1
|
Zuniga NR, Earls NE, Denos AEA, Elison JM, Jones BS, Smith EG, Moran NG, Broce KL, Romero GM, Hyer CD, Wagstaff KB, Almughamsi HM, Transtrum MK, Price JC. Quantitative and Kinetic Proteomics Reveal ApoE Isoform-dependent Proteostasis Adaptations in Mouse Brain. PLoS Comput Biol 2024; 20:e1012407. [PMID: 39666759 DOI: 10.1371/journal.pcbi.1012407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/26/2024] [Accepted: 11/03/2024] [Indexed: 12/14/2024] Open
Abstract
Apolipoprotein E (ApoE) polymorphisms modify the risk of Alzheimer's disease with ApoE4 strongly increasing and ApoE2 modestly decreasing risk relative to the control ApoE3. To investigate how ApoE isoforms alter risk, we measured changes in proteome homeostasis in transgenic mice expressing a human ApoE gene (isoform 2, 3, or 4). The regulation of each protein's homeostasis is observed by measuring turnover rate and abundance for that protein. We identified 4849 proteins and tested for ApoE isoform-dependent changes in the homeostatic regulation of ~2700 ontologies. In the brain, we found that ApoE4 and ApoE2 both lead to modified regulation of mitochondrial membrane proteins relative to the wild-type control ApoE3. In ApoE4 mice, lack of cohesion between mitochondrial membrane and matrix proteins suggests that dysregulation of proteasome and autophagy is reducing protein quality. In ApoE2, proteins of the mitochondrial matrix and the membrane, including oxidative phosphorylation complexes, had a similar increase in degradation which suggests coordinated replacement of the entire organelle. In the liver we did not observe these changes suggesting that the ApoE-effect on proteostasis is amplified in the brain relative to other tissues. Our findings underscore the utility of combining protein abundance and turnover rates to decipher proteome regulatory mechanisms and their potential role in biology.
Collapse
Affiliation(s)
- Nathan R Zuniga
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Noah E Earls
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Ariel E A Denos
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Jared M Elison
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Benjamin S Jones
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Ethan G Smith
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Noah G Moran
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Katie L Broce
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Gerome M Romero
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Chad D Hyer
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Kimberly B Wagstaff
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Haifa M Almughamsi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Mark K Transtrum
- Department of Physics and Astronomy, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| | - John C Price
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
2
|
Perrin F, Anderson LC, Mitchell SPC, Sinha P, Turchyna Y, Maesako M, Houser MCQ, Zhang C, Wagner SL, Tanzi RE, Berezovska O. PS1/gamma-secretase acts as rogue chaperone of glutamate transporter EAAT2/GLT-1 in Alzheimer's disease. Acta Neuropathol Commun 2024; 12:166. [PMID: 39434170 PMCID: PMC11492509 DOI: 10.1186/s40478-024-01876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
The recently discovered interaction between presenilin 1 (PS1), a subunit of γ-secretase involved in amyloid-β (Aβ) peptide production, and GLT-1, the major brain glutamate transporter (EAAT2 in the human), may link two pathological aspects of Alzheimer's disease: abnormal Aβ occurrence and neuronal network hyperactivity. In the current study, we employed a FRET-based fluorescence lifetime imaging microscopy (FLIM) to characterize the PS1/GLT-1 interaction in brain tissue from sporadic AD (sAD) patients. sAD brains showed significantly less PS1/GLT-1 interaction than those with frontotemporal lobar degeneration or non-demented controls. Familial AD (fAD) PS1 mutations, inducing a "closed" PS1 conformation similar to that in sAD brain, and gamma-secretase modulators (GSMs), inducing a "relaxed" conformation, respectively reduced and increased the interaction. Furthermore, PS1 influences GLT-1 cell surface expression and homomultimer formation, acting as a chaperone but not affecting GLT-1 stability. The diminished PS1/GLT-1 interaction suggests that these functions may not work properly in AD.
