1
|
Chang WL, Tegang K, Samuels BA, Saxe M, Wichmann J, David DJ, David IM, Augustin A, Fischer H, Golling S, Lamerz J, Roth D, Graf M, Zoffmann S, Santarelli L, Jagasia R, Hen R. Pharmacological Enhancement of Adult Hippocampal Neurogenesis Improves Behavioral Pattern Separation in Young and Aged Male Mice. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100419. [PMID: 39830600 PMCID: PMC11741898 DOI: 10.1016/j.bpsgos.2024.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025] Open
Abstract
Background Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, posttraumatic stress disorder, dementia, and age-related cognitive decline. Although BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis, its significance as a pharmacological target has not been tested. Methods In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis. One compound with a favorable profile, RO6871135, was then tested in young and aged mice for effects on BPS and anxiety-related behaviors. Results Chronic treatment with RO6871135 (7.5 mg/kg) increased adult hippocampal neurogenesis and improved BPS in a fear discrimination task in both young and aged mice. RO6871135 treatment also lowered innate anxiety-like behavior, which was more apparent in mice exposed to chronic corticosterone. Ablation of adult hippocampal neurogenesis by hippocampal irradiation supported a neurogenesis-dependent mechanism for RO6871135-induced improvements in BPS. To identify possible mechanisms of action, in vitro and in vivo kinase inhibition and chemical proteomics assays were performed. These tests indicated that RO6871135 inhibited CDK8, CDK11, CaMKIIa, CaMKIIb, MAP2K6, and GSK-3β. An analog compound also demonstrated high affinity for CDK8, CaMKIIa, and GSK-3β. Conclusions These studies demonstrate a method for empirical identification and preclinical testing of novel neurogenic compounds that can improve BPS and point to possible novel mechanisms that can be interrogated for the development of new therapies to improve specific endophenotypes such as impaired BPS.
Collapse
Affiliation(s)
- Wei-li Chang
- Department of Psychiatry, Division of Systems Neuroscience, Columbia University, New York State Psychiatric Institute, New York, New York
| | | | | | | | - Juergen Wichmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Denis J. David
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations, UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri MOISSAN, Orsay, France
| | - Indira Mendez David
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations, UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri MOISSAN, Orsay, France
| | - Angélique Augustin
- Roche Pharma Research and Early Development, Pharmaceutical Science, Translational PKPD and Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Holger Fischer
- Roche Pharma Research and Early Development, Pharmaceutical Science, Translational PKPD and Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sabrina Golling
- Roche Pharma Research and Early Development, Pharmaceutical Science, Translational PKPD and Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens Lamerz
- Roche Pharma Research and Early Development, Predictive Modelling & Data Analytics, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Doris Roth
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Martin Graf
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sannah Zoffmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - René Hen
- Department of Psychiatry, Division of Systems Neuroscience, Columbia University, New York State Psychiatric Institute, New York, New York
| |
Collapse
|
2
|
Bowler JC, Zakka G, Yong HC, Li W, Rao B, Liao Z, Priestley JB, Losonczy A. An Intranet of Things approach for adaptable control of behavioral and navigation-based experiments. eLife 2025; 13:RP97433. [PMID: 40008867 DOI: 10.7554/elife.97433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Investigators conducting behavioral experiments often need precise control over the timing of the delivery of stimuli to subjects and to collect precise times of subsequent behavioral responses. Furthermore, investigators want fine-tuned control over how various multi-modal cues are presented. behaviorMate takes an 'Intranet of Things' approach, using a networked system of hardware and software components for achieving these goals. The system outputs a file with integrated timestamp-event pairs that investigators can then format and process using their own analysis pipelines. We present an overview of the electronic components and GUI application that make up behaviorMate as well as mechanical designs for compatible experimental rigs to provide the reader with the ability to set up their own system. A wide variety of paradigms are supported, including goal-oriented learning, random foraging, and context switching. We demonstrate behaviorMate's utility and reliability with a range of use cases from several published studies and benchmark tests. Finally, we present experimental validation demonstrating different modalities of hippocampal place field studies. Both treadmill with burlap belt and virtual reality with running wheel paradigms were performed to confirm the efficacy and flexibility of the approach. Previous solutions rely on proprietary systems that may have large upfront costs or present frameworks that require customized software to be developed. behaviorMate uses open-source software and a flexible configuration system to mitigate both concerns. behaviorMate has a proven record for head-fixed imaging experiments and could be easily adopted for task control in a variety of experimental situations.
