1
|
GTP cyclohydrolase 1 gene haplotypes as predictors of SSRI response in Japanese patients with major depressive disorder. J Affect Disord 2012; 142:315-22. [PMID: 22770721 DOI: 10.1016/j.jad.2012.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/01/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Tetrahydrobiopterin (BH4) plays an important role in the biosynthesis of serotonin, melatonin and catecholamines, all of which are implicated in the pathophysiology of mood disorders (MDs), including major depressive disorder (MDD) and bipolar disorder (BP). Production of BH4 is regulated by GTP cyclohydrolase transcription and activity. Thus, we considered the GTP cyclohydrolase gene (GCH1) to be a good candidate gene in the pathophysiology of MDs and of the serotonin selective reuptake inhibitors (SSRIs) response in MDD, and conducted a case-control study utilizing three SNPs (rs8007267, rs3783641 and rs841) and moderate sample sizes (405 MDD patients, including 262 patients treated by SSRIs, 1022 BP patients and 1805 controls). METHOD A multiple logistic regression analysis was carried out to compare the frequencies of each SNP genotype for the target phenotype across patients and controls in several genetic models, while adjusting for possible confounding factors. A clinical response was defined as a decrease of more than 50% from the baseline score on the Structured Interview Guide for Hamilton Rating Scale for Depression (SIGH-D) within 8 weeks, and clinical remission as a SIGH-D score of less than 7 at 8 weeks. RESULT No associations between three SNPs in GCH1 and MDD or BP were observed; however, GCH1 was associated with SSRI therapeutic response in MDD in all the marker's haplotype analysis (Global P value=0.0379). CONCLUSIONS Results suggest that GCH1 may predict response to SSRI in MDD in the Japanese population. Nevertheless, a replication study using larger samples may be required for conclusive results, since our sample size was small.
Collapse
|
2
|
MacGillivray L, Reynolds KB, Rosebush PI, Mazurek MF. The comparative effects of environmental enrichment with exercise and serotonin transporter blockade on serotonergic neurons in the dorsal raphe nucleus. Synapse 2012; 66:465-70. [PMID: 22121041 DOI: 10.1002/syn.21511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/11/2011] [Indexed: 01/04/2023]
Abstract
We have previously reported that inhibition of the serotonin transporter (SERT) by selective serotonin reuptake inhibitor (SSRI) fluoxetine significantly reduces the number of tryptophan hydroxylase (TPH)-positive cells in the dorsal raphe nucleus (DRN). We have been interested in exploring whether this SSRI-induced change in TPH might be modified by housing in an enriched environment. Like SSRI antidepressants, environmental enrichment (EE) and physical exercise have been found to have efficacy in the prevention and alleviation of depression. We postulated that EE with exercise and SERT inhibition would similarly affect TPH regulation and that EE with exercise might modify the effect of fluoxetine on TPH. Three week old male Sprague-Dawley rats were housed in either a standard cage (SE) or an enriched environment (EE). SE animals were singly housed with no access to enrichment objects. EE animals were group housed and were provided with various enrichment objects (e.g. running wheel) that were changed and rearranged regularly. Nine weeks after the experiment began, the rats were randomly assigned to one of four treatment groups: (1) SE control; (2) SE fluoxetine; (3) EE control; or (4) EE fluoxetine. Fluoxetine (5 mg/kg/day) was placed in the drinking water. Sections of DRN were processed for TPH immunohistochemistry. The number of TPH-positive cells was determined by blinded, manual counting. Results were analyzed by analysis of variance (ANOVA) followed by post-hoc Tukey tests. Significance was set at P < 0.05. For animals housed in a standard environment, fluoxetine induced a significant 29% reduction in the number of TPH-immunoreactive cells in the DRN. A similar reduction in TPH immunoreactivity was observed in animals that were housed in an enriched environment but not exposed to fluoxetine (39%). The number of TPH-positive cells in the DRN for animals housed in an enriched environment and exposed to fluoxetine was not significantly different than animals housed in an enriched environment and not exposed to fluoxetine. The reduction of TPH immunoreactivity in the DRN by EE with exercise suggests that a modified housing environment and voluntary exercise affects regulation of TPH, possibly via a mechanism similar to that of SERT inhibitors. This downregulation of serotonin biosynthesis by fluoxetine and EE with exercise may ultimately play a role in the therapeutic action of both interventions.
