1
|
Tiwari P, Davoudian PA, Kapri D, Vuruputuri RM, Karaba LA, Sharma M, Zanni G, Balakrishnan A, Chaudhari PR, Pradhan A, Suryavanshi S, Bath KG, Ansorge MS, Fernandez-Ruiz A, Kwan AC, Vaidya VA. Ventral hippocampal parvalbumin interneurons gate the acute anxiolytic action of the serotonergic psychedelic DOI. Neuron 2024:S0896-6273(24)00640-8. [PMID: 39321791 DOI: 10.1016/j.neuron.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/08/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
Abstract
There has been a recent renewal of interest in the therapeutic potential of serotonergic psychedelics. Here, we uncover the essential role of ventral hippocampus (vHpc) GABAergic interneurons in the anxiolytic effect evoked by the serotonergic psychedelic 2,5-dimethoxy-4-iodoamphetamine (DOI). Integrating anatomical, pharmacological, and genetic approaches, we show that 5-HT2A receptors in the CA1/subiculum (CA1/sub) region of the vHpc are required for the anxiolytic action of DOI. In vivo electrophysiology and opto-tagging experiments indicate that DOI enhances the firing rate of hippocampal fast-spiking parvalbumin (PV)-positive interneurons, most of which express the 5-HT2A receptors. Restoration of 5-HT2A receptors in PV-positive interneurons in a loss-of-function background reinstated the anxiolytic responses evoked by DOI in the vHpc CA1/sub region. Collectively, our results localize the acute anxiolytic action of a serotonergic psychedelic to 5-HT2A receptors in the ventral hippocampus and specifically identify PV-positive fast-spiking cells as a cellular trigger for the psychedelic-induced relief of anxiety-like behavior.
Collapse
Affiliation(s)
- Praachi Tiwari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| | - Pasha A Davoudian
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Darshana Kapri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | - Lindsay A Karaba
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Mukund Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Giulia Zanni
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Angarika Balakrishnan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Pratik R Chaudhari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Amartya Pradhan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Shital Suryavanshi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Kevin G Bath
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Mark S Ansorge
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | | | - Alex C Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|
2
|
Gava GP, Lefèvre L, Broadbelt T, McHugh SB, Lopes-Dos-Santos V, Brizee D, Hartwich K, Sjoberg H, Perestenko PV, Toth R, Sharott A, Dupret D. Organizing the coactivity structure of the hippocampus from robust to flexible memory. Science 2024; 385:1120-1127. [PMID: 39236189 PMCID: PMC7616439 DOI: 10.1126/science.adk9611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
New memories are integrated into prior knowledge of the world. But what if consecutive memories exert opposing demands on the host brain network? We report that acquiring a robust (food-context) memory constrains the mouse hippocampus within a population activity space of highly correlated spike trains that prevents subsequent computation of a flexible (object-location) memory. This densely correlated firing structure developed over repeated mnemonic experience, gradually coupling neurons in the superficial sublayer of the CA1 stratum pyramidale to whole-population activity. Applying hippocampal theta-driven closed-loop optogenetic suppression to mitigate this neuronal recruitment during (food-context) memory formation relaxed the topological constraint on hippocampal coactivity and restored subsequent flexible (object-location) memory. These findings uncover an organizational principle for the peer-to-peer coactivity structure of the hippocampal cell population to meet memory demands.
Collapse
Affiliation(s)
- Giuseppe P Gava
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Tabitha Broadbelt
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stephen B McHugh
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hanna Sjoberg
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Pavel V Perestenko
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Abbaspoor S, Hoffman KL. Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely moving macaques. Cell Rep 2024; 43:114519. [PMID: 39018243 PMCID: PMC11445748 DOI: 10.1016/j.celrep.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here, we report inhibitory functional cell groups in CA1 of freely moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were grouped by their superficial or deep layer position differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest that hippocampal CA1 in freely moving macaques bears a sublayer-specific circuit organization that may shape its role in cognition.