Collapse
Affiliation(s)
- John C Bowler
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
- Department of Neurobiology, University of Utah, Salt Lake City, United States
| | - George Zakka
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Hyun Choong Yong
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Wenke Li
- Aquabyte, San Francisco, United States
| | - Bovey Rao
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, United States
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - James B Priestley
- Brain Mind Institute, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
3
|
Santiago AN, Nguyen P, Castello-Saval J, Chung HM, Luna VM, Hen R, Chang WL. Effects of electroconvulsive shock on the function, circuitry, and transcriptome of dentate gyrus granule neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.583011. [PMID: 38496461 PMCID: PMC10942314 DOI: 10.1101/2024.03.01.583011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Therapeutic use of electroconvulsive shock (ECS) is particularly effective for treatment-resistant depression. Like other more common forms of antidepressant treatment such as SSRIs, ECS has been shown to increase neurogenesis in the hippocampal dentate gyrus of rodent models. Yet the question of how ECS-induced neurogenesis supports improvement of depressive symptoms remains unknown. Here, we show that ECS-induced neurogenesis is necessary to improve depressive-like behavior of mice exposed to chronic corticosterone (Cort). We then use slice electrophysiology to show that optogenetic stimulation of adult-born neurons produces a greater hyperpolarization in mature granule neurons after ECS vs Sham treatment. We identify that this hyperpolarization requires the activation of group II metabotropic glutamate receptors. Consistent with this finding, we observe reduced expression of the immediate early gene cFos in the granule cell layer of ECS vs Sham subjects. Using single nucleus RNA sequencing, we reveal major transcriptomic shifts in granule neurons after treatment with ECS+Cort or fluoxetine+Cort vs Cort alone. We identify a population of immature cells which has greater representation in both ECS+Cort and fluoxetine+Cort treated samples vs Cort alone. We also find global differences in ECS-vs fluoxetine-induced transcriptomic shifts. Together, these findings highlight a critical role for immature granule cells in the antidepressant action of ECS.
Collapse
|
4
|
Bowler JC, Zakka G, Yong HC, Li W, Rao B, Liao Z, Priestley JB, Losonczy A. behaviorMate: An Intranet of Things Approach for Adaptable Control of Behavioral and Navigation-Based Experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569989. [PMID: 38116032 PMCID: PMC10729741 DOI: 10.1101/2023.12.04.569989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Investigators conducting behavioral experiments often need precise control over the timing of the delivery of stimuli to subjects and to collect the precise times of the subsequent behavioral responses. Furthermore, investigators want fine-tuned control over how various multi-modal cues are presented. behaviorMate takes an "Intranet of Things" approach, using a networked system of hardware and software components for achieving these goals. The system outputs a file with integrated timestamp-event pairs that investigators can then format and process using their own analysis pipelines. We present an overview of the electronic components and GUI application that make up behaviorMate as well as mechanical designs for compatible experimental rigs to provide the reader with the ability to set up their own system. A wide variety of paradigms are supported, including goal-oriented learning, random foraging, and context switching. We demonstrate behaviorMate's utility and reliability with a range of use cases from several published studies and benchmark tests. Finally, we present experimental validation demonstrating different modalities of hippocampal place field studies. Both treadmill with burlap belt and virtual reality with running wheel paradigms were performed to confirm the efficacy and flexibility of the approach. Previous solutions rely on proprietary systems that may have large upfront costs or present frameworks that require customized software to be developed. behaviorMate uses open-source software and a flexible configuration system to mitigate both concerns. behaviorMate has a proven record for head-fixed imaging experiments and could be easily adopted for task control in a variety of experimental situations.
