1
|
Cunha MP, Pazini FL, Lieberknecht V, Budni J, Oliveira Á, Rosa JM, Mancini G, Mazzardo L, Colla AR, Leite MC, Santos ARS, Martins DF, de Bem AF, Gonçalves CAS, Farina M, Rodrigues ALS. MPP +-Lesioned Mice: an Experimental Model of Motor, Emotional, Memory/Learning, and Striatal Neurochemical Dysfunctions. Mol Neurobiol 2016; 54:6356-6377. [PMID: 27722926 DOI: 10.1007/s12035-016-0147-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
Abstract
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces motor and nonmotor dysfunctions resembling Parkinson's disease (PD); however, studies investigating the effects of 1-methyl-4-phenylpyridinium (MPP+), an active oxidative product of MPTP, are scarce. This study investigated the behavioral and striatal neurochemical changes (related to oxidative damage, glial markers, and neurotrophic factors) 24 h after intracerebroventricular administration of MPP+ (1.8-18 μg/mouse) in C57BL6 mice. MPP+ administration at high dose (18 μg/mouse) altered motor parameters, since it increased the latency to leave the first quadrant and reduced crossing, rearing, and grooming responses in the open-field test and decreased rotarod latency time. MPP+ administration at low dose (1.8 μg/mouse) caused specific nonmotor dysfunctions as it produced a depressive-like effect in the forced swim test and tail suspension test, loss of motivational and self-care behavior in the splash test, anxiety-like effect in the elevated plus maze test, and short-term memory deficit in the step-down inhibitory avoidance task, without altering ambulation. MPP+ at doses of 1.8-18 μg/mouse increased tyrosine hydroxylase (TH) immunocontent and at 18 μg/mouse increased α-synuclein and decreased parkin immunocontent. The astrocytic calcium-binding protein S100B and glial fibrillary acidic protein (GFAP)/S100B ratio was decreased following MPP+ administration (18 μg/mouse). At this highest dose, MPP+ increased the ionized calcium-binding adapter molecule 1 (Iba-1) immunocontent, suggesting microglial activation. Also, MPP+ at a dose of 18 μg/mouse increased thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels and increased glutathione peroxidase (GPx) and hemeoxygenase-1 (HO-1) immunocontent, suggesting a significant role for oxidative stress in the MPP+-induced striatal damage. MPP+ (18 μg/mouse) also increased striatal fibroblast growth factor 2 (FGF-2) and brain-derived neurotrophic factor (BDNF) levels. Moreover, MPP+ decreased tropomyosin receptor kinase B (TrkB) immunocontent. Finally, MPP+ (1.8-18 μg/mouse) increased serum corticosterone levels and did not alter acetylcholinesterase (AChE) activity in the striatum but increased it in cerebral cortex and hippocampus. Collectively, these results indicate that MPP+ administration at low doses may be used as a model of emotional and memory/learning behavioral deficit related to PD and that MPP+ administration at high dose could be useful for analysis of striatal dysfunctions associated with motor deficits in PD.
Collapse
Affiliation(s)
- Mauricio P Cunha
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| | - Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Vicente Lieberknecht
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Josiane Budni
- Laboratory of Neurosciences, National Institute for Translational Medicine, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Ágatha Oliveira
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Júlia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Gianni Mancini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Leidiane Mazzardo
- Department of Morphological Sciences, Center of Biological Science, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - André R Colla
- Centro Universitário Municipal de São José, São José, SC, Brazil
| | - Marina C Leite
- Department of Biochemistry, Institute of Basic Health Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Adair R S Santos
- Department of Physiological Sciences, Center of Biological Science, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Daniel F Martins
- Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Andreza F de Bem
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Carlos Alberto S Gonçalves
- Department of Biochemistry, Institute of Basic Health Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
2
|
Luchtman DW, Meng Q, Wang X, Shao D, Song C. ω-3 fatty acid eicosapentaenoic acid attenuates MPP+-induced neurodegeneration in fully differentiated human SH-SY5Y and primary mesencephalic cells. J Neurochem 2013; 124:855-68. [PMID: 23106698 DOI: 10.1111/jnc.12068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/27/2022]
Abstract
Eicosapentaenoic acid (EPA), a neuroactive omega-3 fatty acid, has been demonstrated to exert neuroprotective effects in experimental models of Parkinson's disease (PD), but the cellular mechanisms of protection are unknown. Here, we studied the effects of EPA in fully differentiated human SH-SY5Y cells and primary mesencephalic neurons treated with MPP(+) . In both in-vitro models of PD, EPA attenuated an MPP(+) -induced reduction in cell viability. EPA also prevented the presence of electron-dense cytoplasmic inclusions in SH-SY5Y cells. Then, possible mechanisms of the neuroprotection were studied. In primary neurons, EPA attenuated an MPP(+) -induced increase in Tyrosine-related kinase B (TrkB) receptors. In SH-SY5Y cells, EPA down-regulated reactive oxygen species and nitric oxide. This antioxidant effect of EPA may have been mediated by its inhibition of neuronal NADPH oxidase and cyclo-oxygenase-2 (COX-2), as MPP(+) increased the expression of these enzymes. Furthermore, EPA prevented an increase in cytosolic phospholipase A2 (cPLA2), an enzyme linked with COX-2 in the potentially pro-inflammatory arachidonic acid cascade. Lastly, EPA attenuated an increase in the bax:bcl-2 ratio, and cytochrome c release. However, EPA did not prevent mitochondrial enlargement or a decrease in mitochondrial membrane potential. This study demonstrated cellular mechanisms by which EPA provided neuroprotective effects in experimental PD.
