurons retained the ability to differentiate stimulus features based on the timing of their first post-stimulus spike. Collectively, results from this study suggest that MCs contribute to cortical encoding of both whisker amplitude and velocity, predominantly by tuning wS1 response magnitude, and by patterning the evoked spiking activity, rather than by tuning wS1 response latency. The role of Merkel cells (MCs) in cortical encoding of whisker deflection amplitude and velocity was investigated. Reducing MC synaptic activity increased barrel cortex neurons response sensitivity to whisker deflection. This effect occurred from a lack of variation in response magnitude to varying whisker deflection amplitude and velocity. However, stimuli differentiation through changes in cortical response latency was preserved. MCs are thus suggested to play a predominant role in tuning the cortical response magnitude over the response latency.
Collapse
|
27
|
Jiang C, Liu J, Yang L, Gong J, Wei H, Xu W. A Flexible Artificial Sensory Nerve Enabled by Nanoparticle-Assembled Synaptic Devices for Neuromorphic Tactile Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106124. [PMID: 35686320 PMCID: PMC9405521 DOI: 10.1002/advs.202106124] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/08/2022] [Indexed: 05/20/2023]
Abstract
Tactile perception enabled by somatosensory system in human is essential for dexterous tool usage, communication, and interaction. Imparting tactile recognition functions to advanced robots and interactive systems can potentially improve their cognition and intelligence. Here, a flexible artificial sensory nerve that mimics the tactile sensing, neural coding, and synaptic processing functions in human sensory nerve is developed to achieve neuromorphic tactile recognition at device level without relying on algorithms or computing resources. An interfacial self-assembly technique, which produces uniform and defect-less thin film of semiconductor nanoparticles on arbitrary substrates, is employed to prepare the flexible synaptic device. The neural facilitation and sensory memory characteristics of the proton-gating synaptic device enable this system to identify material hardness during robotic grasping and recognize tapping patterns during tactile interaction in a continuous, real-time, high-accuracy manner, demonstrating neuromorphic intelligence and recognition capabilities. This artificial sensory nerve produced in wearable and portable form can be readily integrated with advanced robots and smart human-machine interfaces for implementing human-like tactile cognition in neuromorphic electronics toward robotic and wearable applications.
Collapse
Affiliation(s)
- Chengpeng Jiang
- Institute of Photoelectronic Thin Film Devices and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
- Research Center for Intelligent SensingZhejiang LabHangzhou311100P. R. China
| | - Jiaqi Liu
- Institute of Photoelectronic Thin Film Devices and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Jiangdong Gong
- Institute of Photoelectronic Thin Film Devices and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Huanhuan Wei
- Institute of Photoelectronic Thin Film Devices and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| |
Collapse
|
28
|
Mioduszewska B, Auersperg AMI, O’Hara M. Treasure islands: foraging ecology and the emergence of tool use in wild Goffin’s cockatoos. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Abdus-Saboor I, Luo W. Measuring Mouse Somatosensory Reflexive Behaviors with High-speed Videography, Statistical Modeling, and Machine Learning. NEUROMETHODS 2022; 178:441-456. [PMID: 35783537 PMCID: PMC9249079 DOI: 10.1007/978-1-0716-2039-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Objectively measuring and interpreting an animal's sensory experience remains a challenging task. This is particularly true when using preclinical rodent models to study pain mechanisms and screen for potential new pain treatment reagents. How to determine their pain states in a precise and unbiased manner is a hurdle that the field will need to overcome. Here, we describe our efforts to measure mouse somatosensory reflexive behaviors with greatly improved precision by high-speed video imaging. We describe how coupling sub-second ethograms of reflexive behaviors with a statistical reduction method and supervised machine learning can be used to create a more objective quantitative mouse "pain scale." Our goal is to provide the readers with a protocol of how to integrate some of the new tools described here with currently used mechanical somatosensory assays, while discussing the advantages and limitations of this new approach.