Collapse
Affiliation(s)
- Saman Abbaspoor
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Kari L Hoffman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Kveim VA, Salm L, Ulmer T, Lahr M, Kandler S, Imhof F, Donato F. Divergent recruitment of developmentally defined neuronal ensembles supports memory dynamics. Science 2024; 385:eadk0997. [PMID: 39146420 DOI: 10.1126/science.adk0997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/24/2024] [Indexed: 08/17/2024]
Abstract
Memories are dynamic constructs whose properties change with time and experience. The biological mechanisms underpinning these dynamics remain elusive, particularly concerning how shifts in the composition of memory-encoding neuronal ensembles influence the evolution of a memory over time. By targeting developmentally distinct subpopulations of principal neurons, we discovered that memory encoding resulted in the concurrent establishment of multiple memory traces in the mouse hippocampus. Two of these traces were instantiated in subpopulations of early- and late-born neurons and followed distinct reactivation trajectories after encoding. The divergent recruitment of these subpopulations underpinned gradual reorganization of memory ensembles and modulated memory persistence and plasticity across multiple learning episodes. Thus, our findings reveal profound and intricate relationships between ensemble dynamics and the progression of memories over time.
Collapse
Affiliation(s)
- Vilde A Kveim
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Laurenz Salm
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Talia Ulmer
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Maria Lahr
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | | | - Fabia Imhof
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Flavio Donato
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Karaba LA, Robinson HL, Harvey RE, Chen W, Fernandez-Ruiz A, Oliva A. A hippocampal circuit mechanism to balance memory reactivation during sleep. Science 2024; 385:738-743. [PMID: 39146421 PMCID: PMC11428313 DOI: 10.1126/science.ado5708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 08/17/2024]
Abstract
Memory consolidation involves the synchronous reactivation of hippocampal cells active during recent experience in sleep sharp-wave ripples (SWRs). How this increase in firing rates and synchrony after learning is counterbalanced to preserve network stability is not understood. We discovered a network event generated by an intrahippocampal circuit formed by a subset of CA2 pyramidal cells to cholecystokinin-expressing (CCK+) basket cells, which fire a barrage of action potentials ("BARR") during non-rapid eye movement sleep. CA1 neurons and assemblies that increased their activity during learning were reactivated during SWRs but inhibited during BARRs. The initial increase in reactivation during SWRs returned to baseline through sleep. This trend was abolished by silencing CCK+ basket cells during BARRs, resulting in higher synchrony of CA1 assemblies and impaired memory consolidation.
Collapse
Affiliation(s)
- Lindsay A Karaba
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Heath L Robinson
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Ryan E Harvey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Weiwei Chen
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | | | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Muñoz-Redondo C, Parras GG, Andreu-Sánchez C, Martín-Pascual MÁ, Delgado-García JM, Gruart A. Functional states of prelimbic and related circuits during the acquisition of a GO/noGO task in rats. Cereb Cortex 2024; 34:bhae271. [PMID: 38997210 DOI: 10.1093/cercor/bhae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
GO/noGO tasks enable assessing decision-making processes and the ability to suppress a specific action according to the context. Here, rats had to discriminate between 2 visual stimuli (GO or noGO) shown on an iPad screen. The execution (for GO) or nonexecution (for noGO) of the selected action (to touch or not the visual display) were reinforced with food. The main goal was to record and to analyze local field potentials collected from cortical and subcortical structures when the visual stimuli were shown on the touch screen and during the subsequent activities. Rats were implanted with recording electrodes in the prelimbic cortex, primary motor cortex, nucleus accumbens septi, basolateral amygdala, dorsolateral and dorsomedial striatum, hippocampal CA1, and mediodorsal thalamic nucleus. Spectral analyses of the collected data demonstrate that the prelimbic cortex was selectively involved in the cognitive and motivational processing of the learning task but not in the execution of reward-directed behaviors. In addition, the other recorded structures presented specific tendencies to be involved in these 2 types of brain activity in response to the presentation of GO or noGO stimuli. Spectral analyses, spectrograms, and coherence between the recorded brain areas indicate their specific involvement in GO vs. noGO tasks.
