1
|
Pleil KE, Grant KA, Cuzon Carlson VC, Kash TL. Chronic alcohol consumption alters sex-dependent BNST neuron function in rhesus macaques. Neurobiol Stress 2024; 31:100638. [PMID: 38737421 PMCID: PMC11088190 DOI: 10.1016/j.ynstr.2024.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Repeated alcohol drinking contributes to a number of neuropsychiatric diseases, including alcohol use disorder and co-expressed anxiety and mood disorders. Women are more susceptible to the development and expression of these diseases with the same history of alcohol exposure as men, suggesting they may be more sensitive to alcohol-induced plasticity in limbic brain regions controlling alcohol drinking, stress responsivity, and reward processing, among other behaviors. Using a translational model of alcohol drinking in rhesus monkeys, we examined sex differences in the basal function and plasticity of neurons in the bed nucleus of the stria terminalis (BNST), a brain region in the extended amygdala shown to be a hub circuit node dysregulated in individuals with anxiety and alcohol use disorder. We performed slice electrophysiology recordings from BNST neurons in male and female monkeys following daily "open access" (22 h/day) to 4% ethanol and water for more than one year or control conditions. We found that BNST neurons from control females had reduced overall current density, hyperpolarization-activated depolarizing current (Ih), and inward rectification, as well as higher membrane resistance and greater synaptic glutamatergic release and excitatory drive, than those from control males, suggesting that female BNST neurons are more basally excited than those from males. Chronic alcohol drinking produced a shift in these measures in both sexes, decreasing current density, Ih, and inward rectification and increasing synaptic excitation. In addition, network activity-dependent synaptic inhibition was basally higher in BNST neurons of males than females, and alcohol exposure increased this in both sexes, a putative homeostatic mechanism to counter hyperexcitability. Altogether, these results suggest that the rhesus BNST is more basally excited in females than males and chronic alcohol drinking produces an overall increase in excitability and synaptic excitation. These results shed light on the mechanisms contributing to the female-biased susceptibility to neuropsychiatric diseases including co-expressed anxiety and alcohol use disorder.
Collapse
Affiliation(s)
- Kristen E. Pleil
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
- Department of Pharmacology and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27514, USA
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Verginia C. Cuzon Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Thomas L. Kash
- Department of Pharmacology and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27514, USA
| |
Collapse
|
2
|
Pleil KE, Grant KA, Carlson VCC, Kash TL. Chronic alcohol consumption alters sex-dependent BNST neuron function in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589120. [PMID: 38659781 PMCID: PMC11042223 DOI: 10.1101/2024.04.11.589120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Repeated alcohol drinking contributes to a number of neuropsychiatric diseases, including alcohol use disorder and co-expressed anxiety and mood disorders. Women are more susceptible to the development and expression of these diseases with the same history of alcohol exposure as men, suggesting they may be more sensitive to alcohol-induced plasticity in limbic brain regions controlling alcohol drinking, stress responsivity, and reward processing, among other behaviors. Using a translational model of alcohol drinking in rhesus monkeys, we examined sex differences in the basal function and plasticity of neurons in the bed nucleus of the stria terminalis (BNST), a brain region in the extended amygdala shown to be a hub circuit node dysregulated in individuals with anxiety and alcohol use disorder. We performed slice electrophysiology recordings from BNST neurons in male and female monkeys following daily "open access" (22 hr/day) to 4% ethanol and water for more than one year or control conditions. We found that BNST neurons from control females had reduced overall current density, hyperpolarization-activated depolarizing current (Ih), and inward rectification, as well as higher membrane resistance and greater synaptic glutamatergic release and excitatory drive, than those from control males, suggesting that female BNST neurons are more basally excited than those from males. Chronic alcohol drinking produced a shift in these measures in both sexes, decreasing current density, Ih, and inward rectification and increasing synaptic excitation. In addition, network activity-dependent synaptic inhibition was basally higher in BNST neurons of males than females, and alcohol exposure increased this in both sexes, a putative homeostatic mechanism to counter hyperexcitability. Altogether, these results suggest that the rhesus BNST is more basally excited in females than males and chronic alcohol drinking produces an overall increase in excitability and synaptic excitation. These results shed light on the mechanisms contributing to the female-biased susceptibility to neuropsychiatric diseases including co-expressed anxiety and alcohol use disorder.