Collapse
Affiliation(s)
- John C. Bowler
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
- Department of Neurobiology University of Utah, Salt Lake City, UT 84112, USA
| | - George Zakka
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Hyun Choong Yong
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Wenke Li
- Aquabyte, San Francisco, CA 94111
| | - Bovey Rao
- Department of Neuroscience
- Doctoral Program in Neurobiology and Behavior
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Zhenrui Liao
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | | | - Attila Losonczy
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| |
Collapse
|
5
|
Frechou MA, Martin SS, McDermott KD, Huaman EA, Gökhan Ş, Tomé WA, Coen-Cagli R, Gonçalves JT. Adult neurogenesis improves spatial information encoding in the mouse hippocampus. Nat Commun 2024; 15:6410. [PMID: 39080283 PMCID: PMC11289285 DOI: 10.1038/s41467-024-50699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Adult neurogenesis is a unique form of neuronal plasticity in which newly generated neurons are integrated into the adult dentate gyrus in a process that is modulated by environmental stimuli. Adult-born neurons can contribute to spatial memory, but it is unknown whether they alter neural representations of space in the hippocampus. Using in vivo two-photon calcium imaging, we find that male and female mice previously housed in an enriched environment, which triggers an increase in neurogenesis, have increased spatial information encoding in the dentate gyrus. Ablating adult neurogenesis blocks the effect of enrichment and lowers spatial information, as does the chemogenetic silencing of adult-born neurons. Both ablating neurogenesis and silencing adult-born neurons decreases the calcium activity of dentate gyrus neurons, resulting in a decreased amplitude of place-specific responses. These findings are in contrast with previous studies that suggested a predominantly inhibitory action for adult-born neurons. We propose that adult neurogenesis improves representations of space by increasing the gain of dentate gyrus neurons and thereby improving their ability to tune to spatial features. This mechanism may mediate the beneficial effects of environmental enrichment on spatial learning and memory.
Collapse
Affiliation(s)
- M Agustina Frechou
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Sunaina S Martin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychology, University of California San Diego, La Jolla, CA, USA
| | - Kelsey D McDermott
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evan A Huaman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Şölen Gökhan
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wolfgang A Tomé
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ruben Coen-Cagli
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J Tiago Gonçalves
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gottesmann Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Saxena R, McNaughton BL. Bridging Neuroscience and AI: Environmental Enrichment as a Model for Forward Knowledge Transfer. ARXIV 2024:arXiv:2405.07295v2. [PMID: 38947919 PMCID: PMC11213130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Continual learning (CL) refers to an agent's capability to learn from a continuous stream of data and transfer knowledge without forgetting old information. One crucial aspect of CL is forward transfer, i.e., improved and faster learning on a new task by leveraging information from prior knowledge. While this ability comes naturally to biological brains, it poses a significant challenge for artificial intelligence (AI). Here, we suggest that environmental enrichment (EE) can be used as a biological model for studying forward transfer, inspiring human-like AI development. EE refers to animal studies that enhance cognitive, social, motor, and sensory stimulation and is a model for what, in humans, is referred to as 'cognitive reserve'. Enriched animals show significant improvement in learning speed and performance on new tasks, typically exhibiting forward transfer. We explore anatomical, molecular, and neuronal changes post-EE and discuss how artificial neural networks (ANNs) can be used to predict neural computation changes after enriched experiences. Finally, we provide a synergistic way of combining neuroscience and AI research that paves the path toward developing AI capable of rapid and efficient new task learning.
Collapse
Affiliation(s)
- Rajat Saxena
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Bruce L McNaughton
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4 Canada
| |
Collapse
|
7
|
Chang WL, Hen R. Adult Neurogenesis, Context Encoding, and Pattern Separation: A Pathway for Treating Overgeneralization. ADVANCES IN NEUROBIOLOGY 2024; 38:163-193. [PMID: 39008016 DOI: 10.1007/978-3-031-62983-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In mammals, the subgranular zone of the dentate gyrus is one of two brain regions (with the subventricular zone of the olfactory bulb) that continues to generate new neurons throughout adulthood, a phenomenon known as adult hippocampal neurogenesis (AHN) (Eriksson et al., Nat Med 4:1313-1317, 1998; García-Verdugo et al., J Neurobiol 36:234-248, 1998). The integration of these new neurons into the dentate gyrus (DG) has implications for memory encoding, with unique firing and wiring properties of immature neurons that affect how the hippocampal network encodes and stores attributes of memory. In this chapter, we will describe the process of AHN and properties of adult-born cells as they integrate into the hippocampal circuit and mature. Then, we will discuss some methodological considerations before we review evidence for the role of AHN in two major processes supporting memory that are performed by the DG. First, we will discuss encoding of contextual information for episodic memories and how this is facilitated by AHN. Second, will discuss pattern separation, a major role of the DG that reduces interference for the formation of new memories. Finally, we will review clinical and translational considerations, suggesting that stimulation of AHN may help decrease overgeneralization-a common endophenotype of mood, anxiety, trauma-related, and age-related disorders.
Collapse
Affiliation(s)
- Wei-Li Chang
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Rene Hen
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA.
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|