1
|
Shah NP, Phillips AJ, Madugula S, Lotlikar A, Gogliettino AR, Hays MR, Grosberg L, Brown J, Dusi A, Tandon P, Hottowy P, Dabrowski W, Sher A, Litke AM, Mitra S, Chichilnisky EJ. Precise control of neural activity using dynamically optimized electrical stimulation. eLife 2024; 13:e83424. [PMID: 39508555 PMCID: PMC11542921 DOI: 10.7554/elife.83424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/15/2024] [Indexed: 11/15/2024] Open
Abstract
Neural implants have the potential to restore lost sensory function by electrically evoking the complex naturalistic activity patterns of neural populations. However, it can be difficult to predict and control evoked neural responses to simultaneous multi-electrode stimulation due to nonlinearity of the responses. We present a solution to this problem and demonstrate its utility in the context of a bidirectional retinal implant for restoring vision. A dynamically optimized stimulation approach encodes incoming visual stimuli into a rapid, greedily chosen, temporally dithered and spatially multiplexed sequence of simple stimulation patterns. Stimuli are selected to optimize the reconstruction of the visual stimulus from the evoked responses. Temporal dithering exploits the slow time scales of downstream neural processing, and spatial multiplexing exploits the independence of responses generated by distant electrodes. The approach was evaluated using an experimental laboratory prototype of a retinal implant: large-scale, high-resolution multi-electrode stimulation and recording of macaque and rat retinal ganglion cells ex vivo. The dynamically optimized stimulation approach substantially enhanced performance compared to existing approaches based on static mapping between visual stimulus intensity and current amplitude. The modular framework enabled parallel extensions to naturalistic viewing conditions, incorporation of perceptual similarity measures, and efficient implementation for an implantable device. A direct closed-loop test of the approach supported its potential use in vision restoration.
Collapse
Affiliation(s)
- Nishal Pradeepbhai Shah
- Department of Electrical EngineeringStanfordUnited States
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - AJ Phillips
- Department of Electrical EngineeringStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - Sasidhar Madugula
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | | | - Alex R Gogliettino
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
- Neurosciences PhD ProgramStanfordUnited States
| | - Madeline Rose Hays
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
- Department of BioengineeringStanfordUnited States
| | - Lauren Grosberg
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
| | - Jeff Brown
- Department of Electrical EngineeringStanfordUnited States
| | - Aditya Dusi
- Department of Electrical EngineeringStanfordUnited States
| | - Pulkit Tandon
- Department of Electrical EngineeringStanfordUnited States
| | - Pawel Hottowy
- AGH University of Science and Technology, Faculty of Physics and Applied Computer ScienceKrakowPoland
| | - Wladyslaw Dabrowski
- AGH University of Science and Technology, Faculty of Physics and Applied Computer ScienceKrakowPoland
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CASanta CruzUnited States
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CASanta CruzUnited States
| | | | - EJ Chichilnisky
- Department of NeurosurgeryStanfordUnited States
- Hansen Experimental Physics Laboratory, Stanford UniversityStanfordUnited States
- Department of OphthalmologyStanfordUnited States
| |
Collapse
|
2
|
Kling A, Cooler S, Manookin MB, Rhoades C, Brackbill N, Field G, Rieke F, Sher A, Litke A, Chichilnisky EJ. Functional diversity in the output of the primate retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621339. [PMID: 39554060 PMCID: PMC11565969 DOI: 10.1101/2024.10.31.621339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The visual image transmitted by the retina to the brain has long been understood in terms of spatial filtering by the center-surround receptive fields of retinal ganglion cells (RGCs). Recently, this textbook view has been challenged by the stunning functional diversity and specificity observed in ∼40 distinct RGC types in the mouse retina. However, it is unclear whether the ∼20 morphologically and molecularly identified RGC types in primates exhibit similar functional diversity, or instead exhibit center-surround organization at different spatial scales. Here, we reveal striking and surprising functional diversity in macaque and human RGC types using large-scale multi-electrode recordings from isolated macaque and human retinas. In addition to the five well-known primate RGC types, 18-27 types were distinguished by their functional properties, likely revealing several previously unknown types. Surprisingly, many of these cell types exhibited striking non-classical receptive field structure, including irregular spatial and chromatic properties not previously reported in any species. Qualitatively similar results were observed in recordings from the human retina. The receptive fields of less-understood RGC types formed uniform mosaics covering visual space, confirming their classification, and the morphological counterparts of two types were established using single-cell recording. The striking receptive field diversity was paralleled by distinctive responses to natural movies and complexity of visual computation. These findings suggest that diverse RGC types, rather than merely filtering the scene at different spatial scales, instead play specialized roles in human vision.
Collapse
|
3
|
Kim YJ, Packer O, Dacey DM. A circuit motif for color in the human foveal retina. Proc Natl Acad Sci U S A 2024; 121:e2405138121. [PMID: 39190352 PMCID: PMC11388358 DOI: 10.1073/pnas.2405138121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 08/28/2024] Open
Abstract
The neural pathways that start human color vision begin in the complex synaptic network of the foveal retina where signals originating in long (L), middle (M), and short (S) wavelength-sensitive cone photoreceptor types are compared through antagonistic interactions, referred to as opponency. In nonhuman primates, two cone opponent pathways are well established: an L vs. M cone circuit linked to the midget ganglion cell type, often called the red-green pathway, and an S vs. L + M cone circuit linked to the small bistratified ganglion cell type, often called the blue-yellow pathway. These pathways have been taken to correspond in human vision to cardinal directions in a trichromatic color space, providing the parallel inputs to higher-level color processing. Yet linking cone opponency in the nonhuman primate retina to color mechanisms in human vision has proven particularly difficult. Here, we apply connectomic reconstruction to the human foveal retina to trace parallel excitatory synaptic outputs from the S-ON (or "blue-cone") bipolar cell to the small bistratified cell and two additional ganglion cell types: a large bistratified ganglion cell and a subpopulation of ON-midget ganglion cells, whose synaptic connections suggest a significant and unique role in color vision. These two ganglion cell types are postsynaptic to both S-ON and L vs. M opponent midget bipolar cells and thus define excitatory pathways in the foveal retina that merge the cardinal red-green and blue-yellow circuits, with the potential for trichromatic cone opponency at the first stage of human vision.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Orin Packer
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Dennis M Dacey
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| |
Collapse
|
4
|
Lee SCS, Wei AJ, Martin PR, Grünert U. Thorny and Tufted Retinal Ganglion Cells Express the Transcription Factor Forkhead Proteins Foxp1 and Foxp2 in Marmoset (Callithrix jacchus). J Comp Neurol 2024; 532:e25663. [PMID: 39235164 DOI: 10.1002/cne.25663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
The transcription factor forkhead/winged-helix domain proteins Foxp1 and Foxp2 have previously been studied in mouse retina, where they are expressed in retinal ganglion cells named F-mini and F-midi. Here we show that both transcription factors are expressed by small subpopulations (on average less than 10%) of retinal ganglion cells in the retina of the marmoset monkey (Callithrix jacchus). The morphology of Foxp1- and Foxp2-expressing cells was revealed by intracellular DiI injections of immunofluorescent cells. Foxp1- and Foxp2-expressing cells comprised multiple types of wide-field ganglion cells, including broad thorny cells, narrow thorny cells, and tufted cells. The large majority of Foxp2-expressing cells were identified as tufted cells. Tufted cells stratify broadly in the middle of the inner plexiform layer. They resemble broad thorny cells but their proximal dendrites are bare of branches and the distal dendrites branch frequently forming dense dendritic tufts. Double labeling with calretinin, a previously established marker for broad thorny and narrow thorny cells, showed that only a small proportion of ganglion cells co-expressed calretinin and Foxp1 or Foxp2 supporting the idea that the two markers are differentially expressed in retinal ganglion cells of marmoset retina.