Collapse
Affiliation(s)
- Ishmail Abdus-Saboor
- Department of Biology, University of Pennsylvania, 3740 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Wenqin Luo
- Department of Neuroscience, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
| |
Collapse
|
30
|
Zhang Q, Turner KL, Gheres KW, Hossain MS, Drew PJ. Behavioral and physiological monitoring for awake neurovascular coupling experiments: a how-to guide. NEUROPHOTONICS 2022; 9:021905. [PMID: 35639834 PMCID: PMC8802326 DOI: 10.1117/1.nph.9.2.021905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 06/15/2023]
Abstract
Significance: Functional brain imaging in awake animal models is a popular and powerful technique that allows the investigation of neurovascular coupling (NVC) under physiological conditions. However, ubiquitous facial and body motions (fidgeting) are prime drivers of spontaneous fluctuations in neural and hemodynamic signals. During periods without movement, animals can rapidly transition into sleep, and the hemodynamic signals tied to arousal state changes can be several times larger than sensory-evoked responses. Given the outsized influence of facial and body motions and arousal signals in neural and hemodynamic signals, it is imperative to detect and monitor these events in experiments with un-anesthetized animals. Aim: To cover the importance of monitoring behavioral state in imaging experiments using un-anesthetized rodents, and describe how to incorporate detailed behavioral and physiological measurements in imaging experiments. Approach: We review the effects of movements and sleep-related signals (heart rate, respiration rate, electromyography, intracranial pressure, whisking, and other body movements) on brain hemodynamics and electrophysiological signals, with a focus on head-fixed experimental setup. We summarize the measurement methods currently used in animal models for detection of those behaviors and arousal changes. We then provide a guide on how to incorporate this measurements with functional brain imaging and electrophysiology measurements. Results: We provide a how-to guide on monitoring and interpreting a variety of physiological signals and their applications to NVC experiments in awake behaving mice. Conclusion: This guide facilitates the application of neuroimaging in awake animal models and provides neuroscientists with a standard approach for monitoring behavior and other associated physiological parameters in head-fixed animals.
Collapse
Affiliation(s)
- Qingguang Zhang
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
| | - Kevin L. Turner
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Kyle W. Gheres
- The Pennsylvania State University, Graduate Program in Molecular Cellular and Integrative Biosciences, University Park, Pennsylvania, United States
| | - Md Shakhawat Hossain
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Patrick J. Drew
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Neurosurgery, University Park, Pennsylvania, United States
| |
Collapse
|
31
|
A novel stimulator to investigate the tuning of multi-whisker responsive neurons for speed and the direction of global motion: Contact-sensitive moving stimulator for multi-whisker stimulation. J Neurosci Methods 2022; 374:109565. [PMID: 35292306 PMCID: PMC9295048 DOI: 10.1016/j.jneumeth.2022.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/04/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The rodent vibrissal (whisker) systcnsorimotor integration and active tactile sensing. Experiments on the vibrissal system often require highly repeatable stimulation of multiple whiskers and the ability to vary stimulation parameters across a wide range. The stimulator must also be easy to position and adjust. Developing a multi-whisker stimulation system that meets these criteria remains challenging. NEW METHOD We describe a novel multi-whisker stimulator to assess neural selectivity for the direction of global motion. The device can generate repeatable, linear sweeps of tactile stimulation across the whisker array in any direction and with a range of speeds. A fiber optic beam break detects the interval of whisker contact as the stimulator passes through the array. RESULTS We demonstrate the device's function and utility by recording from a small number of multi-whisker-responsive neurons in the trigeminal brainstem. Neurons had higher firing rates in response to faster stimulation speeds; some also exhibited strong direction-of-motion tuning. COMPARISON WITH EXISTING METHODS The stimulator complements more standard piezo-electric stimulators, which offer precise control but typically stimulate only single whiskers, require whisker trimming, and travel through small angles. It also complements non-contact methods of stimulation such as air-puffs and electromagnetic-induced stimulation. Tradeoffs include stimulation speed and frequency, and the inability to stimulate whiskers individually. CONCLUSIONS The stimulator could be used - in either anesthetized or awake, head-fixed preparations - as an approach to studying global motion selectivity of multi-whisker sensitive neurons at multiple levels of the vibrissal-trigeminal system.
Collapse
|
32
|
Idiosyncratic selection of active touch for shape perception. Sci Rep 2022; 12:2922. [PMID: 35190603 PMCID: PMC8861104 DOI: 10.1038/s41598-022-06807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Hand movements are essential for tactile perception of objects. However, the specific functions served by active touch strategies, and their dependence on physiological parameters, are unclear and understudied. Focusing on planar shape perception, we tracked at high resolution the hands of 11 participants during shape recognition task. Two dominant hand movement strategies were identified: contour following and scanning. Contour following movements were either tangential to the contour or oscillating perpendicular to it. Scanning movements crossed between distant parts of the shapes’ contour. Both strategies exhibited non-uniform coverage of the shapes’ contours. Idiosyncratic movement patterns were specific to the sensed object. In a second experiment, we have measured the participants’ spatial and temporal tactile thresholds. Significant portions of the variations in hand speed and in oscillation patterns could be explained by the idiosyncratic thresholds. Using data-driven simulations, we show how specific strategy choices may affect receptors activation. These results suggest that motion strategies of active touch adapt to both the sensed object and to the perceiver’s physiological parameters.