Collapse
Affiliation(s)
| | - Gloria G Parras
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| | - Celia Andreu-Sánchez
- Neuro-Com Research Group, Department of Audiovisual Communication and Advertising, Universitat Autònoma de Barcelona, Barcelona 08190, Spain
- Cerdanyola del Vallès, Institut de Neurociènces, Universitat Autònoma de Barcelona, Barcelona 08190, Spain
| | - Miguel Ángel Martín-Pascual
- Neuro-Com Research Group, Department of Audiovisual Communication and Advertising, Universitat Autònoma de Barcelona, Barcelona 08190, Spain
- Research and Development, Institute of Spanish Public Television (RTVE), Corporación Radio Televisión Española, Barcelona 08190, Spain
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| |
Collapse
|
7
|
Yasar TB, Gombkoto P, Vyssotski AL, Vavladeli AD, Lewis CM, Wu B, Meienberg L, Lundegardh V, Helmchen F, von der Behrens W, Yanik MF. Months-long tracking of neuronal ensembles spanning multiple brain areas with Ultra-Flexible Tentacle Electrodes. Nat Commun 2024; 15:4822. [PMID: 38844769 PMCID: PMC11156863 DOI: 10.1038/s41467-024-49226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
We introduce Ultra-Flexible Tentacle Electrodes (UFTEs), packing many independent fibers with the smallest possible footprint without limitation in recording depth using a combination of mechanical and chemical tethering for insertion. We demonstrate a scheme to implant UFTEs simultaneously into many brain areas at arbitrary locations without angle-of-insertion limitations, and a 512-channel wireless logger. Immunostaining reveals no detectable chronic tissue damage even after several months. Mean spike signal-to-noise ratios are 1.5-3x compared to the state-of-the-art, while the highest signal-to-noise ratios reach 89, and average cortical unit yields are ~1.75/channel. UFTEs can track the same neurons across sessions for at least 10 months (longest duration tested). We tracked inter- and intra-areal neuronal ensembles (neurons repeatedly co-activated within 25 ms) simultaneously from hippocampus, retrosplenial cortex, and medial prefrontal cortex in freely moving rodents. Average ensemble lifetimes were shorter than the durations over which we can track individual neurons. We identify two distinct classes of ensembles. Those tuned to sharp-wave ripples display the shortest lifetimes, and the ensemble members are mostly hippocampal. Yet, inter-areal ensembles with members from both hippocampus and cortex have weak tuning to sharp wave ripples, and some have unusual months-long lifetimes. Such inter-areal ensembles occasionally remain inactive for weeks before re-emerging.
Collapse
Affiliation(s)
- Tansel Baran Yasar
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Peter Gombkoto
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Angeliki D Vavladeli
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Christopher M Lewis
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Bifeng Wu
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Linus Meienberg
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Valter Lundegardh
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Wolfger von der Behrens
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Abbaspoor S, Hoffman KL. Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely-moving macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570369. [PMID: 38106053 PMCID: PMC10723348 DOI: 10.1101/2023.12.06.570369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here we report inhibitory functional cell groups in CA1 of freely-moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were segregated into superficial and deep layers differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest sublayer-specific circuit organization in hippocampal CA1 of the freely-moving macaques that may underlie its role in cognition.
Collapse
Affiliation(s)
- S Abbaspoor
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | - K L Hoffman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
9
|
Tononi G, Boly M, Cirelli C. Consciousness and sleep. Neuron 2024; 112:1568-1594. [PMID: 38697113 PMCID: PMC11105109 DOI: 10.1016/j.neuron.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Sleep is a universal, essential biological process. It is also an invaluable window on consciousness. It tells us that consciousness can be lost but also that it can be regained, in all its richness, when we are disconnected from the environment and unable to reflect. By considering the neurophysiological differences between dreaming and dreamless sleep, we can learn about the substrate of consciousness and understand why it vanishes. We also learn that the ongoing state of the substrate of consciousness determines the way each experience feels regardless of how it is triggered-endogenously or exogenously. Dreaming consciousness is also a window on sleep and its functions. Dreams tell us that the sleeping brain is remarkably lively, recombining intrinsic activation patterns from a vast repertoire, freed from the requirements of ongoing behavior and cognitive control.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| |
Collapse
|
10
|
Hanson MA, Bibi N, Safa A, Nagarajan D, Marshall AH, Johantges AC, Wester JC. Development of differential sublaminar feedforward inhibitory circuits in CA1 hippocampus requires Satb2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576902. [PMID: 38328190 PMCID: PMC10849736 DOI: 10.1101/2024.01.23.576902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying PC differentiation and the development of this inhibitory circuit motif. We found that expression of the transcriptional regulator SATB2 is biased towards superficial PCs during early postnatal development and necessary to suppress PV+ interneuron synapse formation. In the absence of SATB2, the number of PV+ interneuron synaptic puncta surrounding superficial PCs increases during development to match deep PCs. This results in equivalent inhibitory current strength observed in paired whole-cell recordings, and equivalent feedforward inhibition of Schaffer collateral input. Thus, SATB2 is necessary for superficial PC differentiation and biased feedforward inhibition in CA1.