Collapse
Affiliation(s)
- Sammy C S Lee
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anlai J Wei
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Martin
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ulrike Grünert
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Fitzpatrick MJ, Krizan J, Hsiang JC, Shen N, Kerschensteiner D. A pupillary contrast response in mice and humans: Neural mechanisms and visual functions. Neuron 2024; 112:2404-2422.e9. [PMID: 38697114 PMCID: PMC11257825 DOI: 10.1016/j.neuron.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
In the pupillary light response (PLR), increases in ambient light constrict the pupil to dampen increases in retinal illuminance. Here, we report that the pupillary reflex arc implements a second input-output transformation; it senses temporal contrast to enhance spatial contrast in the retinal image and increase visual acuity. The pupillary contrast response (PCoR) is driven by rod photoreceptors via type 6 bipolar cells and M1 ganglion cells. Temporal contrast is transformed into sustained pupil constriction by the M1's conversion of excitatory input into spike output. Computational modeling explains how the PCoR shapes retinal images. Pupil constriction improves acuity in gaze stabilization and predation in mice. Humans exhibit a PCoR with similar tuning properties to mice, which interacts with eye movements to optimize the statistics of the visual input for retinal encoding. Thus, we uncover a conserved component of active vision, its cell-type-specific pathway, computational mechanisms, and optical and behavioral significance.
Collapse
Affiliation(s)
- Michael J Fitzpatrick
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jenna Krizan
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jen-Chun Hsiang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Ning Shen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Chandran KS, Ghosh K. A deep learning based cognitive model to probe the relation between psychophysics and electrophysiology of flicker stimulus. Brain Inform 2024; 11:18. [PMID: 38987386 PMCID: PMC11236830 DOI: 10.1186/s40708-024-00231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
The flicker stimulus is a visual stimulus of intermittent illumination. A flicker stimulus can appear flickering or steady to a human subject, depending on the physical parameters associated with the stimulus. When the flickering light appears steady, flicker fusion is said to have occurred. This work aims to bridge the gap between the psychophysics of flicker fusion and the electrophysiology associated with flicker stimulus through a Deep Learning based computational model of flicker perception. Convolutional Recurrent Neural Networks (CRNNs) were trained with psychophysics data of flicker stimulus obtained from a human subject. We claim that many of the reported features of electrophysiology of the flicker stimulus, including the presence of fundamentals and harmonics of the stimulus, can be explained as the result of a temporal convolution operation on the flicker stimulus. We further show that the convolution layer output of a CRNN trained with psychophysics data is more responsive to specific frequencies as in human EEG response to flicker, and the convolution layer of a trained CRNN can give a nearly sinusoidal output for 10 hertz flicker stimulus as reported for some human subjects.
Collapse
Affiliation(s)
- Keerthi S Chandran
- Center for Soft Computing Research, Indian Statistical Institue, 203 BT Road, Kolkata, West Bengal, 700108, India.
- Machine Intelligence Unit, Indian Statistical Institute, 203 BT Road, Kolkata, West Bengal, 700108, India.
| | - Kuntal Ghosh
- Center for Soft Computing Research, Indian Statistical Institue, 203 BT Road, Kolkata, West Bengal, 700108, India
- Machine Intelligence Unit, Indian Statistical Institute, 203 BT Road, Kolkata, West Bengal, 700108, India
| |
Collapse
|
7
|
Kilpeläinen M, Westö J, Tiihonen J, Laihi A, Takeshita D, Rieke F, Ala-Laurila P. Primate retina trades single-photon detection for high-fidelity contrast encoding. Nat Commun 2024; 15:4501. [PMID: 38802354 PMCID: PMC11130139 DOI: 10.1038/s41467-024-48750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
How the spike output of the retina enables human visual perception is not fully understood. Here, we address this at the sensitivity limit of vision by correlating human visual perception with the spike outputs of primate ON and OFF parasol (magnocellular) retinal ganglion cells in tightly matching stimulus conditions. We show that human vision at its ultimate sensitivity limit depends on the spike output of the ON but not the OFF retinal pathway. Consequently, nonlinear signal processing in the retinal ON pathway precludes perceptual detection of single photons in darkness but enables quantal-resolution discrimination of differences in light intensity.
Collapse
Affiliation(s)
- Markku Kilpeläinen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Johan Westö
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Jussi Tiihonen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Anton Laihi
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Daisuke Takeshita
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, US
| | - Petri Ala-Laurila
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland.
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.
| |
Collapse
|
8
|
Despotović D, Joffrois C, Marre O, Chalk M. Encoding surprise by retinal ganglion cells. PLoS Comput Biol 2024; 20:e1011965. [PMID: 38630835 PMCID: PMC11057717 DOI: 10.1371/journal.pcbi.1011965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/29/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024] Open
Abstract
The efficient coding hypothesis posits that early sensory neurons transmit maximal information about sensory stimuli, given internal constraints. A central prediction of this theory is that neurons should preferentially encode stimuli that are most surprising. Previous studies suggest this may be the case in early visual areas, where many neurons respond strongly to rare or surprising stimuli. For example, previous research showed that when presented with a rhythmic sequence of full-field flashes, many retinal ganglion cells (RGCs) respond strongly at the instance the flash sequence stops, and when another flash would be expected. This phenomenon is called the 'omitted stimulus response'. However, it is not known whether the responses of these cells varies in a graded way depending on the level of stimulus surprise. To investigate this, we presented retinal neurons with extended sequences of stochastic flashes. With this stimulus, the surprise associated with a particular flash/silence, could be quantified analytically, and varied in a graded manner depending on the previous sequences of flashes and silences. Interestingly, we found that RGC responses could be well explained by a simple normative model, which described how they optimally combined their prior expectations and recent stimulus history, so as to encode surprise. Further, much of the diversity in RGC responses could be explained by the model, due to the different prior expectations that different neurons had about the stimulus statistics. These results suggest that even as early as the retina many cells encode surprise, relative to their own, internally generated expectations.