Collapse
|
33
|
Elbaz M, Callado Perez A, Demers M, Zhao S, Foo C, Kleinfeld D, Deschenes M. A vibrissa pathway that activates the limbic system. eLife 2022; 11:72096. [PMID: 35142608 PMCID: PMC8830883 DOI: 10.7554/elife.72096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrissa sensory inputs play a central role in driving rodent behavior. These inputs transit through the sensory trigeminal nuclei, which give rise to the ascending lemniscal and paralemniscal pathways. While lemniscal projections are somatotopically mapped from brainstem to cortex, those of the paralemniscal pathway are more widely distributed. Yet the extent and topography of paralemniscal projections are unknown, along with the potential role of these projections in controlling behavior. Here, we used viral tracers to map paralemniscal projections. We find that this pathway broadcasts vibrissa-based sensory signals to brainstem regions that are involved in the regulation of autonomic functions and to forebrain regions that are involved in the expression of emotional reactions. We further provide evidence that GABAergic cells of the Kölliker-Fuse nucleus gate trigeminal sensory input in the paralemniscal pathway via a mechanism of presynaptic or extrasynaptic inhibition.
Collapse
Affiliation(s)
- Michaël Elbaz
- CERVO Research Center, Laval University, Québec City, Canada
| | - Amalia Callado Perez
- CERVO Research Center, Laval University, Québec City, Canada.,Department of Physics, University of California, San Diego, San Diego, United States
| | - Maxime Demers
- CERVO Research Center, Laval University, Québec City, Canada
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Conrad Foo
- Department of Physics, University of California, San Diego, San Diego, United States
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, San Diego, United States.,Section of Neurobiology, University of California, San Diego, San Diego, United States
| | | |
Collapse
|
34
|
Sherf N, Shamir M. STDP and the distribution of preferred phases in the whisker system. PLoS Comput Biol 2021; 17:e1009353. [PMID: 34534208 PMCID: PMC8480728 DOI: 10.1371/journal.pcbi.1009353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/29/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
Rats and mice use their whiskers to probe the environment. By rhythmically swiping their whiskers back and forth they can detect the existence of an object, locate it, and identify its texture. Localization can be accomplished by inferring the whisker’s position. Rhythmic neurons that track the phase of the whisking cycle encode information about the azimuthal location of the whisker. These neurons are characterized by preferred phases of firing that are narrowly distributed. Consequently, pooling the rhythmic signal from several upstream neurons is expected to result in a much narrower distribution of preferred phases in the downstream population, which however has not been observed empirically. Here, we show how spike timing dependent plasticity (STDP) can provide a solution to this conundrum. We investigated the effect of STDP on the utility of a neural population to transmit rhythmic information downstream using the framework of a modeling study. We found that under a wide range of parameters, STDP facilitated the transfer of rhythmic information despite the fact that all the synaptic weights remained dynamic. As a result, the preferred phase of the downstream neuron was not fixed, but rather drifted in time at a drift velocity that depended on the preferred phase, thus inducing a distribution of preferred phases. We further analyzed how the STDP rule governs the distribution of preferred phases in the downstream population. This link between the STDP rule and the distribution of preferred phases constitutes a natural test for our theory. The distribution of preferred phases of whisking neurons in the somatosensory system of rats and mice presents a conundrum: a simple pooling model predicts a distribution that is an order of magnitude narrower than what is observed empirically. Here, we suggest that this non-trivial distribution may result from activity-dependent plasticity in the form of spike timing dependent plasticity (STDP). We show that under STDP, the synaptic weights do not converge to a fixed value, but rather remain dynamic. As a result, the preferred phases of the whisking neurons vary in time, hence inducing a non-trivial distribution of preferred phases, which is governed by the STDP rule. Our results imply that the considerable synaptic volatility which has long been viewed as a difficulty that needs to be overcome, may actually be an underlying principle of the organization of the central nervous system.