Collapse
|
11
|
Varga V, Petersen P, Zutshi I, Huszar R, Zhang Y, Buzsáki G. Working memory features are embedded in hippocampal place fields. Cell Rep 2024; 43:113807. [PMID: 38401118 PMCID: PMC11044127 DOI: 10.1016/j.celrep.2024.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/26/2024] Open
Abstract
Hippocampal principal neurons display both spatial tuning properties and memory features. Whether this distinction corresponds to separate neuron types or a context-dependent continuum has been debated. We report here that the task-context ("splitter") feature is highly variable along both trial and spatial position axes. Neurons acquire or lose splitter features across trials even when place field features remain unaltered. Multiple place fields of the same neuron can individually encode both past or future run trajectories, implying that splitter fields are under the control of assembly activity. Place fields can be differentiated into subfields by the behavioral choice of the animal, and splitting within subfields evolves across trials. Interneurons also differentiate choices by integrating inputs from pyramidal cells. Finally, bilateral optogenetic inactivation of the medial entorhinal cortex reversibly decreases the fraction of splitter fields. Our findings suggest that place or splitter features are different manifestations of the same hippocampal computation.
Collapse
Affiliation(s)
- Viktor Varga
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA; Subcortical Modulation Research Group, Institute of Experimental Medicine - Hungarian Research Network, Budapest, Hungary
| | - Peter Petersen
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ipshita Zutshi
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA
| | - Roman Huszar
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA
| | - Yiyao Zhang
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Health, New York University, New York, NY, USA; Department of Neuroscience and Physiology, Langone Health, New York University, New York, NY, USA; Department of Neurology, Langone Health, New York University, New York, NY, USA.
| |
Collapse
|
12
|
Sosa M, Plitt MH, Giocomo LM. Hippocampal sequences span experience relative to rewards. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573490. [PMID: 38234842 PMCID: PMC10793396 DOI: 10.1101/2023.12.27.573490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hippocampal place cells fire in sequences that span spatial environments and non-spatial modalities, suggesting that hippocampal activity can anchor to the most behaviorally salient aspects of experience. As reward is a highly salient event, we hypothesized that sequences of hippocampal activity can anchor to rewards. To test this, we performed two-photon imaging of hippocampal CA1 neurons as mice navigated virtual environments with changing hidden reward locations. When the reward moved, the firing fields of a subpopulation of cells moved to the same relative position with respect to reward, constructing a sequence of reward-relative cells that spanned the entire task structure. The density of these reward-relative sequences increased with task experience as additional neurons were recruited to the reward-relative population. Conversely, a largely separate subpopulation maintained a spatially-based place code. These findings thus reveal separate hippocampal ensembles can flexibly encode multiple behaviorally salient reference frames, reflecting the structure of the experience.
Collapse
Affiliation(s)
- Marielena Sosa
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| | - Mark H. Plitt
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
- Present address: Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
13
|
Dragoi G. The generative grammar of the brain: a critique of internally generated representations. Nat Rev Neurosci 2024; 25:60-75. [PMID: 38036709 DOI: 10.1038/s41583-023-00763-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
The past decade of progress in neurobiology has uncovered important organizational principles for network preconfiguration and neuronal selection that suggest a generative grammar exists in the brain. In this Perspective, I discuss the competence of the hippocampal neural network to generically express temporally compressed sequences of neuronal firing that represent novel experiences, which is envisioned as a form of generative neural syntax supporting a neurobiological perspective on brain function. I compare this neural competence with the hippocampal network performance that represents specific experiences with higher fidelity after new learning during replay, which is envisioned as a form of neural semantic that supports a complementary neuropsychological perspective. I also demonstrate how the syntax of network competence emerges a priori during early postnatal life and is followed by the later development of network performance that enables rapid encoding and memory consolidation. Thus, I propose that this generative grammar of the brain is essential for internally generated representations, which are crucial for the cognitive processes underlying learning and memory, prospection, and inference, which ultimately underlie our reason and representation of the world.