Collapse
Affiliation(s)
- Lindsey MacGillivray
- Department of Medicine (Neurology), 4U McMaster University Medical Centre, Hamilton, Ontario L8N3Z5, Canada.
| | | | | | | |
Collapse
|
3
|
McHugh PC, Joyce PR, Deng X, Kennedy MA. A polymorphism of the GTP-cyclohydrolase I feedback regulator gene alters transcriptional activity and may affect response to SSRI antidepressants. THE PHARMACOGENOMICS JOURNAL 2011; 11:207-13. [PMID: 20351752 DOI: 10.1038/tpj.2010.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 01/03/2010] [Accepted: 02/28/2010] [Indexed: 11/09/2022]
Abstract
Tetrahydrobiopterin (BH(4)) is an essential cofactor for synthesis of many neurotransmitters including serotonin. In serotonergic neurons, BH(4) is tightly regulated by GTP-cyclohydrolase I feedback regulator (GFRP). Given the pivotal role of the serotonergic system in mood disorders and selective serotonin reuptake inhibitors (SSRIs) antidepressant function, we tested the hypothesis that GFRP gene (GCHFR) variants would modify response to antidepressants in subjects with major depression. Two single nucleotide polymorphisms (rs7164342 and rs7163862) in the GCHFR promoter were identified and occurred as two haplotypes (GA or TT). A multiple regression analysis revealed that homozygous individuals for the TT haplotype were less likely to respond to the SSRI fluoxetine than to the tricyclic antidepressant nortriptyline (P = 0.037). Moreover, the TT haplotype showed a reduced transcription rate in luciferase reporter gene assays, which may impact on BH(4)-mediated neurotransmitter production, thus suggesting a biological process through which GCHFR promoter variants might influence antidepressant response.
Collapse
Affiliation(s)
- P C McHugh
- Department of Pathology, University of Otago, Christchurch, New Zealand.
| | | | | | | |
Collapse
|
4
|
MacGillivray L, Lagrou LM, Reynolds KB, Rosebush PI, Mazurek MF. Role of serotonin transporter inhibition in the regulation of tryptophan hydroxylase in brainstem raphe nuclei: time course and regional specificity. Neuroscience 2010; 171:407-20. [PMID: 20868730 DOI: 10.1016/j.neuroscience.2010.08.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/17/2010] [Accepted: 08/23/2010] [Indexed: 01/17/2023]
Abstract
Drugs that selectively inhibit the serotonin transporter (SERT) are widely prescribed for treatment of depression and a range of anxiety disorders. We studied the time course of changes in tryptophan hydroxylase (TPH) in four raphe nuclei after initiation of two different SERT inhibitors, citalopram and fluoxetine. In the first experiment, groups of Sprague-Dawley rats received daily meals of rice pudding either alone (n=9) or mixed with citalopram 5 mg/kg/day (n=27). Rats were sacrificed after 24 h, 7 days or 28 days of treatment. Sections of dorsal raphe nucleus (DRN), median raphe nucleus (MRN), raphe magnus nucleus (RMN) and caudal linear nucleus (CLN) were processed for TPH immunohistochemistry. Citalopram induced a significant reduction in DRN TPH-positive cell counts at 24 h (41%), 7 days (38%) and 28 days (52%). Similar reductions in TPH-positive cell counts were also observed at each timepoint in the MRN and in the RMN. In the MRN, citalopram resulted in significant reductions at 24 h (26%), 7 days (16%) and 28 days (23%). In the RMN, citalopram induced significant reductions of TPH-positive cell counts at 24 h (45%), 7 days (34%) and 28 days (43%). By contrast, no significant differences between control and treatment groups were observed in the CLN at any of the time points that we studied. To investigate whether these changes would occur with other SERT inhibitors, we conducted a second experiment, this time with a 28-day course of fluoxetine. As was observed with citalopram, fluoxetine induced significant reductions of TPH cell counts in the DRN (39%), MRN (38%) and RMN (41%), with no significant differences in the CLN. These results indicate that SERT inhibition can alter the regulation of TPH, the rate limiting enzyme for serotonin biosynthesis. This persistent and regionally specific downregulation of serotonin biosynthesis may account for some of the clinical withdrawal symptoms associated with drugs that inhibit SERT.
