1
|
Giri G, Nagloo N, Enjin A. A dynamic humidity arena to explore humidity-related behaviours in insects. J Exp Biol 2024; 227:jeb247195. [PMID: 39319429 PMCID: PMC11529877 DOI: 10.1242/jeb.247195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Humidity is a critical environmental factor influencing the behaviour of terrestrial organisms. Despite its significance, the neural mechanisms and behavioural algorithms governing humidity sensation remain poorly understood. Here, we introduce a dynamic humidity arena that measures the displacement and walking speed of insects responding to real-time changes in relative humidity (RH). This arena operates in a closed-loop mode, adjusting humidity based on the insect's position with 0.2% RH resolution, allowing the insect to choose its optimal humidity. It can also be set to maintain a specific RH, simulating an open-loop condition to observe insect behaviour at constant humidity levels. Using the dynamic humidity arena, we found that desiccated and starved Drosophila melanogaster search for a RH of around 65-70% at 23°C, whereas sated flies show no unique preference for any RH. If the desiccated and starved flies are rehydrated, their searching behaviour is abolished, suggesting that desiccation has a great impact on the measured response. In contrast, mutant flies with impaired humidity sensing, due to a non-functional ionotropic receptor (Ir)93a, show no preference for any RH level irrespective of being desiccated and starved or sated. These results demonstrate that the dynamic humidity arena is highly sensitive and precise in capturing the nuanced behaviours associated with hydration status and RH preference in D. melanogaster. The dynamic humidity arena is easily adaptable to insects of other sizes and offers a foundation for further research on the mechanisms of hygrosensation, opening new possibilities for understanding how organisms perceive and respond to humidity in their environment.
Collapse
Affiliation(s)
- Ganesh Giri
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Nicolas Nagloo
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Anders Enjin
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
2
|
Bozic J, Joseph RE, Krizek RS, Holley A, Laroche M, Benoit JB, Rasgon JL. Revisiting the paradigm of anhematophagy in male mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617226. [PMID: 39416166 PMCID: PMC11482743 DOI: 10.1101/2024.10.08.617226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Female mosquitoes are reproductively obligate bloodfeeders which feed on vertebrate blood to obtain nutrients required for egg production (driving transmission of vector-borne pathogens in the process), and which rely on plant sugars for their non-reproductive energy requirements. Male mosquitoes, on the other hand, are thought to rely exclusively on plant sugars for their energetic needs; indeed, this dichotomy is one of the central tenets of medical entomology. Here, we show that male Culex tarsalis and Aedes aegypti mosquitoes will readily take blood from a membrane feeder when reared under dehydration conditions with no toxic effects. Mosquitoes with impaired humidity detection do not increase their bloodfeeding rates when dehydrated compared to wild-type controls. While conventionally reared males ignore a human host, dehydrated males are attracted to and attempt to probe, with some success, although they cannot access host capillaries. However, they will take blood from a vertebrate host wound. When fed a blood meal containing West Nile virus, male mosquitoes can become infected with and orally transmit the pathogen at rates and titers equivalent to females. Finally, vertebrate DNA, likely from blood, was detected in wild-caught specimens of male Culex quinquefasciatus mosquitoes from Texas. These data suggest that under some circumstances male mosquitoes may be able to probe and/or ingest blood and transmit pathogens to vertebrate hosts, and that their role in maintaining pathogen transmission cycles should be re-examined.
Collapse
Affiliation(s)
- Jovana Bozic
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Renuka E. Joseph
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rachel S. Krizek
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Amber Holley
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Maureen Laroche
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Global Health, The University of Texas Medical Branch, Galveston, TX, USA
- Clima, Latin American Center of Excellence for Climate Change and Health, Universidad Peruana Cayetano Heredia (UPCH), Lima-Peru
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Jason L. Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Baik LS, Talross GJS, Gray S, Pattisam HS, Peterson TN, Nidetz JE, Hol FJH, Carlson JR. Mosquito taste responses to human and floral cues guide biting and feeding. Nature 2024:10.1038/s41586-024-08047-y. [PMID: 39415007 DOI: 10.1038/s41586-024-08047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
The taste system controls many insect behaviours, yet little is known about how tastants are encoded in mosquitoes or how they regulate critical behaviours. Here we examine how taste stimuli are encoded by Aedes albopictus mosquitoes-a highly invasive disease vector-and how these cues influence biting, feeding and egg laying. We find that neurons of the labellum, the major taste organ of the head, differentially encode a wide variety of human and other cues. We identify three functional classes of taste sensilla with an expansive coding capacity. In addition to excitatory responses, we identify prevalent inhibitory responses, which are predictive of biting behaviour. Certain bitter compounds suppress physiological and behavioural responses to sugar, suggesting their use as potent stop signals against appetitive cues. Complex cues, including human sweat, nectar and egg-laying site water, elicit distinct response profiles from the neuronal repertoire. We identify key tastants on human skin and in sweat that synergistically promote biting behaviours. Transcriptomic profiling identifies taste receptors that could be targeted to disrupt behaviours. Our study sheds light on key features of the taste system that suggest new ways of manipulating chemosensory function and controlling mosquito vectors.