Collapse
Affiliation(s)
- Danica Despotović
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Corentin Joffrois
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Olivier Marre
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Matthew Chalk
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
9
|
Godat T, Kohout K, Yang Q, Parkins K, McGregor JE, Merigan WH, Williams DR, Patterson SS. Cone-Opponent Ganglion Cells in the Primate Fovea Tuned to Non-Cardinal Color Directions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557995. [PMID: 37745616 PMCID: PMC10516013 DOI: 10.1101/2023.09.15.557995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A long-standing question in vision science is how the three cone photoreceptor types - long (L), medium (M) and short (S) wavelength sensitive - combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L+S and L vs. M+S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds are L vs. M and S vs. L+M. The cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in cortex. However, small populations with the appropriate M vs. L+S and L vs. M+S cone-opponency have been reported in large surveys of cone inputs to primate RGCs and their projections to the lateral geniculate nucleus (LGN) yet their existence continues to be debated. Resolving this long-standing open question is needed as a complete account of the cone-opponency in the retinal output is critical for efforts to understand how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to longitudinally and noninvasively measurements of the foveal RGC light responses in the living macaque eye. We confirm the presence of L vs. M+S and M vs. L+S neurons with non-cardinal cone-opponency and demonstrate that cone-opponent signals in the retinal output are substantially more diverse than classically thought.
Collapse
Affiliation(s)
- Tyler Godat
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Institute of Optics, University of Rochester, Rochester, NY, 14627
| | - Kendall Kohout
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| | - Juliette E. McGregor
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
| | - William H. Merigan
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Institute of Optics, University of Rochester, Rochester, NY, 14627
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
| | - Sara S. Patterson
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| |
Collapse
|
10
|
Zaidi M, Aggarwal G, Shah NP, Karniol-Tambour O, Goetz G, Madugula SS, Gogliettino AR, Wu EG, Kling A, Brackbill N, Sher A, Litke AM, Chichilnisky EJ. Inferring light responses of primate retinal ganglion cells using intrinsic electrical signatures. J Neural Eng 2023; 20:10.1088/1741-2552/ace657. [PMID: 37433293 PMCID: PMC11067857 DOI: 10.1088/1741-2552/ace657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Objective. Retinal implants are designed to stimulate retinal ganglion cells (RGCs) in a way that restores sight to individuals blinded by photoreceptor degeneration. Reproducing high-acuity vision with these devices will likely require inferring the natural light responses of diverse RGC types in the implanted retina, without being able to measure them directly. Here we demonstrate an inference approach that exploits intrinsic electrophysiological features of primate RGCs.Approach.First, ON-parasol and OFF-parasol RGC types were identified using their intrinsic electrical features in large-scale multi-electrode recordings from macaque retina. Then, the electrically inferred somatic location, inferred cell type, and average linear-nonlinear-Poisson model parameters of each cell type were used to infer a light response model for each cell. The accuracy of the cell type classification and of reproducing measured light responses with the model were evaluated.Main results.A cell-type classifier trained on 246 large-scale multi-electrode recordings from 148 retinas achieved 95% mean accuracy on 29 test retinas. In five retinas tested, the inferred models achieved an average correlation with measured firing rates of 0.49 for white noise visual stimuli and 0.50 for natural scenes stimuli, compared to 0.65 and 0.58 respectively for models fitted to recorded light responses (an upper bound). Linear decoding of natural images from predicted RGC activity in one retina showed a mean correlation of 0.55 between decoded and true images, compared to an upper bound of 0.81 using models fitted to light response data.Significance.These results suggest that inference of RGC light response properties from intrinsic features of their electrical activity may be a useful approach for high-fidelity sight restoration. The overall strategy of first inferring cell type from electrical features and then exploiting cell type to help infer natural cell function may also prove broadly useful to neural interfaces.
Collapse
Affiliation(s)
- Moosa Zaidi
- Stanford University School of Medicine, Stanford University, Stanford, CA, United States of America
- Neurosurgery, Stanford University, Stanford, CA, United States of America
| | - Gorish Aggarwal
- Neurosurgery, Stanford University, Stanford, CA, United States of America
- Electrical Engineering, Stanford University, Stanford, CA, United States of America
| | - Nishal P Shah
- Neurosurgery, Stanford University, Stanford, CA, United States of America
| | - Orren Karniol-Tambour
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
| | - Georges Goetz
- Neurosurgery, Stanford University, Stanford, CA, United States of America
| | - Sasidhar S Madugula
- Stanford University School of Medicine, Stanford University, Stanford, CA, United States of America
- Neurosciences, Stanford University, Stanford, CA, United States of America
| | - Alex R Gogliettino
- Neurosciences, Stanford University, Stanford, CA, United States of America
| | - Eric G Wu
- Electrical Engineering, Stanford University, Stanford, CA, United States of America
| | - Alexandra Kling
- Neurosurgery, Stanford University, Stanford, CA, United States of America
| | - Nora Brackbill
- Physics, Stanford University, Stanford, CA, United States of America
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - E J Chichilnisky
- Neurosurgery, Stanford University, Stanford, CA, United States of America
- Ophthalmology, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
11
|
Poudel S, Rahimi-Nasrabadi H, Jin J, Najafian S, Alonso JM. Differences in visual stimulation between reading and walking and implications for myopia development. J Vis 2023; 23:3. [PMID: 37014657 PMCID: PMC10080958 DOI: 10.1167/jov.23.4.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/11/2023] [Indexed: 04/05/2023] Open
Abstract
Visual input plays an important role in the development of myopia (nearsightedness), a visual disorder that blurs vision at far distances. The risk of myopia progression increases with the time spent reading and decreases with outdoor activity for reasons that remain poorly understood. To investigate the stimulus parameters driving this disorder, we compared the visual input to the retina of humans performing two tasks associated with different risks of myopia progression, reading and walking. Human subjects performed the two tasks while wearing glasses with cameras and sensors that recorded visual scenes and visuomotor activity. When compared with walking, reading black text in white background reduced spatiotemporal contrast in central vision and increased it in peripheral vision, leading to a pronounced reduction in the ratio of central/peripheral strength of visual stimulation. It also made the luminance distribution heavily skewed toward negative dark contrast in central vision and positive light contrast in peripheral vision, decreasing the central/peripheral stimulation ratio of ON visual pathways. It also decreased fixation distance, blink rate, pupil size, and head-eye coordination reflexes dominated by ON pathways. Taken together with previous work, these results support the hypothesis that reading drives myopia progression by understimulating ON visual pathways.