Collapse
Affiliation(s)
- L MacGillivray
- Department of Medicine-Neurology, McMaster University Medical Centre, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada.
| | | | | | | | | |
Collapse
|
5
|
Polymorphisms of sepiapterin reductase gene alter promoter activity and may influence risk of bipolar disorder. Pharmacogenet Genomics 2009; 19:330-7. [PMID: 19415819 DOI: 10.1097/fpc.0b013e328328f82c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES In a previous investigation, we observed altered expression of sepiapterin reductase (SPR) in cultured neural cells chronically exposed to paroxetine. SPR is an enzyme, which catalyzes the final step in the synthesis of tetrahydrobiopterin (BH4). BH4 is an essential cofactor for synthesis of many neurotransmitters including serotonin. Given the pivotal role of SPR in neurotransmitter production, we sought to test the hypothesis that SPR would influence susceptibility to mood disorders and patient response to antidepressants. METHODS We tested for association of SPR promoter polymorphisms with antidepressant response in a well-characterized triad cohort of mood disorders. We evaluated the functional effect of these variants using the Dual-Luciferase Reporter Gene Assay System in two independent cell lines. RESULTS Two promoter single nucleotide polymorphisms (rs1876487 and rs2421095) in SPR were identified that occurred in three distinct haplotypes. We found a statistically significant association of haplotype pair 2,3 with bipolar I disorder [odds ratio: 5.47; 95% confidence interval: (1.68-17.88); P<0.005] and the personality measure self-transcendence (P = 0.020). Moreover, we found preliminary evidence that individuals with haplotype pair 2,3 responded better to the treatment with selective serotonin reuptake inhibitors. Reporter gene assays revealed a 1.4-fold to 1.6-fold decrease in the transcription rate of the two less common haplotypes (2 and 3) compared with haplotype 1, in the two cell lines investigated. CONCLUSION This reduced transcription rate for SPR promoter haplotypes 2 and 3 may impact on BH4-mediated neurotransmitter production, thus suggesting a biological process through which SPR gene variants might influence antidepressant response and susceptibility to bipolar disorder.
Collapse
|
6
|
Miura H, Shirokawa T, Isobe K, Ozaki N. Shifting the balance of brain tryptophan metabolism elicited by isolation housing and systemic administration of lipopolysaccharide in mice. Stress 2009; 12:206-14. [PMID: 19006008 DOI: 10.1080/10253890802252442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The kynurenine (KYN) pathway, which is initiated by indoleamine 2,3-dioxygenase, is a key tryptophan (TRP) metabolic pathway. It shares TRP mainly with the serotonin (5-HT) pathway. Activation of the KYN pathway by stimulation of the inflammatory response system (IRS) is known to induce depressive symptoms. Thus, we considered that shifting the balance between the KYN and 5-HT systems in the brain to the KYN pathway closely relate to the etiology of depression. In the present study, we investigated the influence of environmental risk factors for depression, such as social isolation and activation of the IRS, on brain TRP metabolism. Male ICR mice (postnatal day 21) were divided into two housing conditions, isolation and group housing, reared for 4 weeks, and then given an intraperitoneal injection of lipopolysaccharide (LPS). We measured the TRP, KYN, and 5-HT levels in the prefrontal cortex, hippocampus, amygdala, and dorsal raphe nuclei. Isolation housing decreased the KYN/5-HT ratio in the amygdala and dorsal raphe nuclei. LPS increased the KYN/5-HT ratio in all regions except the dorsal raphe nuclei. Thus, isolation housing shifted the balance between the KYN and 5-HT pathways to the 5-HT pathway, whereas systemic administration of LPS shifted it to the KYN pathway.
Collapse
Affiliation(s)
- Hideki Miura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | |
Collapse
|
7
|
Miura H, Ozaki N, Shirokawa T, Isobe K. Changes in brain tryptophan metabolism elicited by ageing, social environment, and psychological stress in mice. Stress 2008; 11:160-9. [PMID: 18311604 DOI: 10.1080/10253890701685908] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The kynurenine (KYN) pathway, which is initiated by indoleamine 2,3-dioxygenase (IDO), is a tryptophan (TRP) metabolic pathway. It shares TRP with the serotonin (5-hydroxytryptamine, 5-HT) pathway. In major depression, activation of the KYN pathway may deplete 5-HT. In the present study we investigated the influence of various risk factors for depression, such as ageing, social isolation and psychological stress, on TRP metabolism. Male ICR mice (postnatal day, PND, 21) were divided into two housing conditions, isolation and group housing, reared for 4 weeks (young adult) or 5 months (adult) and exposed to novelty stress. We measured TRP, KYN and 5-HT contents in the prefrontal cortex, hippocampus, amygdala and dorsal raphe nuclei to investigate the balance between the KYN and 5-HT pathways. Ageing decreased TRP and KYN and increased 5-HT. Thus, ageing shifted the balance to the latter. In the younger group, social isolation decreased TRP and KYN and increased the 5-HT/TRP ratio, whereas novelty stress increased TRP and KYN and decreased the 5-HT/TRP ratio. Thus, social isolation shifted the balance to the latter, whereas novelty stress shifted it to the former. In the older group, these effects were restricted to specific brain regions. Ageing and social isolation counteracted novelty stress effects on TRP metabolism.