Collapse
Affiliation(s)
- Lisa S Baik
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sydney Gray
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Himani S Pattisam
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Taylor N Peterson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - James E Nidetz
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Felix J H Hol
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Kato Y, Sakuma C. Extrinsic and intrinsic regulation of blood feeding in mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101221. [PMID: 39112131 DOI: 10.1016/j.cois.2024.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 09/14/2024]
Abstract
Mosquitoes obtain large amounts of blood from hosts in a short period of time. To efficiently obtain high-quality blood without being noticed by the host, mosquitoes sense external factors such as the taste of the host blood and the surrounding environment, and integrate these signals with their own internal information to determine whether to initiate blood feeding and how long to continue feeding. With the development of gene editing and behavior monitoring techniques, the factors that control blood feeding are being identified. Elucidating the factors that contribute to blood feeding is expected to provide new ideas for artificially controlling blood feeding, which has often been overlooked behind host attraction mechanisms. Furthermore, understanding salivary components, mechanisms controlling satiety in feeding, and differences between sugar feeding and blood feeding would help us understand how some mosquitoes have adopted and developed blood feeding over the course of evolution.
Collapse
Affiliation(s)
- Yusuke Kato
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan; Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto 606-8561, Japan
| | - Chisako Sakuma
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan.
| |
Collapse
|
5
|
Chen SC, Holmes CJ, Ajayi OM, Goodhart G, Eaton D, Catlett N, Cady T, Tran H, Lutz LE, Wang L, Girard E, Savino J, Bidiwala A, Benoit JB. The impact of sugar diet on humidity preference, survival, and host landing in mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.613762. [PMID: 39386524 PMCID: PMC11463526 DOI: 10.1101/2024.09.23.613762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mosquito-borne diseases have caused more than one million deaths each year. There is an urgent need to develop an effective way to reduce mosquito-host interaction to mitigate disease transmission. Sugar diets have long been linked to abnormal physiology in animals, making them potential candidates for mosquito control. Here, we show the impact of sugar diets on humidity preference and survival in Aedes aegypti and Culex pipiens . With two-choice assays between 100% and 75% relative humidity (RH), we demonstrate that the effect of sugar diets on humidity preference is species-specific where Ae. aegypti showed significant differences and the reduced effects were noted in Cx. pipiens . Among the sugar diets, arabinose significantly reduced the survival rate of mosquitoes even at low concentrations. Moreover, we found that host landing was not impacted by feeding on different sugar types. Our study suggests that specific sugar treatments could be applied to mosquito control by dampening their humidity preference and reducing their lifespan, thus reducing mosquito-borne disease transmission.
Collapse
|
6
|
Montell C. IRoning out mosquitoes' attraction to mugginess. Proc Natl Acad Sci U S A 2024; 121:e2415306121. [PMID: 39250675 PMCID: PMC11420178 DOI: 10.1073/pnas.2415306121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| |
Collapse
|
7
|
Getahun MN. Livestock-Vector interaction using Volatile Organic Metabolites. CURRENT OPINION IN INSECT SCIENCE 2024:101269. [PMID: 39260769 DOI: 10.1016/j.cois.2024.101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Biological interaction between two organisms living together in a given habitat is essential for healthy ecosystem functionality, got complexity and exert an arms race between the interacting organisms. Some vectors are exclusively blood feeders and others supplement their diet with plant nectar. The feeding dynamics may determine their olfactory system complexity. Arthropod vectors that interact with livestock rely mainly on olfaction. Livestock odor profile is a complex trait and depends on host genetics, microbes, diet, and health status which highlights its dynamic nature. Furthermore, volatile metabolites are shared between host animals, that exert its own challenge for vectors to find their preferred host. Elucidating the underlying host chemo-diversity, especially signature scents, neuroethological mechanism of discrimination of preferred/unpreferred host from plethora of coexisting host is crucial to understand evolution and adaptation in vector-livestock interaction.
Collapse
Affiliation(s)
- Merid N Getahun
- International Centre of Insect Physiology and Ecology (icipe).
| |
Collapse
|
8
|
Chandel A, DeBeaubien NA, Ganguly A, Meyerhof GT, Krumholz AA, Liu J, Salgado VL, Montell C. Thermal infrared directs host-seeking behaviour in Aedes aegypti mosquitoes. Nature 2024; 633:615-623. [PMID: 39169183 PMCID: PMC11410652 DOI: 10.1038/s41586-024-07848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Mosquito-borne diseases affect hundreds of millions of people annually and disproportionately impact the developing world1,2. One mosquito species, Aedes aegypti, is a primary vector of viruses that cause dengue, yellow fever and Zika. The attraction of Ae. aegypti female mosquitos to humans requires integrating multiple cues, including CO2 from breath, organic odours from skin and visual cues, all sensed at mid and long ranges, and other cues sensed at very close range3-6. Here we identify a cue that Ae. aegypti use as part of their sensory arsenal to find humans. We demonstrate that Ae. aegypti sense the infrared (IR) radiation emanating from their targets and use this information in combination with other cues for highly effective mid-range navigation. Detection of thermal IR requires the heat-activated channel TRPA1, which is expressed in neurons at the tip of the antenna. Two opsins are co-expressed with TRPA1 in these neurons and promote the detection of lower IR intensities. We propose that radiant energy causes local heating at the end of the antenna, thereby activating temperature-sensitive receptors in thermosensory neurons. The realization that thermal IR radiation is an outstanding mid-range directional cue expands our understanding as to how mosquitoes are exquisitely effective in locating hosts.