Collapse
Affiliation(s)
- Sabina Poudel
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Hamed Rahimi-Nasrabadi
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Jianzhong Jin
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Sohrab Najafian
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| |
Collapse
|
12
|
In vivo chromatic and spatial tuning of foveolar retinal ganglion cells in Macaca fascicularis. PLoS One 2022; 17:e0278261. [PMID: 36445926 PMCID: PMC9707781 DOI: 10.1371/journal.pone.0278261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/13/2022] [Indexed: 11/30/2022] Open
Abstract
The primate fovea is specialized for high acuity chromatic vision, with the highest density of cone photoreceptors and a disproportionately large representation in visual cortex. The unique visual properties conferred by the fovea are conveyed to the brain by retinal ganglion cells, the somas of which lie at the margin of the foveal pit. Microelectrode recordings of these centermost retinal ganglion cells have been challenging due to the fragility of the fovea in the excised retina. Here we overcome this challenge by combining high resolution fluorescence adaptive optics ophthalmoscopy with calcium imaging to optically record functional responses of foveal retinal ganglion cells in the living eye. We use this approach to study the chromatic responses and spatial transfer functions of retinal ganglion cells using spatially uniform fields modulated in different directions in color space and monochromatic drifting gratings. We recorded from over 350 cells across three Macaca fascicularis primates over a time period of weeks to months. We find that the majority of the L vs. M cone opponent cells serving the most central foveolar cones have spatial transfer functions that peak at high spatial frequencies (20-40 c/deg), reflecting strong surround inhibition that sacrifices sensitivity at low spatial frequencies but preserves the transmission of fine detail in the retinal image. In addition, we fit to the drifting grating data a detailed model of how ganglion cell responses draw on the cone mosaic to derive receptive field properties of L vs. M cone opponent cells at the very center of the foveola. The fits are consistent with the hypothesis that foveal midget ganglion cells are specialized to preserve information at the resolution of the cone mosaic. By characterizing the functional properties of retinal ganglion cells in vivo through adaptive optics, we characterize the response characteristics of these cells in situ.
Collapse
|
13
|
Percival KA, Gayet J, Khanjian R, Taylor WR, Puthussery T. Calcium-permeable AMPA receptors on AII amacrine cells mediate sustained signaling in the On-pathway of the primate retina. Cell Rep 2022; 41:111484. [PMID: 36223749 PMCID: PMC10518213 DOI: 10.1016/j.celrep.2022.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022] Open
Abstract
Midget and parasol ganglion cells (GCs) represent the major output channels from the primate eye to the brain. On-type midget and parasol GCs exhibit a higher background spike rate and thus can respond more linearly to contrast changes than their Off-type counterparts. Here, we show that a calcium-permeable AMPA receptor (CP-AMPAR) antagonist blocks background spiking and sustained light-evoked firing in On-type GCs while preserving transient light responses. These effects are selective for On-GCs and are occluded by a gap-junction blocker suggesting involvement of AII amacrine cells (AII-ACs). Direct recordings from AII-ACs, cobalt uptake experiments, and analyses of transcriptomic data confirm that CP-AMPARs are expressed by primate AII-ACs. Overall, our data demonstrate that under some background light levels, CP-AMPARs at the rod bipolar to AII-AC synapse drive sustained signaling in On-type GCs and thus contribute to the more linear contrast signaling of the primate On- versus Off-pathway.
Collapse
Affiliation(s)
- Kumiko A Percival
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jacqueline Gayet
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA 94720-2020, USA
| | - Roupen Khanjian
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - W Rowland Taylor
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA 94720-2020, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-2020, USA
| | - Teresa Puthussery
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA 94720-2020, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-2020, USA.
| |
Collapse
|
14
|
Seenivasan P, Narayanan R. Efficient information coding and degeneracy in the nervous system. Curr Opin Neurobiol 2022; 76:102620. [PMID: 35985074 PMCID: PMC7613645 DOI: 10.1016/j.conb.2022.102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
Efficient information coding (EIC) is a universal biological framework rooted in the fundamental principle that system responses should match their natural stimulus statistics for maximizing environmental information. Quantitatively assessed through information theory, such adaptation to the environment occurs at all biological levels and timescales. The context dependence of environmental stimuli and the need for stable adaptations make EIC a daunting task. We argue that biological complexity is the principal architect that subserves deft execution of stable EIC. Complexity in a system is characterized by several functionally segregated subsystems that show a high degree of functional integration when they interact with each other. Complex biological systems manifest heterogeneities and degeneracy, wherein structurally different subsystems could interact to yield the same functional outcome. We argue that complex systems offer several choices that effectively implement EIC and homeostasis for each of the different contexts encountered by the system.
Collapse
Affiliation(s)
- Pavithraa Seenivasan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India. https://twitter.com/PaveeSeeni
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
15
|
Abstract
An ultimate goal in retina science is to understand how the neural circuit of the retina processes natural visual scenes. Yet most studies in laboratories have long been performed with simple, artificial visual stimuli such as full-field illumination, spots of light, or gratings. The underlying assumption is that the features of the retina thus identified carry over to the more complex scenario of natural scenes. As the application of corresponding natural settings is becoming more commonplace in experimental investigations, this assumption is being put to the test and opportunities arise to discover processing features that are triggered by specific aspects of natural scenes. Here, we review how natural stimuli have been used to probe, refine, and complement knowledge accumulated under simplified stimuli, and we discuss challenges and opportunities along the way toward a comprehensive understanding of the encoding of natural scenes. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dimokratis Karamanlis
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.,Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Helene Marianne Schreyer
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.,Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.,Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Abbas F, Becker S, Jones BW, Mure LS, Panda S, Hanneken A, Vinberg F. Revival of light signalling in the postmortem mouse and human retina. Nature 2022; 606:351-357. [PMID: 35545677 PMCID: PMC10000337 DOI: 10.1038/s41586-022-04709-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 03/31/2022] [Indexed: 12/21/2022]
Abstract
Death is defined as the irreversible cessation of circulatory, respiratory or brain activity. Many peripheral human organs can be transplanted from deceased donors using protocols to optimize viability. However, tissues from the central nervous system rapidly lose viability after circulation ceases1,2, impeding their potential for transplantation. The time course and mechanisms causing neuronal death and the potential for revival remain poorly defined. Here, using the retina as a model of the central nervous system, we systemically examine the kinetics of death and neuronal revival. We demonstrate the swift decline of neuronal signalling and identify conditions for reviving synchronous in vivo-like trans-synaptic transmission in postmortem mouse and human retina. We measure light-evoked responses in human macular photoreceptors in eyes removed up to 5 h after death and identify modifiable factors that drive reversible and irreversible loss of light signalling after death. Finally, we quantify the rate-limiting deactivation reaction of phototransduction, a model G protein signalling cascade, in peripheral and macular human and macaque retina. Our approach will have broad applications and impact by enabling transformative studies in the human central nervous system, raising questions about the irreversibility of neuronal cell death, and providing new avenues for visual rehabilitation.
Collapse
Affiliation(s)
- Fatima Abbas
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Ludovic S Mure
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Institute of Physiology, University of Bern, Bern, Switzerland
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland
| | | | - Anne Hanneken
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
- Retina Consultants San Diego, La Jolla, CA, USA.