Collapse
Affiliation(s)
- Hideki Miura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Aichi, Japan.
| | | | | | | |
Collapse
|
8
|
McHugh PC, Rogers GR, Loudon B, Glubb DM, Joyce PR, Kennedy MA. Proteomic analysis of embryonic stem cell–derived neural cells exposed to the antidepressant paroxetine. J Neurosci Res 2008; 86:306-16. [PMID: 17868153 DOI: 10.1002/jnr.21482] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antidepressant drugs can have significant effects on the mood of a patient suffering from major depression or other disorders. The pharmacological actions of these drugs generally affect the uptake or metabolism of the neurotransmitters serotonin, noradrenalin, and, to a lesser extent, dopamine. However, many aspects of antidepressant action are not understood. We conducted a proteomic analysis in a neuronal cell culture model in an attempt to identify molecules important to the operation of pathways functionally relevant to antidepressant action. The model involved generating cultures containing mixed neural and glial cells by controlled differentiation of mouse embryonic stem cells, followed by exposure to 1 microM paroxetine for 14 days. After antidepressant exposure, we observed increased expression or modification of sepiapterin reductase (SPR), heat shock protein 9A, RAS and EF-hand domain containing, and protein disulfide isomerase associated 3 and decreased expression or modification of creatine kinase, actin, prohibitin, a T-cell receptor alpha chain, defensin-related cryptdin 5, and the intermediate filament proteins glial fibrillary acidic protein and vimentin. SPR, the most strongly up-regulated protein observed, controls production of tetrahydrobiopterin, an essential cofactor for the synthesis of many neurotransmitters including serotonin, making it a plausible and intriguing candidate protein for involvement in mood control and antidepressant drug action. SPR and the other proteins identified may represent links to molecular processes of importance to mood dysregulation and control, and their respective genes may be novel candidates for the study of antidepressant pharmacogenetics.
Collapse
Affiliation(s)
- Patrick C McHugh
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
9
|
Miura H, Kitagami T, Ozaki N. Suppressive effect of paroxetine, a selective serotonin uptake inhibitor, on tetrahydrobiopterin levels and dopamine as well as serotonin turnover in the mesoprefrontal system of mice. Synapse 2007; 61:698-706. [PMID: 17559097 DOI: 10.1002/syn.20407] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tetrahydrobiopterin (BH(4)) is a coenzyme of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), which are rate-limiting enzymes of monoamine biosynthesis. According to the monoamine hypothesis of depression, antidepressants will restore the function of the brain monoaminergic system and the BH(4) concentration. In the present study, we investigated the effect of paroxetine, a selective serotonin reuptake inhibitor (SSRI), on the BH(4) levels and dopamine (DA) and serotonin (5-HT) turnover in the mesoprefrontal system, incorporating two risk factors of depression, social isolation and acute environmental change. Male ddY mice (8W) were divided into two housing groups, i.e., group-housing (eight animals per cage; 28 days), and isolation-housing (one per cage; 28 days), being p.o.-administered paroxetine (5 or 10 mg/kg; days 15-28), and exposed to a 20-min novelty stress (day 28). The levels of BH(4), DA, homovanilic acid (HVA), 5-HT, and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the prefrontal cortex and midbrain. In both the regions, novelty stress significantly increased BH(4) levels under the isolation-housing condition, whereas these levels were decreased under the group-housing condition. Thus, social isolation altered the neurochemical response to novelty stress. Paroxetine significantly decreased BH(4) levels under the isolation-housing condition, whereas decreased HVA/DA and 5-HIAA/5-HT ratios were observed under the group-housing condition. Thus, social isolation may have influenced the suppressive effects of paroxetine on BH(4) levels as well as exerted an influence on DA and 5-HT turnover. We replicated our recent findings that SSRI, fluvoxamine, suppressed BH(4) levels, as well as DA and 5-HT turnover in the mouse mesoprefrontal system.