Collapse
Affiliation(s)
- Avinash Chandel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Nicolas A DeBeaubien
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Anindya Ganguly
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Geoff T Meyerhof
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | | | - Jiangqu Liu
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Vincent L Salgado
- BASF, Research Triangle Park, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
9
|
Tang R, Busby R, Laursen WJ, T. Keane G, Garrity PA. Functional dissection of mosquito humidity sensing reveals distinct Dry and Moist Cell contributions to blood feeding and oviposition. Proc Natl Acad Sci U S A 2024; 121:e2407394121. [PMID: 39159375 PMCID: PMC11363306 DOI: 10.1073/pnas.2407394121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Aedes aegypti mosquitoes are major vectors of dengue, chikungunya, and other arboviral diseases. Ae. aegypti's capacity to reproduce and to spread disease depends on the female mosquitoes' ability to obtain blood meals and find water-filled containers in which to lay eggs (oviposit). While humidity sensation (hygrosensation) has been implicated in these behaviors, the specific hygrosensory pathways involved have been unclear. Here, we establish the distinct molecular requirements and anatomical locations of Ae. aegypti Dry Cells and Moist Cells and examine their contributions to behavior. We show that Dry Cell and Moist Cell responses to humidity involve different ionotropic receptor (IR) family sensory receptors, with dry air-activated Dry Cells reliant upon the IR Ir40a, and humid air-activated Moist Cells upon Ir68a. Both classes of hygrosensors innervate multiple antennal sensilla, including sensilla ampullacea near the antennal base as well as two classes of coeloconic sensilla near the tip. Dry Cells and Moist Cells each support behaviors linked to mosquito reproduction but contribute differently: Ir40a-dependent Dry Cells act in parallel with Ir68a-dependent Moist Cells to promote blood feeding, while oviposition site seeking is driven specifically by Ir68a-dependent Moist Cells. Together these findings reveal the importance of distinct hygrosensory pathways in blood feeding and oviposition site seeking and suggest Ir40a-dependent Dry Cells and Ir68a-dependent Moist Cells as potential targets for vector control strategies.
Collapse
Affiliation(s)
- Ruocong Tang
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA02453
| | - Rachel Busby
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA02453
| | - Willem J. Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA02453
| | - Geoffrey T. Keane
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA02453
| | - Paul A. Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA02453
| |
Collapse
|
10
|
Adavi ED, dos Anjos VL, Kotb S, Metz HC, Tian D, Zhao Z, Zung JL, Rose NH, McBride CS. Olfactory receptor coexpression and co-option in the dengue mosquito. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608847. [PMID: 39229077 PMCID: PMC11370346 DOI: 10.1101/2024.08.21.608847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The olfactory sensory neurons of vinegar flies and mice tend to express a single ligand-specific receptor. While this 'one neuron-one receptor' motif has long been expected to apply broadly across insects, recent evidence suggests it may not extend to mosquitoes. We sequenced and analyzed the transcriptomes of 46,000 neurons from antennae of the dengue mosquito Aedes aegypti to resolve all olfactory, thermosensory, and hygrosensory neuron subtypes and identify the receptors expressed therein. We find that half of all olfactory subtypes coexpress multiple receptors. However, coexpression occurs almost exclusively among genes from the same family-among odorant receptors (ORs) or among ionotropic receptors (IRs). Coexpression of ORs with IRs is exceedingly rare. Many coexpressed receptors are recent duplicates. In other cases, the recruitment or co-option of single receptors by multiple neuron subtypes has placed these genes together in the same cells with distant paralogs. Close examination of data from Drosophila reveal rare cases of both phenomena, indicating that the olfactory systems of these two species are not fundamentally different, but instead fall at different locations along a continuum likely to encompass diverse insects.
Collapse
Affiliation(s)
- Elisha David Adavi
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
| | - Vitor L. dos Anjos
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Summer Kotb
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Hillery C. Metz
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - David Tian
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Zhilei Zhao
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Jessica L. Zung
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Noah H. Rose
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Carolyn S. McBride
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| |
Collapse
|
11
|
Tung GA, Fonseca DM. Internal and external drivers interact to create highly dynamic mosquito blood-feeding behaviour. Proc Biol Sci 2024; 291:20241105. [PMID: 39196275 DOI: 10.1098/rspb.2024.1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Blood-feeding, which is necessary for most female mosquitoes to reproduce, provides an opportunity for pathogen transmission. Blood-feeding is influenced by external factors such as light, temperature, humidity and intra- and inter-specific interactions. Physiologically, blood-feeding cycles are linked to nutritional conditions and governed by conserved hormonal signalling pathways that prepare mosquito sensory systems to locate and evaluate hosts. Human activities also alter mosquito blood-feeding behaviour through selection pressures such as insecticide usage, habitat and ecosystem alterations, and climate change. Notably, blood-feeding behaviour changes within a mosquito's lifespan, an underexplored phenomenon from an epidemiological standpoint. A review of the literature indicates that our understanding of mosquito biology and blood-feeding behaviour is predominantly based on studies of a handful of primarily tropical species. This focus likely skews our comprehension of the diversity of critical drivers of blood-feeding behaviour, especially under constraints imposed by harsh conditions. We found evidence of remarkable adaptability in blood-feeding and significant knowledge gaps regarding the determinants of host use. Specifically, epidemiological analyses assume host use is modified by external factors, while neglecting internal physiology. Integrating all significant factors is essential for developing effective models of mosquito-borne disease transmission in a rapidly changing world.