Collapse
Affiliation(s)
- Florian Perrin
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Lauren C Anderson
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shane P C Mitchell
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Priyanka Sinha
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yuliia Turchyna
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Masato Maesako
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mei C Q Houser
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Can Zhang
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- VA San Diego Healthcare System, La Jolla, CA, 92161, USA
| | - Rudolph E Tanzi
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Oksana Berezovska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
3
|
Zuniga NR, Earls NE, Denos AEA, Elison JM, Jones BS, Smith EG, Moran NG, Brown KL, Romero GM, Hyer CD, Wagstaff KB, Almughamsi HM, Transtrum MK, Price JC. Quantitative and Kinetic Proteomics Reveal ApoE Isoform-dependent Proteostasis Adaptations in Mouse Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607719. [PMID: 39185235 PMCID: PMC11343127 DOI: 10.1101/2024.08.13.607719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Apolipoprotein E (ApoE) polymorphisms modify the risk of neurodegenerative disease with the ApoE4 isoform increasing and ApoE2 isoform decreasing risk relative to the 'wild-type control' ApoE3 isoform. To elucidate how ApoE isoforms alter the proteome, we measured relative protein abundance and turnover in transgenic mice expressing a human ApoE gene (isoform 2, 3, or 4). This data provides insight into how ApoE isoforms affect the in vivo synthesis and degradation of a wide variety of proteins. We identified 4849 proteins and tested for ApoE isoform-dependent changes in the homeostatic regulation of ~2700 ontologies. In the brain, we found that ApoE4 and ApoE2 both lead to modified regulation of mitochondrial membrane proteins relative to the wild-type control ApoE3. In ApoE4 mice, this regulation is not cohesive suggesting that aerobic respiration is impacted by proteasomal and autophagic dysregulation. ApoE2 mice exhibited a matching change in mitochondrial matrix proteins and the membrane which suggests coordinated maintenance of the entire organelle. In the liver, we did not observe these changes suggesting that the ApoE-effect on proteostasis is amplified in the brain relative to other tissues. Our findings underscore the utility of combining protein abundance and turnover rates to decipher proteome regulatory mechanisms and their potential role in biology.
Collapse
Affiliation(s)
- Nathan R. Zuniga
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Noah E. Earls
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Ariel E. A. Denos
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Jared M. Elison
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Benjamin S. Jones
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Ethan G. Smith
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Noah G. Moran
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Katie L. Brown
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Gerome M. Romero
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Chad D. Hyer
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Kimberly B. Wagstaff
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - Haifa M. Almughamsi
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Mark K. Transtrum
- Department of Physics and Astronomy, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| | - John C. Price
- Department of Chemistry and Biochemistry, College of Computational, Physical, and Mathematical Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
4
|
Narasimhan S, Holtzman DM, Apostolova LG, Cruchaga C, Masters CL, Hardy J, Villemagne VL, Bell J, Cho M, Hampel H. Apolipoprotein E in Alzheimer's disease trajectories and the next-generation clinical care pathway. Nat Neurosci 2024; 27:1236-1252. [PMID: 38898183 DOI: 10.1038/s41593-024-01669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/18/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) is a complex, progressive primary neurodegenerative disease. Since pivotal genetic studies in 1993, the ε4 allele of the apolipoprotein E gene (APOE ε4) has remained the strongest single genome-wide associated risk variant in AD. Scientific advances in APOE biology, AD pathophysiology and ApoE-targeted therapies have brought APOE to the forefront of research, with potential translation into routine AD clinical care. This contemporary Review will merge APOE research with the emerging AD clinical care pathway and discuss APOE genetic risk as a conduit to genomic-based precision medicine in AD, including ApoE's influence in the ATX(N) biomarker framework of AD. We summarize the evidence for APOE as an important modifier of AD clinical-biological trajectories. We then illustrate the utility of APOE testing and the future of ApoE-targeted therapies in the next-generation AD clinical-diagnostic pathway. With the emergence of new AD therapies, understanding how APOE modulates AD pathophysiology will become critical for personalized AD patient care.