Collapse
Affiliation(s)
- Nimrod Sherf
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| | - Maoz Shamir
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Physiology and Cell Biology Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
35
|
Handler A, Ginty DD. The mechanosensory neurons of touch and their mechanisms of activation. Nat Rev Neurosci 2021; 22:521-537. [PMID: 34312536 PMCID: PMC8485761 DOI: 10.1038/s41583-021-00489-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Our sense of touch emerges from an array of mechanosensory structures residing within the fabric of our skin. These tactile end organ structures convert innocuous forces acting on the skin into electrical signals that propagate to the CNS via the axons of low-threshold mechanoreceptors (LTMRs). Our rich capacity for tactile discrimination arises from the dissimilar intrinsic properties of the LTMR subtypes that innervate different regions of the skin and the structurally distinct end organ complexes with which they associate. These end organ structures comprise a range of non-neuronal cell types, which may themselves actively contribute to the transformation of tactile forces into neural impulses within the LTMR afferents. Although the mechanism and the site of transduction across end organs remain unclear, PIEZO2 has emerged as the principal mechanosensitive channel involved in light touch of the skin. Here we review the physiological properties of LTMR subtypes and discuss how features of their cutaneous end organ complexes shape subtype-specific tuning.
Collapse
Affiliation(s)
- Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Bush NE, Solla SA, Hartmann MJZ. Continuous, multidimensional coding of 3D complex tactile stimuli by primary sensory neurons of the vibrissal system. Proc Natl Acad Sci U S A 2021; 118:e2020194118. [PMID: 34353902 PMCID: PMC8364131 DOI: 10.1073/pnas.2020194118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Across all sensory modalities, first-stage sensory neurons are an information bottleneck: they must convey all information available for an animal to perceive and act in its environment. Our understanding of coding properties of primary sensory neurons in the auditory and visual systems has been aided by the use of increasingly complex, naturalistic stimulus sets. By comparison, encoding properties of primary somatosensory afferents are poorly understood. Here, we use the rodent whisker system to examine how tactile information is represented in primary sensory neurons of the trigeminal ganglion (Vg). Vg neurons have long been thought to segregate into functional classes associated with separate streams of information processing. However, this view is based on Vg responses to restricted stimulus sets which potentially underreport the coding capabilities of these neurons. In contrast, the current study records Vg responses to complex three-dimensional (3D) stimulation while quantifying the complete 3D whisker shape and mechanics, thereby beginning to reveal their full representational capabilities. The results show that individual Vg neurons simultaneously represent multiple mechanical features of a stimulus, do not preferentially encode principal components of the stimuli, and represent continuous and tiled variations of all available mechanical information. These results directly contrast with proposed codes in which subpopulations of Vg neurons encode select stimulus features. Instead, individual Vg neurons likely overcome the information bottleneck by encoding large regions of a complex sensory space. This proposed tiled and multidimensional representation at the Vg directly constrains the computations performed by more central neurons of the vibrissotrigeminal pathway.
Collapse
Affiliation(s)
- Nicholas E Bush
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208
| | - Sara A Solla
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
- Department of Physiology, Northwestern University, Chicago, IL 60611
| | - Mitra J Z Hartmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208;
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| |
Collapse
|
37
|
Ebert C, Bagdasarian K, Haidarliu S, Ahissar E, Wallach A. Interactions of Whisking and Touch Signals in the Rat Brainstem. J Neurosci 2021; 41:4826-4839. [PMID: 33893218 PMCID: PMC8260172 DOI: 10.1523/jneurosci.1410-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
Perception is an active process, requiring the integration of both proprioceptive and exteroceptive information. In the rat's vibrissal system, a classical model for active sensing, the relative contribution of the two information streams was previously studied at the peripheral, thalamic, and cortical levels. Contributions of brainstem neurons were only indirectly inferred for some trigeminal nuclei according to their thalamic projections. The current work addressed this knowledge gap by performing the first comparative study of the encoding of proprioceptive whisking and exteroceptive touch signals in the oralis (SpVo), interpolaris (SpVi), and paratrigeminal (Pa5) brainstem nuclei. We used artificial whisking in anesthetized male rats, which allows a systematic analysis of the relative contribution of the proprioceptive and exteroceptive information streams along the ascending pathways in the absence of motor or cognitive top-down modulations. We found that (1) neurons in the rostral and caudal parts of the SpVi convey whisking and touch information, respectively, as predicted by their thalamic projections; (2) neurons in the SpVo encode both whisking and (primarily) touch information; and (3) neurons of the Pa5 encode a complex combination of whisking and touch information. In particular, the Pa5 contains a relatively large fraction of neurons that are inhibited by active touch, a response observed so far only in the thalamus. Overall, our systematic characterization of afferent responses to active touch in the trigeminal brainstem approves the hypothesized functions of SpVi neurons and presents evidence that SpVo and Pa5 neurons are involved in the processing of active vibrissal touch.SIGNIFICANCE STATEMENT The present work constitutes the first comparative study of the encoding of proprioceptive (whisking) and exteroceptive (touch) information in the rat's brainstem trigeminal nuclei, the first stage of vibrissal processing in the CNS. It shows that (1) as expected, the rostral and caudal interpolaris neurons convey primarily whisking and touch information, respectively; (2) the oralis nucleus, whose function was previously unknown, encodes both whisking and (primarily) touch touch information; (3) a subtractive computation, reported at the thalamic level, already occurs at the brainstem level; and (4) a novel afferent pathway probably ascends via the paratrigeminal nucleus, encoding both proprioceptive and exteroceptive information.