Collapse
Affiliation(s)
- Grayson A Tung
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Avenue , New Brunswick, NJ 08901, USA
| | - Dina M Fonseca
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Avenue , New Brunswick, NJ 08901, USA
| |
Collapse
|
12
|
Lv Z, Zhu S, Wang Y, Ren Y, Luo M, Wang H, Zhang G, Zhai Y, Zhao S, Zhou Y, Jiang M, Leng YB, Han ST. Development of Bio-Voltage Operated Humidity-Sensory Neurons Comprising Self-Assembled Peptide Memristors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405145. [PMID: 38877385 DOI: 10.1002/adma.202405145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Biomimetic humidity sensors offer a low-power approach for respiratory monitoring in early lung-disease diagnosis. However, balancing miniaturization and energy efficiency remains challenging. This study addresses this issue by introducing a bioinspired humidity-sensing neuron comprising a self-assembled peptide nanowire (NW) memristor with unique proton-coupled ion transport. The proposed neuron shows a low Ag+ activation energy owing to the NW and redox activity of the tyrosine (Tyr)-rich peptide in the system, facilitating ultralow electric-field-driven threshold switching and a high energy efficiency. Additionally, Ag+ migration in the system can be controlled by a proton source owing to the hydrophilic nature of the phenolic hydroxyl group in Tyr, enabling the humidity-based control of the conductance state of the memristor. Furthermore, a memristor-based neuromorphic perception neuron that can encode humidity signals into spikes is proposed. The spiking characteristics of this neuron can be modulated to emulate the strength-modulated spike-frequency characteristics of biological neurons. A three-layer spiking neural network with input neurons comprising these highly tunable humidity perception neurons shows an accuracy of 92.68% in lung-disease diagnosis. This study paves the way for developing bioinspired self-assembly strategies to construct neuromorphic perception systems, bridging the gap between artificial and biological sensing and processing paradigms.
Collapse
Affiliation(s)
- Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shirui Zhu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yan Wang
- School of Microelectronics, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yanyun Ren
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Mingtao Luo
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hanning Wang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Guohua Zhang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shilong Zhao
- School of Electronic Information Engineering, Foshan University, Foshan, 528000, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Minghao Jiang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yan-Bing Leng
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
13
|
Weiss L, McBride CS. Mosquitoes as a model for understanding the neural basis of natural behaviors. Curr Opin Neurobiol 2024; 87:102897. [PMID: 39002351 DOI: 10.1016/j.conb.2024.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Mosquito behaviors have been the subject of extensive research for over a century due to their role in the spread of human disease. However, these behaviors are also beginning to be appreciated as excellent models for neurobiological research in their own right. Many of the same behaviors and sensory abilities that help mosquitoes survive and reproduce alongside humans represent striking examples of generalizable phenomena of longstanding neurobiological interest. In this review, we highlight four prominent examples that promise new insight into (1) precise circadian tuning of sensory systems, (2) processing of complex natural odors, (3) multisensory integration, and (4) modulation of behavior by internal states.
Collapse
Affiliation(s)
- Lukas Weiss
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Carolyn S McBride
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
14
|
Popkin-Hall ZR, Slotman MA. The role of the major chemosensory organs in the host-seeking activity of Anopheles coluzzii (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:861-868. [PMID: 38733173 DOI: 10.1093/jme/tjae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Anopheles coluzzii (Coetzee & Wilkerson) and its sibling species Anopheles gambiae s.s. (Giles) are highly anthropophilic and among the major malaria vectors in sub-Saharan Africa. Mosquitoes use various senses to find hosts, but rely primarily on olfaction. Therefore, the mosquito olfactory system has been studied extensively, including a variety of studies comparing chemosensory gene expression between An. coluzzii and its zoophilic sibling species Anopheles quadriannulatus (Theobald). These studies revealed species-specific chemosensory gene expression in the antennae and maxillary palps, which raised the question of a potential role for the palps in determining species-specific host preferences. To answer this question, we mechanically ablated the antennae, maxillary palps, and labella, and ran both control and ablated mosquitoes through a dual-port olfactometer. While we aimed to identify the organs responsible for vertebrate host choice, the ablated mosquitoes exclusively responded to human odor, so we were unable to do so. However, we were able to refine our understanding of the roles of these organs in host-seeking activation (leaving the release cage) as well as odor response (entering an odor port). As expected, the antennae are the most important organs to both behaviors: activation was roughly halved and vertebrate odor response was abolished in antennae-ablated mosquitoes. Maxillary palp ablation had little impact on activation, but reduced odor response to a similar degree as the exclusion of CO2. Finally, while labellar ablation dramatically reduced activation (probably associated with the inability to feed), it had little impact on odor response, suggesting that any labellar role in host choice is likely not olfactory.
Collapse
Affiliation(s)
| | - Michel A Slotman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
15
|
Holmes CJ, Chakraborty S, Ajayi OM, Unran MR, Frigard RA, Stacey CL, Susanto EE, Chen SC, Rasgon JL, DeGennaro MJ, Xiao Y, Benoit JB. Multiple bouts of blood feeding in mosquitoes allow prolonged survival and are predicted to increase viral transmission during drought. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595907. [PMID: 38854138 PMCID: PMC11160655 DOI: 10.1101/2024.05.28.595907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Survival through periods of drought is critical for mosquitoes to reside in semi-arid regions with humans, but water sources may be limited. Previous studies have shown that dehydrated mosquitoes will increase blood feeding propensity, but how this would occur over extended dry periods is unknown. Following a bloodmeal, prolonged exposure to dry conditions increased secondary blood feeding in mosquitoes by nearly two-fold, and chronic blood feeding allowed mosquitoes to survive twenty days without access to water sources. This refeeding did not alter the number of eggs generated, suggesting this refeeding is for hydration and nutrient replenishment. Exposure to desiccating conditions following a bloodmeal resulted in increased activity, decreased sleep levels, and prompted a return of CO2 sensing before egg deposition. The increased blood feeding during the vitellogenic stage and higher survival during dry periods are predicted to increase pathogen transmission and explain the elevated levels of specific arbovirus cases during dry conditions. These results solidify our understanding of the role of dry periods on mosquito blood feeding and how mosquito dehydration contributes to vectorial capacity and disease transmission dynamics.