Collapse
Affiliation(s)
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University in St. Louis, St. Louis, MO, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin L Masters
- Florey Institute and the University of Melbourne, Parkville, Victoria, Australia
| | - John Hardy
- Department of Neurodegenerative Disease and Dementia Research Institute, Reta Lila Weston Research Laboratories, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | | | | |
Collapse
|
5
|
Nicolas G. Lessons from genetic studies in Alzheimer disease. Rev Neurol (Paris) 2024; 180:368-377. [PMID: 38429159 DOI: 10.1016/j.neurol.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/27/2023] [Indexed: 03/03/2024]
Abstract
Research on Alzheimer disease (AD) genetics has provided critical advances to the knowledge of AD pathophysiological mechanisms. The etiology of AD can be divided into monogenic (autosomal dominant inheritance) and complex (multifactorial determinism). In monogenic AD, recent advances mainly concern mutation-associated mechanisms, presymptomatic clinical studies, and the search for modifiers of ages of onset that are still ongoing. In complex AD, genetic factors can be further categorized into three classes: (i) the APOE-ɛ4 and ɛ2 common alleles that represent a category by themselves as they are both common and with a strong impact on AD risk; (ii) common variants with a modest effect, identified in genome-wide association studies (GWAS); and (iii) rare variants with a moderate-to-strong effect, identified in case-control sequencing studies. Regarding APOE, odds ratios, available in multiple ethnicities, can now be converted into penetrance curves, although such curves remain to be performed in diverse ethnicities. In addition, advances in the understanding of mechanisms have been recently reported and rare APOE variants add to the complexity. In the GWAS category, novel loci have been discovered thanks to larger studies, doubling the number of hits as compared to the previous reference meta-analysis. However, such modest risk factors cannot be used in the clinic, neither individually, nor in genetic risk scores. In the category of rare variants, two novel genes, ABCA1 and ATP8B4 now add to the three main ones, TREM2, SORL1, and ABCA7. The study of such rare variants suggests oligogenic inheritance in some families, as also suggested by digenic penetrance curves for SORL1 loss-of-function variants with APOE-ɛ4. Cumulate frequencies of definite (so-called) rare risk factors are 2.3% to 3.6% (depending on thresholds on odds ratios) in control databases and many more remain to be classified and identified, showing how important these risk factors may be as part of the complex determinism of AD. A better understanding of these rare risk factors and their combined effects on each other, with common variants, and with environmental factors, should allow for a prediction of AD risk and, eventually, preventive medicine. Taken together, most genetic determinants of AD, in monogenic and in complex forms, point toward the aggregation of Aβ as a pivotal triggering factor, such that targeting it may be efficient as prevention in at-risk individuals. The role of neuroinflammation, microglia, and Tau pathology modulation are important sources of research for disease modification.
Collapse
Affiliation(s)
- G Nicolas
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, 76000 Rouen, France.
| |
Collapse
|
6
|
Nicolas G. Recent advances in Alzheimer disease genetics. Curr Opin Neurol 2024; 37:154-165. [PMID: 38235704 DOI: 10.1097/wco.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW Genetics studies provide important insights into Alzheimer disease (AD) etiology and mechanisms. Critical advances have been made recently, mainly thanks to the access to novel techniques and larger studies. RECENT FINDINGS In monogenic AD, progress has been made with a better understanding of the mechanisms associated with pathogenic variants and the input of clinical studies in presymptomatic individuals. In complex AD, increasing sample sizes in both DNA chip-based (genome-wide association studies, GWAS) and exome/genome sequencing case-control studies unveiled novel common and rare risk factors, while the understanding of their combined effect starts to suggest the existence of rare families with oligogenic inheritance of early-onset, nonmonogenic, AD. SUMMARY Most genetic risk factors with a known consequence designate the aggregation of the Aβ peptide as a core etiological factor in complex AD thus confirming that the research based on monogenic AD - where the amyloid cascade seems more straightforward - is relevant to complex AD as well. Novel mechanistic insights and risk factor studies unveiling novel factors and attempting to combine the effect of common and rare variants will offer promising perspectives for future AD prevention, at least regarding early-onset AD, and probably in case of later onset as well.