Collapse
Affiliation(s)
- Coralie Ebert
- Weizmann Institute of Science, Rehovot, Israel 7610001
| | | | | | - Ehud Ahissar
- Weizmann Institute of Science, Rehovot, Israel 7610001
| | | |
Collapse
|
38
|
O'Connor DH, Krubitzer L, Bensmaia S. Of mice and monkeys: Somatosensory processing in two prominent animal models. Prog Neurobiol 2021; 201:102008. [PMID: 33587956 PMCID: PMC8096687 DOI: 10.1016/j.pneurobio.2021.102008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/26/2020] [Accepted: 02/07/2021] [Indexed: 11/20/2022]
Abstract
Our understanding of the neural basis of somatosensation is based largely on studies of the whisker system of mice and rats and the hands of macaque monkeys. Results across these animal models are often interpreted as providing direct insight into human somatosensation. Work on these systems has proceeded in parallel, capitalizing on the strengths of each model, but has rarely been considered as a whole. This lack of integration promotes a piecemeal understanding of somatosensation. Here, we examine the functions and morphologies of whiskers of mice and rats, the hands of macaque monkeys, and the somatosensory neuraxes of these three species. We then discuss how somatosensory information is encoded in their respective nervous systems, highlighting similarities and differences. We reflect on the limitations of these models of human somatosensation and consider key gaps in our understanding of the neural basis of somatosensation.
Collapse
Affiliation(s)
- Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, United States; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, United States
| | - Leah Krubitzer
- Department of Psychology and Center for Neuroscience, University of California at Davis, United States
| | - Sliman Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, United States; Committee on Computational Neuroscience, University of Chicago, United States; Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, United States.
| |
Collapse
|
39
|
Kent TA, Kim S, Kornilowicz G, Yuan W, Hartmann MJZ, Bergbreiter S. WhiskSight: A Reconfigurable, Vision-Based, Optical Whisker Sensing Array for Simultaneous Contact, Airflow, and Inertia Stimulus Detection. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3062816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Luo Y, Bresee CS, Rudnicki JW, Hartmann MJZ. Constraints on the deformation of the vibrissa within the follicle. PLoS Comput Biol 2021; 17:e1007887. [PMID: 33793548 PMCID: PMC8016108 DOI: 10.1371/journal.pcbi.1007887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/10/2020] [Indexed: 11/26/2022] Open
Abstract
Nearly all mammals have a vibrissal system specialized for tactile sensation, composed of whiskers growing from sensor-rich follicles in the skin. When a whisker deflects against an object, it deforms within the follicle and exerts forces on the mechanoreceptors inside. In addition, during active whisking behavior, muscle contractions around the follicle and increases in blood pressure in the ring sinus will affect the whisker deformation profile. To date, however, it is not yet possible to experimentally measure how the whisker deforms in an intact follicle or its effects on different groups of mechanoreceptors. The present study develops a novel model to predict vibrissal deformation within the follicle sinus complex. The model is based on experimental results from a previous ex vivo study on whisker deformation within the follicle, and on a new histological analysis of follicle tissue. It is then used to simulate whisker deformation within the follicle during passive touch and active whisking. Results suggest that the most likely whisker deformation profile is “S-shaped,” crossing the midline of the follicle right below the ring sinus. Simulations of active whisking indicate that an increase in overall muscle stiffness, an increase in the ratio between deep and superficial intrinsic muscle stiffness, and an increase in sinus blood pressure will all enhance tactile sensitivity. Finally, we discuss how the deformation profiles might map to the responses of primary afferents of each mechanoreceptor type. The mechanical model presented in this study is an important first step in simulating mechanical interactions within whisker follicles. Many mammals rely on whiskers as a mode of tactile sensation, especially when exploring in darkness. Active, rhythmic protraction and retraction of the whiskers, commonly referred to as “whisking,” is observed among many whisker specialist animals. During whisker-based sensing, forces and moments generated by external stimuli are transmitted to the base of the whisker shaft inside the follicle. Within the follicle, the interaction between the whisker’s deformation and the surrounding tissue determines how different groups of mechanoreceptors will deform, thereby transducing the mechanical signals into electrical signals. However, it is not yet possible to experimentally measure this interaction in vivo. We therefore created a mechanical model of the follicle sinus complex to simulate whisker deformation within the follicle resulting from external whisker deflection. Our results provide the first estimate of whisker shape as it deforms in the follicle, during both passive touch and active whisking. In turn, these shape estimates allow us to predict how the whisker will deform against different types of mechanoreceptors at different locations within the follicle. In addition, we find that both intrinsic muscle contraction and an increase in blood pressure will improve the tactile sensitivity of the whisker system.