Collapse
Affiliation(s)
- George Dragoi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
14
|
Xue F, Li F, Zhang KM, Ding L, Wang Y, Zhao X, Xu F, Zhang D, Sun M, Lau PM, Zhu Q, Zhou P, Bi GQ. Multi-region calcium imaging in freely behaving mice with ultra-compact head-mounted fluorescence microscopes. Natl Sci Rev 2024; 11:nwad294. [PMID: 38288367 PMCID: PMC10824555 DOI: 10.1093/nsr/nwad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/26/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2024] Open
Abstract
To investigate the circuit-level neural mechanisms of behavior, simultaneous imaging of neuronal activity in multiple cortical and subcortical regions is highly desired. Miniature head-mounted microscopes offer the capability of calcium imaging in freely behaving animals. However, implanting multiple microscopes on a mouse brain remains challenging due to space constraints and the cumbersome weight of the equipment. Here, we present TINIscope, a Tightly Integrated Neuronal Imaging microscope optimized for electronic and opto-mechanical design. With its compact and lightweight design of 0.43 g, TINIscope enables unprecedented simultaneous imaging of behavior-relevant activity in up to four brain regions in mice. Proof-of-concept experiments with TINIscope recorded over 1000 neurons in four hippocampal subregions and revealed concurrent activity patterns spanning across these regions. Moreover, we explored potential multi-modal experimental designs by integrating additional modules for optogenetics, electrical stimulation or local field potential recordings. Overall, TINIscope represents a timely and indispensable tool for studying the brain-wide interregional coordination that underlies unrestrained behaviors.
Collapse
Affiliation(s)
- Feng Xue
- Department of Precision Machinery and Precision Instruments, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei Li
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ke-ming Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Lufeng Ding
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Xingtao Zhao
- Department of Modern Life Sciences and Biotecnology, Xiongan Institute of Innovation, Xiongan New Area, Xiongan 071899, China
| | - Fang Xu
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Danke Zhang
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingzhai Sun
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Pak-Ming Lau
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Qingyuan Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Pengcheng Zhou
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| |
Collapse
|
15
|
El Hayek L, DeVries D, Gogate A, Aiken A, Kaur K, Chahrour MH. Disruption of the autism gene and chromatin regulator KDM5A alters hippocampal cell identity. SCIENCE ADVANCES 2023; 9:eadi0074. [PMID: 37992166 PMCID: PMC10664992 DOI: 10.1126/sciadv.adi0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/25/2023] [Indexed: 11/24/2023]
Abstract
Chromatin regulation plays a pivotal role in establishing and maintaining cellular identity and is one of the top pathways disrupted in autism spectrum disorder (ASD). The hippocampus, composed of distinct cell types, is often affected in patients with ASD. However, the specific hippocampal cell types and their transcriptional programs that are dysregulated in ASD are unknown. Using single-nucleus RNA sequencing, we show that the ASD gene, lysine demethylase 5A (KDM5A), regulates the development of specific subtypes of excitatory and inhibitory neurons. We found that KDM5A is essential for establishing hippocampal cell identity by controlling a differentiation switch early in development. Our findings define a role for the chromatin regulator KDM5A in establishing hippocampal cell identity and contribute to the emerging convergent mechanisms across ASD.
Collapse
Affiliation(s)
- Lauretta El Hayek
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darlene DeVries
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashlesha Gogate
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ariel Aiken
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kiran Kaur
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria H. Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Pronier É, Morici JF, Girardeau G. The role of the hippocampus in the consolidation of emotional memories during sleep. Trends Neurosci 2023; 46:912-925. [PMID: 37714808 DOI: 10.1016/j.tins.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/17/2023]
Abstract
Episodic memory relies on the hippocampus, a heterogeneous brain region with distinct functions. Spatial representations in the dorsal hippocampus (dHPC) are crucial for contextual memory, while the ventral hippocampus (vHPC) is more involved in emotional processing. Here, we review the literature in rodents highlighting the anatomical and functional properties of the hippocampus along its dorsoventral axis that underlie its role in contextual and emotional memory encoding, consolidation, and retrieval. We propose that the coordination between the dorsal and vHPC through theta oscillations during rapid eye movement (REM) sleep, and through sharp-wave ripples during non-REM (NREM) sleep, might facilitate the transfer of contextual information for integration with valence-related processing in other structures of the network. Further investigation into the physiology of the vHPC and its connections with other brain areas is needed to deepen the current understanding of emotional memory consolidation during sleep.