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Abstract
Retinal circuits transform the pixel representation of photoreceptors into the feature representations of ganglion cells, whose axons transmit these representations to the brain. Functional, morphological, and transcriptomic surveys have identified more than 40 retinal ganglion cell (RGC) types in mice. RGCs extract features of varying complexity; some simply signal local differences in brightness (i.e., luminance contrast), whereas others detect specific motion trajectories. To understand the retina, we need to know how retinal circuits give rise to the diverse RGC feature representations. A catalog of the RGC feature set, in turn, is fundamental to understanding visual processing in the brain. Anterograde tracing indicates that RGCs innervate more than 50 areas in the mouse brain. Current maps connecting RGC types to brain areas are rudimentary, as is our understanding of how retinal signals are transformed downstream to guide behavior. In this article, I review the feature selectivities of mouse RGCs, how they arise, and how they are utilized downstream. Not only is knowledge of the behavioral purpose of RGC signals critical for understanding the retinal contributions to vision; it can also guide us to the most relevant areas of visual feature space. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences; Department of Neuroscience; Department of Biomedical Engineering; and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA;
| |
Collapse
|
18
|
AMIGO1 Promotes Axon Growth and Territory Matching in the Retina. J Neurosci 2022; 42:2678-2689. [PMID: 35169021 PMCID: PMC8973419 DOI: 10.1523/jneurosci.1164-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 11/21/2022] Open
Abstract
Dendrite and axon arbor sizes are critical to neuronal function and vary widely between different neuron types. The relative dendrite and axon sizes of synaptic partners control signal convergence and divergence in neural circuits. The developmental mechanisms that determine cell-type-specific dendrite and axon size and match synaptic partners' arbor territories remain obscure. Here, we discover that retinal horizontal cells express the leucine-rich repeat domain cell adhesion molecule AMIGO1. Horizontal cells provide pathway-specific feedback to photoreceptors-horizontal cell axons to rods and horizontal cell dendrites to cones. AMIGO1 selectively expands the size of horizontal cell axons. When Amigo1 is deleted in all or individual horizontal cells of either sex, their axon arbors shrink. By contrast, horizontal cell dendrites and synapse formation of horizontal cell axons and dendrites are unaffected by AMIGO1 removal. The dendrites of rod bipolar cells, which do not express AMIGO1, shrink in parallel with horizontal cell axons in Amigo1 knockout (Amigo1 KO) mice. This territory matching maintains the function of the rod bipolar pathway, preserving bipolar cell responses and retinal output signals in Amigo1 KO mice. We previously identified AMIGO2 as a scaling factor that constrains retinal neurite arbors. Our current results identify AMIGO1 as a scaling factor that expands retinal neurite arbors and reveal territory matching as a novel homeostatic mechanism. Territory matching interacts with other homeostatic mechanisms to stabilize the development of the rod bipolar pathway, which mediates vision near the threshold.SIGNIFICANCE STATEMENT Neurons send and receive signals through branched axonal and dendritic arbors. The size of these arbors is critical to the function of a neuron. Axons and dendrites grow during development and are stable at maturity. The mechanisms that determine axon and dendrite size are not well understood. Here, we identify a cell surface protein, AMIGO1, that selectively promotes axon growth of horizontal cells, a retinal interneuron. Removal of AMIGO1 reduces the size of horizontal cell axons without affecting the size of their dendrites or the ability of both arbors to form connections. The changes in horizontal cell axons are matched by changes in synaptic partner dendrites to stabilize retinal function. This identifies territory matching as a novel homeostatic plasticity mechanism.
Collapse
|
19
|
Shah NP, Brackbill N, Samarakoon R, Rhoades C, Kling A, Sher A, Litke A, Singer Y, Shlens J, Chichilnisky EJ. Individual variability of neural computations in the primate retina. Neuron 2022; 110:698-708.e5. [PMID: 34932942 PMCID: PMC8857061 DOI: 10.1016/j.neuron.2021.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/10/2021] [Accepted: 11/20/2021] [Indexed: 12/28/2022]
Abstract
Variation in the neural code contributes to making each individual unique. We probed neural code variation using ∼100 population recordings from major ganglion cell types in the macaque retina, combined with an interpretable computational representation of individual variability. This representation captured variation and covariation in properties such as nonlinearity, temporal dynamics, and spatial receptive field size and preserved invariances such as asymmetries between On and Off cells. The covariation of response properties in different cell types was associated with the proximity of lamination of their synaptic input. Surprisingly, male retinas exhibited higher firing rates and faster temporal integration than female retinas. Exploiting data from previously recorded retinas enabled efficient characterization of a new macaque retina, and of a human retina. Simulations indicated that combining a large dataset of retinal recordings with behavioral feedback could reveal the neural code in a living human and thus improve vision restoration with retinal implants.
Collapse
Affiliation(s)
- Nishal P Shah
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Hansen Experimental Physics Lab, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| | - Nora Brackbill
- Hansen Experimental Physics Lab, Stanford University, Stanford, CA 94305, USA; Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Ryan Samarakoon
- Hansen Experimental Physics Lab, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Colleen Rhoades
- Hansen Experimental Physics Lab, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alexandra Kling
- Hansen Experimental Physics Lab, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Alexander Sher
- University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alan Litke
- University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Yoram Singer
- WorldQuant, LLC, 1700 E Putnam Ave., Old Greenwich, CT 06870, USA
| | - Jonathon Shlens
- Google Brain, 1600 Amphitheatre Pkwy., Mountain View, CA 94043, USA
| | - E J Chichilnisky
- Hansen Experimental Physics Lab, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Otgondemberel Y, Roh H, Fried SI, Im M. Spiking Characteristics of Network-Mediated Responses Arising in Direction-Selective Ganglion Cells of Rabbit and Mouse Retinas to Electric Stimulation for Retinal Prostheses. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2445-2455. [PMID: 34784280 PMCID: PMC8654582 DOI: 10.1109/tnsre.2021.3128878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To restore the sight of individuals blinded by outer retinal degeneration, numerous retinal prostheses have been developed. However, the performance of those implants is still hampered by some factors including the lack of comprehensive understanding of the electrically-evoked responses arising in various retinal ganglion cell (RGC) types. In this study, we characterized the electrically-evoked network-mediated responses (hereafter referred to as electric responses) of ON-OFF direction-selective (DS) RGCs in rabbit and mouse retinas for the first time. Interestingly, both species in common demonstrated strong negative correlations between spike counts of electric responses and direction selective indices (DSIs), suggesting electric stimulation activates inhibitory presynaptic neurons that suppress null direction responses for high direction tuning in their light responses. The DS cells of the two species showed several differences including different numbers of bursts. Also, spiking patterns were more heterogeneous across DS RGCs of rabbits than those of mice. The electric response magnitudes of rabbit DS cells showed positive and negative correlations with ON and OFF light response magnitudes to preferred direction motion, respectively. But the mouse DS cells showed positive correlations in both comparisons. Our Fano Factor (FF) and spike time tiling coefficient (STTC) analyses revealed that spiking consistencies across repeats were reduced in late electric responses in both species. Moreover, the response consistencies of DS RGCs were lower than those of non-DS RGCs. Our results indicate the species-dependent retinal circuits may result in different electric response features and therefore suggest a proper animal model may be crucial in prosthetic researches.