Collapse
Affiliation(s)
- Dirk W Luchtman
- National Research Institute for Nutrisciences and Health and Department of Biomedical Science, University of Prince Edward Island, Charlottetown, Canada
| | | | | | | | | |
Collapse
|
3
|
Vaish A, Shuster MJ, Cheunkar S, Singh YS, Weiss PS, Andrews AM. Native serotonin membrane receptors recognize 5-hydroxytryptophan-functionalized substrates: enabling small-molecule recognition. ACS Chem Neurosci 2010; 1:495-504. [PMID: 22778841 PMCID: PMC3368647 DOI: 10.1021/cn1000205] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/21/2010] [Indexed: 12/27/2022] Open
Abstract
Recognition of small diffusible molecules by large biomolecules is ubiquitous in biology. To investigate these interactions, it is important to be able to immobilize small ligands on substrates; however, preserving recognition by biomolecule-binding partners under these circumstances is challenging. We have developed methods to modify substrates with serotonin, a small-molecule neurotransmitter important in brain function and psychiatric disorders. To mimic soluble serotonin, we attached its amino acid precursor, 5-hydroxytryptophan, via the ancillary carboxyl group to oligo(ethylene glycol)-terminated alkanethiols self-assembled on gold. Anti-5-hydroxytryptophan antibodies recognize these substrates, demonstrating bioavailability. Interestingly, 5-hydroxytryptophan-functionalized surfaces capture membrane-associated serotonin receptors enantiospecifically. By contrast, surfaces functionalized with serotonin itself fail to bind serotonin receptors. We infer that recognition by biomolecules evolved to distinguish small-molecule ligands in solution requires tethering of the latter via ectopic moieties. Membrane proteins, which are notoriously difficult to isolate, or other binding partners can be captured for identification, mapping, expression, and other purposes using this generalizable approach.
Collapse
Affiliation(s)
| | | | | | | | - Paul S. Weiss
- Department of Physics
- Department of Chemistry
- Huck Institutes of the Life Sciences
- Departments of Chemistry and Biochemistry
- California NanoSystems Institute
| | - Anne M. Andrews
- Department of Chemistry
- Department of Veterinary & Biomedical Sciences
- Huck Institutes of the Life Sciences
- Department of Psychiatry
- California NanoSystems Institute
| |
Collapse
|
4
|
Nguyen XV, Liu M, Kim HC, Bing G. Effects of prodynorphin deletion on striatal dopamine in mice during normal aging and in response to MPTP. Exp Neurol 2009; 219:228-38. [PMID: 19500577 DOI: 10.1016/j.expneurol.2009.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/21/2009] [Accepted: 05/23/2009] [Indexed: 11/17/2022]
Abstract
Dynorphins, endogenous neuropeptides found in striatonigral neurons, have been observed to exhibit dopamine-inhibitory actions and under some circumstances possess intrinsic neurotoxic activity. To test the hypothesis that dynorphin suppression mitigates effects of aging on the striatal dopaminergic system, HPLC quantitation of dopamine and related amines was performed on striatal homogenates of wild-type (WT) mice and mice lacking the prodynorphin (Pdyn) gene at varying ages. Pdyn knockout (KO) mice at 10 and 20 months show significant elevations in striatal dopamine compared to 3-month mice. Differences in tyrosine hydroxylase (TH) immunoreactivity could not account for these findings, but phosphorylation of TH at Ser40, but not Ser31, was enhanced in aged Pdyn KO mice. Systemic administration of MPTP produced significant dopamine depletion in an age-dependent manner, but Pdyn deletion conferred no protection against MPTP-induced dopamine loss, arguing against a mechanism by which Pdyn deletion enhances dopaminergic neuron survival. The above findings demonstrate an age-dependent inhibitory effect of dynorphins on striatal dopamine synthesis via modulation of TH activity.