Collapse
Affiliation(s)
- Gaël Nicolas
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, F-76000 Rouen, France
| |
Collapse
|
7
|
Zhou J, Chen JQ, Gong S, Ban YJ, Zhang L, Liu Y, Wu JL, Li N. Isolation, Bioactivity, and Molecular Docking of a Rare Gastrodin Isocitrate and Diverse Parishin Derivatives from Gastrodia elata Blume. ACS OMEGA 2024; 9:14520-14529. [PMID: 38559968 PMCID: PMC10976414 DOI: 10.1021/acsomega.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Gastrodia elata Blume (G. elata) is a well-known medicine food homology plant widely used in treating neurological disorders such as Alzheimer's disease (AD). Here, undiscovered gastrodin derivatives were systematically studied. Seven novel gastrodin derivatives (1-7), including a unique gastrodin isocitrate (1) and six differently substituted parishin derivatives (2-7), were isolated. Structural identification was mainly based on 1D and 2D NMR data, high-resolution ESI-MS data, and HPLC analysis. Notably, the stereochemistry of 1 was further elucidated by ECD calculations. Compounds 1 and 6 showed neuroprotective effects on the H2O2-induced PC12 cell injury model. Molecular docking analysis exhibited that 1 and 6 had good affinities with three popular AD-related targets. These findings not only enriched the chemical diversity but also revealed potential active components in G. elata.
Collapse
Affiliation(s)
- Jie Zhou
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078 SAR, China
| | - Jia-Qian Chen
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078 SAR, China
| | - Shilin Gong
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078 SAR, China
| | - Yu-Juan Ban
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078 SAR, China
| | - Li Zhang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078 SAR, China
| | - Ying Liu
- School
of Basic Medicinal Sciences and Nursing, Chengdu University, Chengdu 610106, PR China
| | - Jian-Lin Wu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078 SAR, China
| | - Na Li
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078 SAR, China
| |
Collapse
|
8
|
Lian Y, Jia YJ, Wong J, Zhou XF, Song W, Guo J, Masters CL, Wang YJ. Clarity on the blazing trail: clearing the way for amyloid-removing therapies for Alzheimer's disease. Mol Psychiatry 2024; 29:297-305. [PMID: 38001337 DOI: 10.1038/s41380-023-02324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a complex pathogenesis. Senile plaques composed of the amyloid-β (Aβ) peptide in the brain are the core hallmarks of AD and a promising target for the development of disease-modifying therapies. However, over the past 20 years, the failures of clinical trials directed at Aβ clearance have fueled a debate as to whether Aβ is the principal pathogenic factor in AD and a valid therapeutic target. The success of the recent phase 3 trials of lecanemab (Clarity AD) and donanemab (Trailblazer Alz2), and lessons from previous Aβ clearance trials provide critical evidence to support the role of Aβ in AD pathogenesis and suggest that targeting Aβ clearance is heading in the right direction for AD treatment. Here, we analyze key questions relating to the efficacy of Aβ targeting therapies, and provide perspectives on early intervention, adequate Aβ removal, sufficient treatment period, and combinatory therapeutics, which may be required to achieve the best cognitive benefits in future trials in the real world.
Collapse
Affiliation(s)
- Yan Lian
- Department of Prevention and Health Care, Daping Hospital, Third Military Medical University, Chongqing, China
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Ageing and Brain Disease, Chongqing, China
| | - Yu-Juan Jia
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Joelyn Wong
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province. Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Ageing and Brain Disease, Chongqing, China.
| |
Collapse
|