Collapse
Affiliation(s)
- Yifu Luo
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Chris S. Bresee
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
| | - John W. Rudnicki
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Mitra J. Z. Hartmann
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
41
|
Cheung JA, Maire P, Kim J, Lee K, Flynn G, Hires SA. Independent representations of self-motion and object location in barrel cortex output. PLoS Biol 2020; 18:e3000882. [PMID: 33141817 PMCID: PMC7665803 DOI: 10.1371/journal.pbio.3000882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 11/13/2020] [Accepted: 09/18/2020] [Indexed: 11/19/2022] Open
Abstract
During active tactile exploration, the dynamic patterns of touch are transduced to electrical signals and transformed by the brain into a mental representation of the object under investigation. This transformation from sensation to perception is thought to be a major function of the mammalian cortex. In primary somatosensory cortex (S1) of mice, layer 5 (L5) pyramidal neurons are major outputs to downstream areas that influence perception, decision-making, and motor control. We investigated self-motion and touch representations in L5 of S1 with juxtacellular loose-seal patch recordings of optogenetically identified excitatory neurons. We found that during rhythmic whisker movement, 54 of 115 active neurons (47%) represented self-motion. This population was significantly more modulated by whisker angle than by phase. Upon active touch, a distinct pattern of activity was evoked across L5, which represented the whisker angle at the time of touch. Object location was decodable with submillimeter precision from the touch-evoked spike counts of a randomly sampled handful of these neurons. These representations of whisker angle during self-motion and touch were independent, both in the selection of which neurons were active and in the angle-tuning preference of coactive neurons. Thus, the output of S1 transiently shifts from a representation of self-motion to an independent representation of explored object location during active touch.
Collapse
Affiliation(s)
- Jonathan Andrew Cheung
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Phillip Maire
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Jinho Kim
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Kiana Lee
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Garrett Flynn
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Samuel Andrew Hires
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
42
|
Birkoben T, Winterfeld H, Fichtner S, Petraru A, Kohlstedt H. A spiking and adapting tactile sensor for neuromorphic applications. Sci Rep 2020; 10:17260. [PMID: 33057032 PMCID: PMC7560658 DOI: 10.1038/s41598-020-74219-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 09/29/2020] [Indexed: 11/23/2022] Open
Abstract
The ongoing research on and development of increasingly intelligent artificial systems propels the need for bio inspired pressure sensitive spiking circuits. Here we present an adapting and spiking tactile sensor, based on a neuronal model and a piezoelectric field-effect transistor (PiezoFET). The piezoelectric sensor device consists of a metal-oxide semiconductor field-effect transistor comprising a piezoelectric aluminium-scandium-nitride (AlxSc1-xN) layer inside of the gate stack. The so augmented device is sensitive to mechanical stress. In combination with an analogue circuit, this sensor unit is capable of encoding the mechanical quantity into a series of spikes with an ongoing adaptation of the output frequency. This allows for a broad application in the context of robotic and neuromorphic systems, since it enables said systems to receive information from the surrounding environment and provide encoded spike trains for neuromorphic hardware. We present numerical and experimental results on this spiking and adapting tactile sensor.
Collapse
Affiliation(s)
- Tom Birkoben
- Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, 24143, Kiel, Germany.
| | - Henning Winterfeld
- Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, 24143, Kiel, Germany
| | - Simon Fichtner
- Materials and Processes for Nanosystem Technologies, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, 24143, Kiel, Germany
| | - Adrian Petraru
- Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, 24143, Kiel, Germany
| | - Hermann Kohlstedt
- Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, 24143, Kiel, Germany.