Collapse
|
16
|
Doherty JF, Ames T, Brewster LI, Chiang J, Cyr E, Kelsey CR, Lee JP, Liu B, Lo IHY, Nirwal GK, Mohammed YG, Phelan O, Seyfourian P, Shannon DM, Tochor NK, Matthews BJ. An update and review of arthropod vector sensory systems: Potential targets for behavioural manipulation by parasites and other disease agents. ADVANCES IN PARASITOLOGY 2024; 124:57-89. [PMID: 38754927 DOI: 10.1016/bs.apar.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
For over a century, vector ecology has been a mainstay of vector-borne disease control. Much of this research has focused on the sensory ecology of blood-feeding arthropods (black flies, mosquitoes, ticks, etc.) with terrestrial vertebrate hosts. Of particular interest are the cues and sensory systems that drive host seeking and host feeding behaviours as they are critical for a vector to locate and feed from a host. An important yet overlooked component of arthropod vector ecology are the phenotypic changes observed in infected vectors that increase disease transmission. While our fundamental understanding of sensory mechanisms in disease vectors has drastically increased due to recent advances in genome engineering, for example, the advent of CRISPR-Cas9, and high-throughput "big data" approaches (genomics, proteomics, transcriptomics, etc.), we still do not know if and how parasites manipulate vector behaviour. Here, we review the latest research on arthropod vector sensory systems and propose key mechanisms that disease agents may alter to increase transmission.
Collapse
Affiliation(s)
| | - Tahnee Ames
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | - Jonathan Chiang
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Elsa Cyr
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Cameron R Kelsey
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Jeehan Phillip Lee
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Bingzong Liu
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Hok Yin Lo
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Gurleen K Nirwal
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | - Orna Phelan
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Parsa Seyfourian
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
17
|
Giraldo D, Hammond AM, Wu J, Feole B, Al-Saloum N, McMeniman CJ. An expanded neurogenetic toolkit to decode olfaction in the African malaria mosquito Anopheles gambiae. CELL REPORTS METHODS 2024; 4:100714. [PMID: 38412833 PMCID: PMC10921037 DOI: 10.1016/j.crmeth.2024.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Anopheles gambiae uses its sense of smell to hunt humans. We report a two-step method yielding cell-type-specific driver lines for enhanced neuroanatomical and functional studies of its olfactory system. We first integrated a driver-responder-marker (DRM) system cassette consisting of a linked T2A-QF2 driver, QUAS-GFP responder, and a gut-specific transgenesis marker into four chemoreceptor genes (Ir25a, Ir76b, Gr22, and orco) using CRISPR-Cas9-mediated homology-directed repair. The DRM system facilitated rapid selection of in-frame integrations via screening for GFP+ olfactory sensory neurons (OSNs) in G1 larval progeny, even at genomic loci such as orco where we found the transgenesis marker was not visible. Next, we converted these DRM integrations into T2A-QF2 driver-marker lines by Cre-loxP excision of the GFP responder, making them suitable for binary use in transcuticular calcium imaging. These cell-type-specific driver lines tiling key OSN subsets will support systematic efforts to decode olfaction in this prolific malaria vector.
Collapse
Affiliation(s)
- Diego Giraldo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrew M Hammond
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Life Sciences, Imperial College London, London, UK
| | - Jinling Wu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Brandon Feole
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Noor Al-Saloum
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Hug DOH, Kropf A, Amann MO, Koella JC, Verhulst NO. Unexpected behavioural adaptation of yellow fever mosquitoes in response to high temperatures. Sci Rep 2024; 14:3659. [PMID: 38351076 PMCID: PMC10864274 DOI: 10.1038/s41598-024-54374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
Temperature is a major ecological driver of mosquito-borne diseases as it influences the life-history of both the mosquito and the pathogen harboured within it. Understanding the mosquitoes' thermal biology is essential to inform risk prediction models of such diseases. Mosquitoes can respond to temperatures by microhabitat selection through thermal preference. However, it has not yet been considered that mosquitoes are likely to adapt to changing temperatures, for example during climate change, and alter their preference over evolutionary time. We investigated this by rearing six cohorts of the yellow fever mosquito Aedes aegypti at two temperatures (24 °C, 30 °C) for 20 generations and used these cohorts to explicitly separate the effects of long-term evolution and within-generation acclimation on their thermal preferences in a thermal gradient of 20-35 °C. We found that warm-evolved mosquitoes spent 31.5% less time at high temperatures, which affects their efficiency as a vector. This study reveals the complex interplay of experimental evolution, rearing temperatures, and thermal preference in Ae. aegypti mosquitoes. It highlights the significance of incorporating mosquito microhabitat selection in disease transmission models, especially in the context of climate change.