Collapse
Affiliation(s)
- Xuan V Nguyen
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
5
|
Adams W, Kusljic S, van den Buuse M. Serotonin depletion in the dorsal and ventral hippocampus: effects on locomotor hyperactivity, prepulse inhibition and learning and memory. Neuropharmacology 2008; 55:1048-55. [PMID: 18634810 DOI: 10.1016/j.neuropharm.2008.06.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/17/2008] [Accepted: 06/19/2008] [Indexed: 12/20/2022]
Abstract
We present an overview of our studies on the differential role of serotonergic projections from the median raphe nucleus (MRN) and dorsal raphe nucleus (DRN) in behavioural animal models with relevance to schizophrenia. Stereotaxic microinjection of the serotonin neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into the MRN or one of its main projections regions, the dorsal hippocampus, induced a marked enhancement of phencyclidine-induced locomotor hyperactivity and a disruption of prepulse inhibition (PPI) in rats. There was no enhancement of locomotor hyperactivity induced by amphetamine or MK-801 or after 5,7-DHT lesions of the DRN or ventral hippocampus. Rats with dorsal hippocampus lesions did not show significant changes in the Y-maze test for short-term spatial memory, the Morris water maze for long-term spatial memory, or in the T-maze delayed alternation test for working memory. These chronic lesion studies suggest a modulatory influence of serotonergic projections from the MRN to the dorsal hippocampus on phencyclidine effects and prepulse inhibition, but not on different forms of learning and memory. The results provide new insight into the role of serotonin in the dorsal hippocampus in aspects of schizophrenia.
Collapse
Affiliation(s)
- Wendy Adams
- Behavioural Neuroscience Laboratory, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, Melbourne, Victoria 3052, Australia
| | | | | |
Collapse
|
6
|
Luellen BA, Bianco LE, Schneider LM, Andrews AM. Reduced brain-derived neurotrophic factor is associated with a loss of serotonergic innervation in the hippocampus of aging mice. GENES BRAIN AND BEHAVIOR 2007; 6:482-90. [PMID: 17156118 DOI: 10.1111/j.1601-183x.2006.00279.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates monoamine neuronal growth, survival and function in development and throughout adulthood. At 18 months of age, mice with constitutive reductions in BDNF expression show decreased serotonin innervation in the hippocampus compared with age-matched wildtype mice. It is not known, however, whether age-accelerated loss of serotonergic innervation in BDNF(+/-) mice occurs in other brain regions, advances beyond 18 months or is associated with alterations in other neurotransmitter systems. In this study, immunocytochemistry was used to assess serotonergic and catecholaminergic innervation in 26-month-old BDNF(+/-) mice. Age-related loss of serotonin axons in the hippocampus was potentiated in BDNF(+/-) mice compared with wildtype mice at this late age, particularly in the CA1 subregion. By contrast, aging BDNF(+/-) mice showed increased serotonin innervation of the basomedial nucleus of the amygdala. In the noradrenergic system, BDNF(+/-) mice showed reduced numbers of cell bodies and fibers in the locus coeruleus compared with age-matched wildtype mice, whereas no changes were observed in dopaminergic innervation with respect to genotype. In vivo zero net flux microdialysis in awake mice showed a significant decrease in extracellular serotonin levels in the hippocampus in BDNF(+/-) mice at 20 months of age. Thus, reduced BDNF is associated with altered serotonergic and noradrenergic innervation in aging mice and, in particular, with accelerated loss of serotonergic innervation to the hippocampus that is manifest as a decrease in basal neurotransmission.
Collapse
Affiliation(s)
- B A Luellen
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802-4615, USA
| | | | | | | |
Collapse
|
7
|
Martínez-Turrillas R, Moyano S, Del Río J, Frechilla D. Differential effects of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") on BDNF mRNA expression in rat frontal cortex and hippocampus. Neurosci Lett 2006; 402:126-30. [PMID: 16644117 DOI: 10.1016/j.neulet.2006.03.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/20/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
The serotonergic neurotoxin 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") produces rapid serotonin (5-HT) depletion in different areas of the forebrain after acute administration to rats and other animal species. We previously found that 5-HT depletion induced by acute MDMA treatment was transient in the frontal cortex, but not in the hippocampus, and recovery of cortical 5-HT levels correlated with an induction of CRE-binding activity and increased expression of tryptophan-hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis. As the brain-derived neurotrophic factor (BDNF) stimulates the growth and sprouting of serotonergic neurons, we sought the possible involvement of this neurotrophin in the region-specific increase in TPH mRNA expression induced by MDMA. We here report that, 24-48 h after acute MDMA treatment, the expression of BDNF in the frontal cortex is increased by approximately 33-70%, and the levels of the transcription factor phospho-CREB are also increased. In the hippocampus, however, a time-dependent decrease in BDNF mRNA expression (maximal decrease of approximately 73%) is found in all subfields examined 2-7 days after treatment in spite of increased phospho-CREB levels, perhaps as a consequence of corticosterone release by the serotonergic neurotoxin. The differential regulation of BDNF mRNA expression in the two brain regions examined appears to account for the enhanced TPH expression and the recovery of 5-HT levels in the frontal cortex, but not in the hippocampus, after neurotoxin treatment.
Collapse
Affiliation(s)
- Rebeca Martínez-Turrillas
- Department of Pharmacology, School of Medicine, University of Navarra, Aptdo. 177, 31080-Pamplona, Spain
| | | | | | | |
Collapse
|