Collapse
|
21
|
Werth R. Is Developmental Dyslexia Due to a Visual and Not a Phonological Impairment? Brain Sci 2021; 11:1313. [PMID: 34679378 PMCID: PMC8534212 DOI: 10.3390/brainsci11101313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
It is a widely held belief that developmental dyslexia (DD) is a phonological disorder in which readers have difficulty associating graphemes with their corresponding phonemes. In contrast, the magnocellular theory of dyslexia assumes that DD is a visual disorder caused by dysfunctional magnocellular neural pathways. The review explores arguments for and against these theories. Recent results have shown that DD is caused by (1) a reduced ability to simultaneously recognize sequences of letters that make up words, (2) longer fixation times required to simultaneously recognize strings of letters, and (3) amplitudes of saccades that do not match the number of simultaneously recognized letters. It was shown that pseudowords that could not be recognized simultaneously were recognized almost without errors when the fixation time was extended. However, there is an individual maximum number of letters that each reader with DD can recognize simultaneously. Findings on the neurobiological basis of temporal summation have shown that a necessary prolongation of fixation times is due to impaired processing mechanisms of the visual system, presumably involving magnocells and parvocells. An area in the mid-fusiform gyrus also appears to play a significant role in the ability to simultaneously recognize words and pseudowords. The results also contradict the assumption that DD is due to a lack of eye movement control. The present research does not support the assumption that DD is caused by a phonological disorder but shows that DD is due to a visual processing dysfunction.
Collapse
Affiliation(s)
- Reinhard Werth
- Institute for Social Pediatrics and Adolescent Medicine, University of Munich, Haydnstrasse 5, D-80336 Munich, Germany
| |
Collapse
|
22
|
Grünert U, Martin PR. Morphology, Molecular Characterization, and Connections of Ganglion Cells in Primate Retina. Annu Rev Vis Sci 2021; 7:73-103. [PMID: 34524877 DOI: 10.1146/annurev-vision-100419-115801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eye sends information about the visual world to the brain on over 20 parallel signal pathways, each specialized to signal features such as spectral reflection (color), edges, and motion of objects in the environment. Each pathway is formed by the axons of a separate type of retinal output neuron (retinal ganglion cell). In this review, we summarize what is known about the excitatory retinal inputs, brain targets, and gene expression patterns of ganglion cells in humans and nonhuman primates. We describe how most ganglion cell types receive their input from only one or two of the 11 types of cone bipolar cell and project selectively to only one or two target regions in the brain. We also highlight how genetic methods are providing tools to characterize ganglion cells and establish cross-species homologies.
Collapse
Affiliation(s)
- Ulrike Grünert
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| | - Paul R Martin
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| |
Collapse
|
23
|
Wang Y, Zhang Q, Yang G, Wei Y, Li M, Du E, Li H, Song Z, Tao Y. RPE-derived exosomes rescue the photoreceptors during retina degeneration: an intraocular approach to deliver exosomes into the subretinal space. Drug Deliv 2021; 28:218-228. [PMID: 33501868 PMCID: PMC7850421 DOI: 10.1080/10717544.2020.1870584] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Retinal degeneration (RD) refers to a group of blinding retinopathies leading to the progressive photoreceptor demise and vision loss. Treatments against this debilitating disease are urgently needed. Intraocular delivery of exosomes represents an innovative therapeutic strategy against RD. In this study, we aimed to determine whether the subretinal delivery of RPE-derived exosomes (RPE-Exos) can prevent the photoreceptor death in RD. RD was induced in C57BL6 mice by MNU administration. These MNU administered mice received a single subretinal injection of RPE-Exos. Two weeks later, the RPE-Exos induced effects were evaluated via functional, morphological, and behavior examinations. Subretinal delivery of RPE-Exos efficiently ameliorates the visual function impairments, and alleviated the structural damages in the retina of MNU administered mice. Moreover, RPE-Exos exert beneficial effects on the electrical response of the inner retinal circuits. Treatment with RPE-Exos suppressed the expression levels of inflammatory factors, and mitigated the oxidative damage, indicating that subretinal delivery of RPE-Exos constructed a cytoprotective microenvironment in the retina of MNU administered mice. Our data suggest that RPE-Exos have therapeutic effects against the visual impairments and photoreceptor death. These findings will enrich our knowledge of RPE-Exos, and highlight the discovery of a promising medication for RD.
Collapse
Affiliation(s)
- Yange Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Qian Zhang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Guoqing Yang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuanmeng Wei
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Miao Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Enming Du
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Haijun Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Zongming Song
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Ye Tao
- Department of Ophthalmology, People's Hospital of Zhengzhou University; Department of Physiology, Basic College of Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Oculo-retinal dynamics can explain the perception of minimal recognizable configurations. Proc Natl Acad Sci U S A 2021; 118:2022792118. [PMID: 34417308 DOI: 10.1073/pnas.2022792118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural vision is a dynamic and continuous process. Under natural conditions, visual object recognition typically involves continuous interactions between ocular motion and visual contrasts, resulting in dynamic retinal activations. In order to identify the dynamic variables that participate in this process and are relevant for image recognition, we used a set of images that are just above and below the human recognition threshold and whose recognition typically requires >2 s of viewing. We recorded eye movements of participants while attempting to recognize these images within trials lasting 3 s. We then assessed the activation dynamics of retinal ganglion cells resulting from ocular dynamics using a computational model. We found that while the saccadic rate was similar between recognized and unrecognized trials, the fixational ocular speed was significantly larger for unrecognized trials. Interestingly, however, retinal activation level was significantly lower during these unrecognized trials. We used retinal activation patterns and oculomotor parameters of each fixation to train a binary classifier, classifying recognized from unrecognized trials. Only retinal activation patterns could predict recognition, reaching 80% correct classifications on the fourth fixation (on average, ∼2.5 s from trial onset). We thus conclude that the information that is relevant for visual perception is embedded in the dynamic interactions between the oculomotor sequence and the image. Hence, our results suggest that ocular dynamics play an important role in recognition and that understanding the dynamics of retinal activation is crucial for understanding natural vision.