Collapse
Affiliation(s)
- Éléonore Pronier
- Institut du Fer à Moulin, Inserm U1270, Sorbonne Université, Paris, France
| | | | | |
Collapse
|
17
|
Liu C, Todorova R, Tang W, Oliva A, Fernandez-Ruiz A. Associative and predictive hippocampal codes support memory-guided behaviors. Science 2023; 382:eadi8237. [PMID: 37856604 PMCID: PMC10894649 DOI: 10.1126/science.adi8237] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023]
Abstract
Episodic memory involves learning and recalling associations between items and their spatiotemporal context. Those memories can be further used to generate internal models of the world that enable predictions to be made. The mechanisms that support these associative and predictive aspects of memory are not yet understood. In this study, we used an optogenetic manipulation to perturb the sequential structure, but not global network dynamics, of place cells as rats traversed specific spatial trajectories. This perturbation abolished replay of those trajectories and the development of predictive representations, leading to impaired learning of new optimal trajectories during memory-guided navigation. However, place cell assembly reactivation and reward-context associative learning were unaffected. Our results show a mechanistic dissociation between two complementary hippocampal codes: an associative code (through coactivity) and a predictive code (through sequences).
Collapse
Affiliation(s)
| | | | - Wenbo Tang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
18
|
Berndt M, Trusel M, Roberts TF, Pfeiffer BE, Volk LJ. Bidirectional synaptic changes in deep and superficial hippocampal neurons following in vivo activity. Neuron 2023; 111:2984-2994.e4. [PMID: 37689058 PMCID: PMC10958998 DOI: 10.1016/j.neuron.2023.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Neuronal activity during experience is thought to induce plastic changes within the hippocampal network that underlie memory formation, although the extent and details of such changes in vivo remain unclear. Here, we employed a temporally precise marker of neuronal activity, CaMPARI2, to label active CA1 hippocampal neurons in vivo, followed by immediate acute slice preparation and electrophysiological quantification of synaptic properties. Recently active neurons in the superficial sublayer of stratum pyramidale displayed larger post-synaptic responses at excitatory synapses from area CA3, with no change in pre-synaptic release probability. In contrast, in vivo activity correlated with weaker pre- and post-synaptic excitatory weights onto pyramidal cells in the deep sublayer. In vivo activity of deep and superficial neurons within sharp-wave/ripples was bidirectionally changed across experience, consistent with the observed changes in synaptic weights. These findings reveal novel, fundamental mechanisms through which the hippocampal network is modified by experience to store information.
Collapse
Affiliation(s)
- Marcus Berndt
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA
| | - Massimo Trusel
- UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA
| | - Todd F Roberts
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA
| | - Brad E Pfeiffer
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA.
| | - Lenora J Volk
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Psychiatry, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Banaie Boroujeni K, Womelsdorf T. Routing states transition during oscillatory bursts and attentional selection. Neuron 2023; 111:2929-2944.e11. [PMID: 37463578 PMCID: PMC10529654 DOI: 10.1016/j.neuron.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023]
Abstract
Brain-wide information routing relies on the spatio-temporal dynamics of neural activity, but it remains unclear how routing states emerge at fast spiking timescales and relate to slower activity dynamics during cognitive processes. Here, we show that localized spiking events participate in directional routing states with spiking activity in distant brain areas that dynamically switch or amplify states during oscillatory bursts, attentional selection, and decision-making. Modeling and neural recordings from lateral prefrontal cortex (LPFC), anterior cingulate cortex (ACC), and striatum of nonhuman primates revealed that cross-regional routing states arise within 20 ms following individual neuron spikes, with LPFC spikes leading the activity in ACC and striatum. The baseline routing state amplified during LPFC beta bursts between LPFC and striatum and switched direction during ACC theta/alpha bursts between ACC and LPFC. Selective attention amplified theta-/alpha-band-specific lead ensembles in ACC, while decision-making increased the lead of ACC and LPFC spikes to the striatum.
Collapse
Affiliation(s)
- Kianoush Banaie Boroujeni
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|