Collapse
Affiliation(s)
- David O H Hug
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zurich, Switzerland
| | - Alida Kropf
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Marine O Amann
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jacob C Koella
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Niels O Verhulst
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zurich, Switzerland.
| |
Collapse
|
19
|
Coutinho-Abreu IV, Jamshidi O, Raban R, Atabakhsh K, Merriman JA, Akbari OS. Identification of human skin microbiome odorants that manipulate mosquito landing behavior. Sci Rep 2024; 14:1631. [PMID: 38238397 PMCID: PMC10796395 DOI: 10.1038/s41598-023-50182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024] Open
Abstract
The resident human skin microbiome is responsible for the production of most of the human scents that are attractive to mosquitoes. Hence, engineering the human skin microbiome to synthesize less of mosquito attractants or produce repellents could potentially reduce bites and prevent the transmission of deadly mosquito-borne pathogens. In order to further characterize the human skin volatilome, we quantified the major volatiles of 39 strains of skin commensals (Staphylococci and Corynebacterium). Importantly, to validate the behavioral activity of these volatiles, we first assessed landing behavior triggered by human skin volatiles. We demonstrated that landing behavior is gated by the presence of carbon dioxide and L-(+)-lactic acid. This is similar to the combinatorial coding triggering mosquito short range attraction. Repellency behavior to selected skin volatiles and terpenes was tested in the presence of carbon dioxide and L-(+)-lactic acid. In a 2-choice landing behavior context, the skin volatiles 2- and 3-methyl butyric acids reduced mosquito landing by 62.0-81.6% and 87.1-99.6%, respectively. Similarly, the terpene geraniol was capable of reducing mosquito landing behavior by 74.9%. We also tested the potential repellency effects of terpenes in mosquitoes at short-range using a 4-port olfactometer. In these assays, geraniol reduced mosquito attraction (69-78%) to a mixture of key human kairomones carbon dioxide, L-(+)-lactic acid, and ammonia. These findings demonstrate that carbon dioxide and L-(+)-lactic acid change the valence of other skin volatiles towards mosquito landing behavior. Moreover, this study offers candidate odorants to be targeted in a novel strategy to reduce attractants or produce repellents by the human skin microbiota that may curtail mosquito bites, and subsequent mosquito-borne disease.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Omid Jamshidi
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robyn Raban
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Katayoon Atabakhsh
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Joseph A Merriman
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Microbiome Therapies Initiative, Stanford University, Palo Alto, CA, 94305, USA
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Walker III WB, Cattaneo AM, Stout JL, Evans ML, Garczynski SF. Chemosensory Receptor Expression in the Abdomen Tip of the Female Codling Moth, Cydia pomonella L. (Lepidoptera: Tortricidae). INSECTS 2023; 14:948. [PMID: 38132621 PMCID: PMC10743790 DOI: 10.3390/insects14120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
In insects, the chemical senses influence most vital behaviors, including mate seeking and egg laying; these sensory modalities are predominantly governed by odorant receptors (ORs), ionotropic receptors (IRs), and gustatory receptors (GRs). The codling moth, Cydia pomonella, is a global pest of apple, pear, and walnut, and semiochemically based management strategies limit the economic impacts of this species. The previous report of expression of a candidate pheromone-responsive OR in female codling moth ovipositor and pheromone glands raises further questions about the chemosensory capacity of these organs. With an RNA-sequencing approach, we examined chemoreceptors' expression in the female codling moth abdomen tip, sampling tissues from mated and unmated females and pupae. We report 37 ORs, 22 GRs, and 18 IRs expressed in our transcriptome showing overlap with receptors expressed in adult antennae as well as non-antennal candidate receptors. A quantitative PCR approach was also taken to assess the effect of mating on OR expression in adult female moths, revealing a few genes to be upregulated or downregulating after mating. These results provide a better understanding of the chemosensory role of codling moth female abdomen tip organs in female-specific behaviors. Future research will determine the function of specific receptors to augment current semiochemical-based strategies for codling moth management.
Collapse
Affiliation(s)
- William B. Walker III
- Temperate Tree Fruit and Vegetable Research Unit, United States Department of Agriculture—Agricultural Research Service, Wapato, WA 98951, USA; (J.L.S.); (M.L.E.)
| | - Alberto M. Cattaneo
- Chemical Ecology Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma (Campus Alnarp), 234 56 Skåne, Sweden;
| | - Jennifer L. Stout
- Temperate Tree Fruit and Vegetable Research Unit, United States Department of Agriculture—Agricultural Research Service, Wapato, WA 98951, USA; (J.L.S.); (M.L.E.)
| | - MacKenzie L. Evans
- Temperate Tree Fruit and Vegetable Research Unit, United States Department of Agriculture—Agricultural Research Service, Wapato, WA 98951, USA; (J.L.S.); (M.L.E.)
| | - Stephen F. Garczynski
- Temperate Tree Fruit and Vegetable Research Unit, United States Department of Agriculture—Agricultural Research Service, Wapato, WA 98951, USA; (J.L.S.); (M.L.E.)