Collapse
|
25
|
Cowan CS, Renner M, De Gennaro M, Gross-Scherf B, Goldblum D, Hou Y, Munz M, Rodrigues TM, Krol J, Szikra T, Cuttat R, Waldt A, Papasaikas P, Diggelmann R, Patino-Alvarez CP, Galliker P, Spirig SE, Pavlinic D, Gerber-Hollbach N, Schuierer S, Srdanovic A, Balogh M, Panero R, Kusnyerik A, Szabo A, Stadler MB, Orgül S, Picelli S, Hasler PW, Hierlemann A, Scholl HPN, Roma G, Nigsch F, Roska B. Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell 2021; 182:1623-1640.e34. [PMID: 32946783 PMCID: PMC7505495 DOI: 10.1016/j.cell.2020.08.013] [Citation(s) in RCA: 345] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/14/2020] [Accepted: 08/06/2020] [Indexed: 01/05/2023]
Abstract
Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry. Cell types in organoids matured in vitro to a stable "developed" state at a rate similar to human retina development in vivo. Transcriptomes of organoid cell types converged toward the transcriptomes of adult peripheral retinal cell types. Expression of disease-associated genes was cell-type-specific in adult retina, and cell-type specificity was retained in organoids. We implicate unexpected cell types in diseases such as macular degeneration. This resource identifies cellular targets for studying disease mechanisms in organoids and for targeted repair in human retinas.
Collapse
Affiliation(s)
- Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Magdalena Renner
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Martina De Gennaro
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Brigitte Gross-Scherf
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - David Goldblum
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Yanyan Hou
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Martin Munz
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tiago M Rodrigues
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Jacek Krol
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tamas Szikra
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Rachel Cuttat
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Annick Waldt
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Roland Diggelmann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, 4058 Basel, Switzerland
| | - Claudia P Patino-Alvarez
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Patricia Galliker
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Stefan E Spirig
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Dinko Pavlinic
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | | | - Sven Schuierer
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Aldin Srdanovic
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Marton Balogh
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Riccardo Panero
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Akos Kusnyerik
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Arnold Szabo
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Selim Orgül
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Simone Picelli
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Pascal W Hasler
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering of ETH Zurich, 4058 Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland; Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
26
|
Kremers J, Aher AJ, Parry NRA, Patel NB, Frishman LJ. Comparison of macaque and human L- and M-cone driven electroretinograms. Exp Eye Res 2021; 206:108556. [PMID: 33794198 DOI: 10.1016/j.exer.2021.108556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE The macaque retina is often used as a model for the human retina. However, there are only a handful of direct in vivo comparisons of the retinal physiology in humans and macaques. In the current study, ERG responses to luminance, L-cone isolating and M-cone isolating stimuli with sinusoidal, sawtooth and square wave temporal profiles were measured. The results were compared with those obtained from human observers. METHODS The responses from five anesthetized adult macaques were measured. Full field stimuli were created. L- and M-cone isolating stimuli were based on the triple silent substitution technique. Sinusoidal stimuli had temporal frequencies between 4 and 56 Hz in 4 Hz steps. Sawtooth stimuli with rapid-on ramp-off and with rapid-off ramp-on excitation profiles had a frequency of 4 Hz. Square stimuli were presented at 2 Hz. RESULTS Macaque and human ERGs in response to L- and M-cone isolating stimuli reflect L/M opponency and luminance activity. In responses to sine waves, cone opponency dominates at low temporal frequencies (4-12 Hz); luminance dominates at high temporal frequencies. The responses to sawtooth and square wave stimuli reflect a mixture of chromatic and luminance activity. L:M response ratios vary between individuals both in macaques and humans. Macaques show more complex responses, including greater second harmonic contributions than those in humans. CONCLUSIONS Macaque and human ERGs share basic underlying mechanisms reflecting L/M opponency and luminance activity. There may be quantitative differences possibly reflecting differences in contributions of inner retinal mechanisms to the ERGs.
Collapse
Affiliation(s)
- Jan Kremers
- Section for Retinal Physiology, University Hospital Erlangen, 91054, Erlangen, Germany.
| | - Avinash J Aher
- Section for Retinal Physiology, University Hospital Erlangen, 91054, Erlangen, Germany
| | - Neil R A Parry
- Vision Science Centre, Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Nimesh B Patel
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Laura J Frishman
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, TX, USA
| |
Collapse
|
27
|
Mure LS. Intrinsically Photosensitive Retinal Ganglion Cells of the Human Retina. Front Neurol 2021; 12:636330. [PMID: 33841306 PMCID: PMC8027232 DOI: 10.3389/fneur.2021.636330] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Light profoundly affects our mental and physical health. In particular, light, when not delivered at the appropriate time, may have detrimental effects. In mammals, light is perceived not only by rods and cones but also by a subset of retinal ganglion cells that express the photopigment melanopsin that renders them intrinsically photosensitive (ipRGCs). ipRGCs participate in contrast detection and play critical roles in non-image-forming vision, a set of light responses that include circadian entrainment, pupillary light reflex (PLR), and the modulation of sleep/alertness, and mood. ipRGCs are also found in the human retina, and their response to light has been characterized indirectly through the suppression of nocturnal melatonin and PLR. However, until recently, human ipRGCs had rarely been investigated directly. This gap is progressively being filled as, over the last years, an increasing number of studies provided descriptions of their morphology, responses to light, and gene expression. Here, I review the progress in our knowledge of human ipRGCs, in particular, the different morphological and functional subtypes described so far and how they match the murine subtypes. I also highlight questions that remain to be addressed. Investigating ipRGCs is critical as these few cells play a major role in our well-being. Additionally, as ipRGCs display increased vulnerability or resilience to certain disorders compared to conventional RGCs, a deeper knowledge of their function could help identify therapeutic approaches or develop diagnostic tools. Overall, a better understanding of how light is perceived by the human eye will help deliver precise light usage recommendations and implement light-based therapeutic interventions to improve cognitive performance, mood, and life quality.
Collapse
Affiliation(s)
- Ludovic S Mure
- Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland
| |
Collapse
|
28
|
Abstract
The retinal output is the sole source of visual information for the brain. Studies in non-primate mammals estimate that this information is carried by several dozens of retinal ganglion cell types, each informing the brain about different aspects of a visual scene. Even though morphological studies of primate retina suggest a similar diversity of ganglion cell types, research has focused on the function of only a few cell types. In human retina, recordings from individual cells are anecdotal or focus on a small subset of identified types. Here, we present the first systematic ex-vivo recording of light responses from 342 ganglion cells in human retinas obtained from donors. We find a great variety in the human retinal output in terms of preferences for positive or negative contrast, spatio-temporal frequency encoding, contrast sensitivity, and speed tuning. Some human ganglion cells showed similar response behavior as known cell types in other primate retinas, while we also recorded light responses that have not been described previously. This first extensive description of the human retinal output should facilitate interpretation of primate data and comparison to other mammalian species, and it lays the basis for the use of ex-vivo human retina for in-vitro analysis of novel treatment approaches.