| |
Collapse
|
43
|
Kim J, Erskine A, Cheung JA, Hires SA. Behavioral and Neural Bases of Tactile Shape Discrimination Learning in Head-Fixed Mice. Neuron 2020; 108:953-967.e8. [PMID: 33002411 DOI: 10.1016/j.neuron.2020.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Tactile shape recognition requires the perception of object surface angles. We investigate how neural representations of object angles are constructed from sensory input and how they reorganize across learning. Head-fixed mice learned to discriminate object angles by active exploration with one whisker. Calcium imaging of layers 2-4 of the barrel cortex revealed maps of object-angle tuning before and after learning. Three-dimensional whisker tracking demonstrated that the sensory input components that best discriminate angles (vertical bending and slide distance) also have the greatest influence on object-angle tuning. Despite the high turnover in active ensemble membership across learning, the population distribution of object-angle tuning preferences remained stable. Angle tuning sharpened, but only in neurons that preferred trained angles. This was correlated with a selective increase in the influence of the most task-relevant sensory component on object-angle tuning. These results show how discrimination training enhances stimulus selectivity in the primary somatosensory cortex while maintaining perceptual stability.
Collapse
Affiliation(s)
- Jinho Kim
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Erskine
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Andrew Cheung
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Samuel Andrew Hires
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
44
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
45
|
Touch: Fluctuating Waves of Perception. Curr Biol 2020; 30:R934-R936. [PMID: 32810452 DOI: 10.1016/j.cub.2020.06.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Does sensory input flow into the brain as a stream, or does it come in waves? New research shows that tactile information in the cortex rises and falls in phase with the forward and back motion of whiskers during surface exploration.
Collapse
|
46
|
Jones JM, Foster W, Twomey CR, Burdge J, Ahmed OM, Pereira TD, Wojick JA, Corder G, Plotkin JB, Abdus-Saboor I. A machine-vision approach for automated pain measurement at millisecond timescales. eLife 2020; 9:e57258. [PMID: 32758355 PMCID: PMC7434442 DOI: 10.7554/elife.57258] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/05/2020] [Indexed: 12/28/2022] Open
Abstract
Objective and automatic measurement of pain in mice remains a barrier for discovery in neuroscience. Here, we capture paw kinematics during pain behavior in mice with high-speed videography and automated paw tracking with machine and deep learning approaches. Our statistical software platform, PAWS (Pain Assessment at Withdrawal Speeds), uses a univariate projection of paw position over time to automatically quantify seven behavioral features that are combined into a single, univariate pain score. Automated paw tracking combined with PAWS reveals a behaviorally divergent mouse strain that displays hypersensitivity to mechanical stimuli. To demonstrate the efficacy of PAWS for detecting spinally versus centrally mediated behavioral responses, we chemogenetically activated nociceptive neurons in the amygdala, which further separated the pain-related behavioral features and the resulting pain score. Taken together, this automated pain quantification approach will increase objectivity in collecting rigorous behavioral data, and it is compatible with other neural circuit dissection tools for determining the mouse pain state.
Collapse
Affiliation(s)
- Jessica M Jones
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - William Foster
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Colin R Twomey
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Justin Burdge
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Osama M Ahmed
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Talmo D Pereira
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jessica A Wojick
- Departments of Psychiatry and Neuroscience, University of PennsylvaniaPhiladelphiaUnited States
| | - Gregory Corder
- Departments of Psychiatry and Neuroscience, University of PennsylvaniaPhiladelphiaUnited States
| | - Joshua B Plotkin
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | | |
Collapse
|
47
|
Isett BR, Feldman DE. Cortical Coding of Whisking Phase during Surface Whisking. Curr Biol 2020; 30:3065-3074.e5. [PMID: 32531284 DOI: 10.1016/j.cub.2020.05.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/16/2020] [Accepted: 05/19/2020] [Indexed: 12/27/2022]
Abstract
In rodent whisker sensation, whisker position signals, including whisking phase, are integrated with touch signals to enable spatially accurate tactile perception, but other functions of phase coding are unclear. We investigate how phase coding affects the neural coding of surface features during surface whisking. In mice performing rough-smooth discrimination, S1 units exhibit much stronger phase tuning during surface whisking than in prior studies of whisking in air. Among putative pyramidal cells, preferred phase tiles phase space, but protraction phases are strongly over-represented. Fast-spiking units are nearly all protraction tuned. This protraction bias increases the coding of stick-slip whisker events during protraction, suggesting that surface features are preferentially encoded during protraction. Correspondingly, protraction-tuned units encode rough-smooth texture better than retraction-tuned units and encode the precise spatial location of surface ridges with higher acuity. This suggests that protraction is the main information-gathering phase for high-resolution surface features, with phase coding organized to support this function.