| |
Collapse
|
21
|
Pusawang K, Sriwichai P, Aupalee K, Yasanga T, Phuackchantuck R, Zhong D, Yan G, Somboon P, Junkum A, Wongpalee SP, Cui L, Sattabongkot J, Saeung A. Antennal morphology and sensilla ultrastructure of the malaria vectors, Anopheles maculatus and An. sawadwongporni (Diptera: Culicidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 76:101296. [PMID: 37657362 PMCID: PMC10530502 DOI: 10.1016/j.asd.2023.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Mosquitoes rely mainly on the olfactory system to track hosts. Sensilla contain olfactory neuron receptors that perceive different kinds of odorants and transfer crucial information regarding the surrounding environment. Anopheles maculatus and An. sawadwongporni, members of the Maculatus Group, are regarded as vectors of malaria in Thailand. The fine structure of their sensilla has yet to be identified. Herein, scanning electron microscopy is used to examine the sensilla located on the antennae of adults An. maculatus and An. sawadwongporni, collected from the Thai-Myanmar border. Four major types of antennal sensilla are discovered in both species: chaetica, coeloconica, basiconica (grooved pegs) and trichodea. The antennae of female An. maculatus have longer lengths (μm, mean ± SE) in the long sharp-tipped trichodea (40.62 ± 0.35 > 38.20 ± 0.36), blunt-tipped trichodea (20.39 ± 0.62 > 18.62 ± 0.35), and basiconica (7.84 ± 0.15 > 7.41 ± 0.12) than those of An. sawadwongporni. Using light microscopy, it is found that the mean numbers of large sensilla coeloconica (lco) on both flagella in An. maculatus (left: 32.97 ± 0.48; right: 33.27 ± 0.65) are also greater when compared to An. sawadwongporni (left: 30.40 ± 0.62; right: 29.97 ± 0.49). The mean counts of lco located on flagellomeres 1-3, 6, and 9 in An. maculatus are significantly higher than those of An. sawadwongporni. The data in this study indicate that two closely related Anopheles species exhibit similar morphology of sensilla types, but show variations in length, and likewise in the number of large sensilla coeloconica between them, suggesting they might be causative factors that affect their behaviors driven by the sense of smell.
Collapse
Affiliation(s)
- Kanchon Pusawang
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Kittipat Aupalee
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Thippawan Yasanga
- Medical Science Research Equipment Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Rochana Phuackchantuck
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Daibin Zhong
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, 92697, USA.
| | - Guiyun Yan
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, 92697, USA.
| | - Pradya Somboon
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Anuluck Junkum
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Somsakul Pop Wongpalee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
22
|
Coutinho-Abreu IV, Jamshidi O, Raban R, Atabakhsh K, Merriman JA, Fischbach MA, Akbari OS. Identification of human skin microbiome odorants that manipulate mosquito landing behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553996. [PMID: 37662338 PMCID: PMC10473644 DOI: 10.1101/2023.08.19.553996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The resident human skin microbiome is responsible for the production of most of the human scents that are attractive to mosquitoes. Hence, engineering the human skin microbiome to synthesize less of mosquito attractants or produce repellents could potentially reduce bites and prevent the transmission of deadly mosquito-borne pathogens. In order to further characterize the human skin volatilome, we quantified the major volatiles of 39 strains of skin commensals (Staphylococci and Corynebacterium). Importantly, to validate the behavioral activity of these volatiles, we first assessed landing behavior triggered by human skin bacteria volatiles. We demonstrated that this behavioral step is gated by the presence of carbon dioxide and L-(+)-lactic acid, similar to the combinatorial coding triggering short range attraction. Repellency behavior to selected skin volatiles and the geraniol terpene was tested in the presence of carbon dioxide and L-(+)-lactic acid. In a 2-choice landing behavior context, the skin volatiles 2- and 3-methyl butyric acids reduced mosquito landing by 62.0-81.6% and 87.1-99.6%, respectively. Similarly, geraniol was capable of reducing mosquito landing behavior by 74.9%. We also tested the potential repellency effects of geraniol on mosquitoes at short-range using a 4-port olfactometer. In these assays, geraniol reduced mosquito attraction (69-78%) to a mixture of key human kairomones carbon dioxide, L-(+)-lactic acid, and ammonia. These findings demonstrate that carbon dioxide and L-(+)-lactic acid changes the valence of other skin volatiles towards mosquito landing behavior. Moreover, this study offers candidate odorants to be targeted in a novel strategy to reduce attractants or produce repellents by the human skin microbiota that may curtail mosquito bites, and subsequent mosquito-borne disease.
Collapse
Affiliation(s)
- Iliano V. Coutinho-Abreu
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Omid Jamshidi
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Robyn Raban
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Katayoon Atabakhsh
- Department of Bioengineering Stanford University, Stanford, CA 94305, USA
| | - Joseph A. Merriman
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Microbiome Therapies Initiative, Stanford University, Palo Alto, CA 94305, USA
| | - Michael A. Fischbach
- Department of Bioengineering Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Microbiome Therapies Initiative, Stanford University, Palo Alto, CA 94305, USA
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
23
|
Dahake A, Raguso RA, Goyret J. Context and the functional use of information in insect sensory ecology. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101058. [PMID: 37217002 DOI: 10.1016/j.cois.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Context-specific behaviors emerge from the interaction between an animal's internal state and its external environment. Although the importance of context is acknowledged in the field of insect sensory ecology, there is a lack of synthesis on this topic stemming from challenges in conceptualizing 'context'. We address this challenge by gleaning over the recent findings on the sensory ecology of mosquitoes and other insect pollinators. We discuss internal states and their temporal dynamics, from those lasting minutes to hours (host-seeking) to those lasting days to weeks (diapause, migration). Of the many patterns reviewed, at least three were common to all taxa studied. First, different sensory cues gain prominence depending on the insect's internal state. Second, similar sensory circuits between related species can result in different behavioral outcomes. And third, ambient conditions can dramatically alter internal states and behaviors.