Collapse
|
29
|
Kang JH, Jang YJ, Kim T, Lee BC, Lee SH, Im M. Electric Stimulation Elicits Heterogeneous Responses in ON but Not OFF Retinal Ganglion Cells to Transmit Rich Neural Information. IEEE Trans Neural Syst Rehabil Eng 2021; 29:300-309. [PMID: 33395394 DOI: 10.1109/tnsre.2020.3048973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Retinal implants electrically stimulate surviving retinal neurons to restore vision in people blinded by outer retinal degeneration. Although the healthy retina is known to transmit a vast amount of visual information to the brain, it has not been studied whether prosthetic vision contains a similar amount of information. Here, we assessed the neural information transmitted by population responses arising in brisk transient (BT) and brisk sustained (BS) subtypes of ON and OFF retinal ganglion cells (RGCs) in the rabbit retina. To correlate the response heterogeneity and the information transmission, we first quantified the cell-to-cell heterogeneity by calculating the spike time tiling coefficient (STTC) across spiking patterns of RGCs in each type. Then, we computed the neural information encoded by the RGC population in a given type. In responses to light stimulation, spiking activities were more heterogeneous in OFF than ON RGCs (STTCAVG = 0.36, 0.45, 0.77 and 0.55 for OFF BT, OFF BS, ON BT, and ON BS, respectively). Interestingly, however, in responses to electric stimulation, both BT and BS subtypes of OFF RGCs showed remarkably homogeneous spiking patterns across cells (STTCAVG = 0.93 and 0.82 for BT and BS, respectively), whereas the two subtypes of ON RGCs showed slightly increased populational heterogeneity compared to light-evoked responses (STTCAVG = 0.71 and 0.63 for BT and BS, respectively). Consequently, the neural information encoded by the electrically-evoked responses of a population of 15 RGCs was substantially lower in the OFF than the ON pathway: OFF BT and BS cells transmit only ~23% and ~53% of the neural information transmitted by their ON counterparts. Together with previously-reported natural spiking activities in ON RGCs, the higher neural information may make ON responses more recognizable, eliciting the biased percepts of bright phosphenes.
Collapse
|
30
|
Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P. Retinal Ganglion Cells-Diversity of Cell Types and Clinical Relevance. Front Neurol 2021; 12:661938. [PMID: 34093409 PMCID: PMC8175861 DOI: 10.3389/fneur.2021.661938] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Retinal ganglion cells (RGCs) are the bridging neurons that connect the retinal input to the visual processing centres within the central nervous system. There is a remarkable diversity of RGCs and the various subtypes have unique morphological features, distinct functions, and characteristic pathways linking the inner retina to the relevant brain areas. A number of psychophysical and electrophysiological tests have been refined to investigate this large and varied population of RGCs. Technological advances, such as high-resolution optical coherence tomography imaging, have provided additional tools to define the pattern of RGC involvement and the chronological sequence of events in both inherited and acquired optic neuropathies. The mechanistic insights gained from these studies, in particular the selective vulnerability and relative resilience of particular RGC subtypes, are of fundamental importance as they are directly relevant to the development of targeted therapies for these invariably progressive blinding diseases. This review provides a comprehensive description of the various types of RGCs, the developments in proposed methods of classification, and the current gaps in our knowledge of how these RGCs are differentially affected depending on the underlying aetiology. The synthesis of the current body of knowledge on the diversity of RGCs and the pathways that are potentially amenable to therapeutic modulation will hopefully lead to much needed effective treatments for patients with optic neuropathies.
Collapse
Affiliation(s)
- Ungsoo Samuel Kim
- Kim's Eye Hospital, Seoul, South Korea
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- *Correspondence: Ungsoo Samuel Kim
| | - Omar A. Mahroo
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Section of Ophthalmology, King's College London, St. Thomas' Hospital Campus, London, United Kingdom
| | - John D. Mollon
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
31
|
Tsuboi A. LRR-Containing Oncofetal Trophoblast Glycoprotein 5T4 Shapes Neural Circuits in Olfactory and Visual Systems. Front Mol Neurosci 2020; 13:581018. [PMID: 33192298 PMCID: PMC7655536 DOI: 10.3389/fnmol.2020.581018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023] Open
Abstract
In mammals, the sensory experience can regulate the development of various brain structures, including the cortex, hippocampus, retina, and olfactory bulb (OB). Odor experience-evoked neural activity drives the development of dendrites on excitatory projection neurons in the OB, such as mitral and tufted cells, as well as inhibitory interneurons. OB interneurons are generated continuously in the subventricular zone and differentiate into granule cells (GCs) and periglomerular cells (PGCs). However, it remains unknown what role each type of OB interneuron plays in controlling olfactory behaviors. Recent studies showed that among the various types of OB interneurons, a subtype of GCs expressing oncofetal trophoblast glycoprotein 5T4 is required for simple odor detection and discrimination behaviors. Mouse 5T4 (also known as Tpbg) is a type I membrane glycoprotein whose extracellular domain contains seven leucine-rich repeats (LRRs) sandwiched between characteristic LRR-N and LRR-C regions. Recently, it was found that the developmental expression of 5T4 increases dramatically in the retina just before eye-opening. Single-cell transcriptomics further suggests that 5T4 is involved in the development and maintenance of functional synapses in a subset of retinal interneurons, including rod bipolar cells (RBCs) and amacrine cells (ACs). Collectively, 5T4, expressed in interneurons of the OB and retina, plays a key role in sensory processing in the olfactory and visual systems.
Collapse
Affiliation(s)
- Akio Tsuboi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
32
|
Shah NP, Chichilnisky EJ. Computational challenges and opportunities for a bi-directional artificial retina. J Neural Eng 2020; 17:055002. [PMID: 33089827 DOI: 10.1088/1741-2552/aba8b1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A future artificial retina that can restore high acuity vision in blind people will rely on the capability to both read (observe) and write (control) the spiking activity of neurons using an adaptive, bi-directional and high-resolution device. Although current research is focused on overcoming the technical challenges of building and implanting such a device, exploiting its capabilities to achieve more acute visual perception will also require substantial computational advances. Using high-density large-scale recording and stimulation in the primate retina with an ex vivo multi-electrode array lab prototype, we frame several of the major computational problems, and describe current progress and future opportunities in solving them. First, we identify cell types and locations from spontaneous activity in the blind retina, and then efficiently estimate their visual response properties by using a low-dimensional manifold of inter-retina variability learned from a large experimental dataset. Second, we estimate retinal responses to a large collection of relevant electrical stimuli by passing current patterns through an electrode array, spike sorting the resulting recordings and using the results to develop a model of evoked responses. Third, we reproduce the desired responses for a given visual target by temporally dithering a diverse collection of electrical stimuli within the integration time of the visual system. Together, these novel approaches may substantially enhance artificial vision in a next-generation device.
Collapse
Affiliation(s)
- Nishal P Shah
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, United States of America. Department of Neurosurgery, Stanford University, Stanford, CA, United States of America. Author to whom any correspondence should be addressed
| | | |
Collapse
|