Collapse
Affiliation(s)
- Hideki Miura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | | | | |
Collapse
|
10
|
Inagaki M, Kon K, Suzuki S, Kobayashi N, Kaga M, Nanba E. Characteristic findings of auditory brainstem response and otoacoustic emission in the Bronx waltzer mouse. Brain Dev 2006; 28:617-24. [PMID: 16730938 DOI: 10.1016/j.braindev.2006.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/01/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
Auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) were evaluated serially from 1 to 22 months in Bronx waltzer homozygotes (bv/bv), heterozygotes (+/bv) and control (+/+) mice, which were differentiated by means of PCR of marker DNA (D5Mit209). The wave IV threshold of the click-evoked ABR was higher than the DPOAE threshold with the DP growth method in each bv/bv, although the two thresholds were almost the same in the +/+ group. The DP value at 2f(1) - f(2) in the bv/bv showed an apparent decrease at 2 to 3 months of age with 80 dB SPL stimulation using f(2) frequency 7996 Hz and frequency ratio f(2)/f(1) = 1.22, compared to control or heterozygote mice. It was characteristic that the 2f(2) - f(1) DP signal-to-noise ratio (SNR) value was more preserved from 80 to 60 dB SPL than the 2f(1) - f(2) DP value at f(2) frequency 7996 Hz in most bv/bv, however, control mice showed almost the same levels of 2f(1) - f(2) and 2f(2) - f(1) SNR value at both f(2) frequencies of 6006 and 7996 Hz. The preservation of a substantial 2f(2) - f(1) DP suggested that it would be generated basal to the primary-tone place on the basilar membrane and there might be a reflection of the unique function of the remaining outer hair cells in the Bronx waltzer mice. These findings suggest that combination of ABR with DPOAE could offer useful information about differentiating the mechanism of hair cell dysfunction of the hereditary hearing impairment in the clinical fields.
Collapse
Affiliation(s)
- Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa Higashi, Kodaira 187-8553, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Miura H, Qiao H, Kitagami T, Ohta T, Ozaki N. Fluvoxamine, a selective serotonin reuptake inhibitor, suppresses tetrahydrobiopterin levels and dopamine as well as serotonin turnover in the mesoprefrontal system of mice. Psychopharmacology (Berl) 2005; 177:307-14. [PMID: 15290002 DOI: 10.1007/s00213-004-1959-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE Tetrahydrobiopterin (BH4) is a coenzyme of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), rate-limiting enzymes of monoamine biosynthesis. According to the monoamine hypothesis of depression, antidepressants will restore the function of the brain monoaminergic system, and BH4 concentration. OBJECTIVE To investigate the effects of fluvoxamine on BH4 levels and dopamine (DA) and serotonin (5-HT) turnover in the mesoprefrontal system, incorporating two risk factors of depression, social isolation and acute environmental change. METHODS Male ddY mice (6W) were divided into two housing groups, i.e. group-housing (eight animals per cage; 35 days), and isolation-housing (one per cage; 35 days), SC injected with fluvoxamine (20 or 40 mg/kg; days 29-35), and exposed to 20-min novelty stress (day 35). The levels of BH4, DA, homovanilic acid (HVA), 5-HT, and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the prefrontal cortex and midbrain. RESULTS Under the group-housing condition, novelty stress significantly increased BH4 levels in both regions, and the HVA/DA ratio in the midbrain, whereas it did not change any parameters in either region under the isolation-housing condition. In the prefrontal cortex, fluvoxamine significantly decreased the 5-HIAA/5-HT ratio under the group-housing condition, and BH4 levels and the HVA/DA ratio under the isolation-housing condition. In the midbrain, fluvoxamine significantly decreased all parameters, except for an increasing in the 5-HIAA/5-HT ratio under the isolation-housing condition. CONCLUSION Isolation-housing suppressed the increase of BH4 levels and DA turnover elicited by novelty stress. Fluvoxamine suppressed BH4 levels, and DA and 5-HT turnover. Fluvoxamine may have altered DA turnover by suppressing BH4 levels.
Collapse
Affiliation(s)
- H Miura
- Department of Psychiatry, School of Medicine, Nagoya University, Tsuruma-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | | | | | | | | |
Collapse
|