Collapse
Affiliation(s)
- Ajinkya Dahake
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Joaquin Goyret
- Department of Biological Sciences, University of Tennessee Martin, Martin, TN, USA.
| |
Collapse
|
24
|
Laursen WJ, Tang R, Garrity PA. Hunting with heat: thermosensory-driven foraging in mosquitoes, snakes and beetles. J Exp Biol 2023; 226:jeb229658. [PMID: 37382467 PMCID: PMC10323236 DOI: 10.1242/jeb.229658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Animals commonly use thermosensation, the detection of temperature and its variation, for defensive purposes: to maintain appropriate body temperature and to avoid tissue damage. However, some animals also use thermosensation to go on the offensive: to hunt for food. The emergence of heat-dependent foraging behavior has been accompanied by the evolution of diverse thermosensory organs of often exquisite thermosensitivity. These organs detect the heat energy emitted from food sources that range from nearby humans to trees burning in a forest kilometers away. Here, we examine the biophysical considerations, anatomical specializations and molecular mechanisms that underlie heat-driven foraging. We focus on three groups of animals that each meet the challenge of detecting heat from potential food sources in different ways: (1) disease-spreading vector mosquitoes, which seek blood meals from warm-bodied hosts at close range, using warming-inhibited thermosensory neurons responsive to conductive and convective heat flow; (2) snakes (vipers, pythons and boas), which seek warm-blooded prey from ten or more centimeters away, using warmth-activated thermosensory neurons housed in an organ specialized to harvest infrared radiation; and (3) fire beetles, which maximize their offspring's feeding opportunities by seeking forest fires from kilometers away, using mechanosensory neurons housed in an organ specialized to convert infrared radiation into mechanosensory stimuli. These examples highlight the diverse ways in which animals exploit the heat emanating from potential food sources, whether this heat reflects ongoing metabolic activity or a recent lightning strike, to secure a nutritious meal for themselves or for their offspring.
Collapse
Affiliation(s)
- Willem J. Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Ruocong Tang
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Paul A. Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
25
|
Gupta S, Blake AJ, Riffell JA. Mosquito biology: Scents and selectability. Curr Biol 2023; 33:R686-R688. [PMID: 37339597 DOI: 10.1016/j.cub.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Malaria-transmitting mosquitoes are skilled human hunters, selectively choosing their prey based on a complex array of sensory cues. A new study unveils a distinct pattern of preference for human-associated olfactory cues that underlies the selective behavior of these mosquitoes.
Collapse
Affiliation(s)
- Saumya Gupta
- University of Washington, Department of Biology, Seattle, WA 98195, USA.
| | - Adam J Blake
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| | - Jeffrey A Riffell
- University of Washington, Department of Biology, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Laursen WJ, Busby R, Sarkissian T, Chang EC, Garrity PA. DMKPs provide a generalizable strategy for studying genes required for reproduction or viability in nontraditional model organisms. Genetics 2023; 224:iyad057. [PMID: 37036394 PMCID: PMC10213491 DOI: 10.1093/genetics/iyad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/21/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
The advent of CRISPR/Cas9-mediated genome editing has expanded the range of animals amenable to targeted genetic analysis. This has accelerated research in animals not traditionally studied using molecular genetics. However, studying genes essential for reproduction or survival in such animals remains challenging, as they lack the tools that aid genetic analysis in traditional genetic model organisms. We recently introduced the use of distinguishably marked knock-in pairs (DMKPs) as a strategy for rapid and reliable genotyping in such species. Here we show that DMKPs also facilitate the maintenance and study of mutations that cannot be maintained in a homozygous state, a group which includes recessive lethal and sterile mutations. Using DMKPs, we disrupt the zero population growth locus in Drosophila melanogaster and in the dengue vector mosquito Aedes aegypti. In both species, DMKPs enable the maintenance of zero population growth mutant strains and the reliable recovery of zero population growth mutant animals. Male and female gonad development is disrupted in fly and mosquito zero population growth mutants, rendering both sexes sterile. In Ae. aegypti, zero population growth mutant males remain capable of inducing a mating refractory period in wild-type females and of competing with wild-type males for mates, properties compatible with zero population growth serving as a target in mosquito population suppression strategies. DMKP is readily generalizable to other species amenable to CRISPR/Cas9-mediated gene targeting, and should facilitate the study of sterile and lethal mutations in multiple organisms not traditionally studied using molecular genetics.
Collapse
Affiliation(s)
- Willem J Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rachel Busby
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Tatevik Sarkissian
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Elaine C Chang
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Paul A Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
27
|
Konopka JK, Task D, Poinapen D, Potter CJ. Neurogenetic identification of mosquito sensory neurons. iScience 2023; 26:106690. [PMID: 37182106 PMCID: PMC10172775 DOI: 10.1016/j.isci.2023.106690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Anopheles mosquitoes, as vectors for the malaria parasite, are a global threat to human health. To find and bite a human, they utilize neurons within their sensory appendages. However, the identity and quantification of sensory appendage neurons are lacking. Here we use a neurogenetic approach to label all neurons in Anopheles coluzzii mosquitoes. We utilize the homology assisted CRISPR knock-in (HACK) approach to generate a T2A-QF2w knock-in of the synaptic gene bruchpilot. We use a membrane-targeted GFP reporter to visualize the neurons in the brain and to quantify neurons in all major chemosensory appendages (antenna, maxillary palp, labella, tarsi, and ovipositor). By comparing labeling of brp>GFP and Orco>GFP mosquitoes, we predict the extent of neurons expressing ionotropic receptors (IRs) or other chemosensory receptors. This work introduces a valuable genetic tool for the functional analysis of Anopheles mosquito neurobiology and initiates characterization of the sensory neurons that guide mosquito behavior.
Collapse
Affiliation(s)
- Joanna K. Konopka
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danny Poinapen
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christopher J. Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author
| |
Collapse
|