Collapse
Affiliation(s)
- Brian R Isett
- Department of Molecular and Cellular Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel E Feldman
- Department of Molecular and Cellular Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
48
|
Predictive whisker kinematics reveal context-dependent sensorimotor strategies. PLoS Biol 2020; 18:e3000571. [PMID: 32453721 PMCID: PMC7274460 DOI: 10.1371/journal.pbio.3000571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 06/05/2020] [Accepted: 05/11/2020] [Indexed: 01/27/2023] Open
Abstract
Animals actively move their sensory organs in order to acquire sensory information. Some rodents, such as mice and rats, employ cyclic scanning motions of their facial whiskers to explore their proximal surrounding, a behavior known as whisking. Here, we investigated the contingency of whisking kinematics on the animal's behavioral context that arises from both internal processes (attention and expectations) and external constraints (available sensory and motor degrees of freedom). We recorded rat whisking at high temporal resolution in 2 experimental contexts-freely moving or head-fixed-and 2 spatial sensory configurations-a single row or 3 caudal whiskers on each side of the snout. We found that rapid sensorimotor twitches, called pumps, occurring during free-air whisking carry information about the rat's upcoming exploratory direction, as demonstrated by the ability of these pumps to predict consequent head and body locomotion. Specifically, pump behavior during both voluntary motionlessness and imposed head fixation exposed a backward redistribution of sensorimotor exploratory resources. Further, head-fixed rats employed a wide range of whisking profiles to compensate for the loss of head- and body-motor degrees of freedom. Finally, changing the number of intact vibrissae available to a rat resulted in an alteration of whisking strategy consistent with the rat actively reallocating its remaining resources. In sum, this work shows that rats adapt their active exploratory behavior in a homeostatic attempt to preserve sensorimotor coverage under changing environmental conditions and changing sensory capacities, including those imposed by various laboratory conditions.
Collapse
|
49
|
Furuta T, Bush NE, Yang AET, Ebara S, Miyazaki N, Murata K, Hirai D, Shibata KI, Hartmann MJZ. The Cellular and Mechanical Basis for Response Characteristics of Identified Primary Afferents in the Rat Vibrissal System. Curr Biol 2020; 30:815-826.e5. [PMID: 32004452 PMCID: PMC10623402 DOI: 10.1016/j.cub.2019.12.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/09/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023]
Abstract
Compared to our understanding of the response properties of receptors in the auditory and visual systems, we have only a limited understanding of the mechanoreceptor responses that underlie tactile sensation. Here, we exploit the stereotyped morphology of the rat vibrissal (whisker) array to investigate coding and transduction properties of identified primary tactile afferents. We performed in vivo intra-axonal recording and labeling experiments to quantify response characteristics of four different types of identified mechanoreceptors in the vibrissal follicle: ring-sinus Merkel; lanceolate; clublike; and rete-ridge collar Merkel. Of these types, only ring-sinus Merkel endings exhibited slowly adapting properties. A weak inverse relationship between response magnitude and onset response latency was found across all types. All afferents exhibited strong "angular tuning," i.e., their response magnitude and latency depended on the whisker's deflection angle. Although previous studies suggested that this tuning should be aligned with the angular location of the mechanoreceptor in the follicle, such alignment was observed only for Merkel afferents; angular tuning of the other afferent types showed no clear alignment with mechanoreceptor location. Biomechanical modeling suggested that this tuning difference might be explained by mechanoreceptors' differential sensitivity to the force directed along the whisker length. Electron microscopic investigations of Merkel endings and lanceolate endings at the level of the ring sinus revealed unique anatomical features that may promote these differential sensitivities. The present study systematically integrates biomechanical principles with the anatomical and morphological characterization of primary afferent endings to describe the physical and cellular processing that shapes the neural representation of touch.
Collapse
Affiliation(s)
- Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita, Osaka 565-0871, Japan; Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Nicholas E Bush
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Anne En-Tzu Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Satomi Ebara
- Department of Anatomy, Meiji University of Integrative Medicine, Kyoto 629-0392, Japan
| | - Naoyuki Miyazaki
- National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Daichi Hirai
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ken-Ichi Shibata
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitra J Z Hartmann
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
50
|
Somatosensation: The Cellular and Physical Basis of Tactile Experience. Curr Biol 2020; 30:R215-R217. [PMID: 32155422 DOI: 10.1016/j.cub.2020.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fundamental question in sensory neuroscience is how perceptual experience arises from the cellular properties of sensory neurons. A new, tour de force study has dissected out the functional properties of identified mechanosensory nerve endings that innervate whisker follicles.
Collapse
|