Collapse
Affiliation(s)
- Kristen E. Pleil
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065
- Department of Pharmacology and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27514
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Verginia C. Cuzon Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Thomas L. Kash
- Department of Pharmacology and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27514
| |
Collapse
|
3
|
Xiao T, Roland A, Chen Y, Guffey S, Kash T, Kimbrough A. A role for circuitry of the cortical amygdala in excessive alcohol drinking, withdrawal, and alcohol use disorder. Alcohol 2024; 121:151-159. [PMID: 38447789 PMCID: PMC11371945 DOI: 10.1016/j.alcohol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Alcohol use disorder (AUD) poses a significant public health challenge. Individuals with AUD engage in chronic and excessive alcohol consumption, leading to cycles of intoxication, withdrawal, and craving behaviors. This review explores the involvement of the cortical amygdala (CoA), a cortical brain region that has primarily been examined in relation to olfactory behavior, in the expression of alcohol dependence and excessive alcohol drinking. While extensive research has identified the involvement of numerous brain regions in AUD, the CoA has emerged as a relatively understudied yet promising candidate for future study. The CoA plays a vital role in rewarding and aversive signaling and olfactory-related behaviors and has recently been shown to be involved in alcohol-dependent drinking in mice. The CoA projects directly to brain regions that are critically important for AUD, such as the central amygdala, bed nucleus of the stria terminalis, and basolateral amygdala. These projections may convey key modulatory signaling that drives excessive alcohol drinking in alcohol-dependent subjects. This review summarizes existing knowledge on the structure and connectivity of the CoA and its potential involvement in AUD. Understanding the contribution of this region to excessive drinking behavior could offer novel insights into the etiology of AUD and potential therapeutic targets.
Collapse
Affiliation(s)
- Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alison Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Skylar Guffey
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Thomas Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
4
|
Brewton HW, Robinson SL, Thiele TE. Astrocyte expression in the extended amygdala of C57BL/6J mice is sex-dependently affected by chronic intermittent and binge-like ethanol exposure. Alcohol 2023; 108:55-64. [PMID: 36539069 PMCID: PMC10033386 DOI: 10.1016/j.alcohol.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Excessive ethanol drinking is a major problem within the United States, causing alterations in brain plasticity and neurocognitive function. Astrocytes are glial cells that regulate neurosynaptic plasticity, modulate neurochemicals, and monitor other homeostatic roles. Astrocytes have been found to play a part in modulating excessive ethanol consumption. The basolateral amygdala (BLA), central amygdala (CeA), and bed nucleus of the stria terminalis (BNST) are brain regions that process stress, anxiety, and reward; they are also implicated in modulating ethanol intake. Little is understood, however, about how astrocyte expression in each region is modulated by chronic and binge-like ethanol drinking patterns. In the present report, we utilized two separate animal models of excessive drinking: chronic intermittent ethanol (CIE) and "Drinking-in-the-dark" (DID). Following these paradigms, animal brains were processed through immunohistochemistry (IHC) and stained for glial fibrillary acidic protein (GFAP). Collected data illustrated a sex-dependent relationship between ethanol intake and GFAP immunoreactivity (IR) in the BLA and BNST, but not in the CeA. Specifically, CIE and DID ethanol drinking resulted in blunted GFAP-IR (specifically via GFAP-positive cell count) in the BLA and BNST, particularly in males. These findings may implicate sex-dependent ethanol-induced changes in BLA and BNST astrocytes, providing a potential therapeutic target for anxiety and stress disorders.
Collapse
Affiliation(s)
- Honoreé W Brewton
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, North Carolina, 27599-3270, United States
| | - Stacey L Robinson
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, North Carolina, 27599-3270, United States; The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, North Carolina 27599-3270, United States
| | - Todd E Thiele
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, North Carolina, 27599-3270, United States; The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, North Carolina 27599-3270, United States.
| |
Collapse
|
5
|
Abstract
Alcohol dependence is a chronically relapsing disorder characterized by compulsive drug-seeking and drug-taking, loss of control in limiting intake, and the emergence of a withdrawal syndrome in the absence of the drug. Accumulating evidence suggests an important role for synaptic transmission in the central nucleus of the amygdala (CeA) in mediating alcohol-related behaviors and neuroadaptive mechanisms associated with alcohol dependence. Acute alcohol facilitates γ-aminobutyric acid (GABA)ergic transmission in the CeA via both pre- and postsynaptic mechanisms, and chronic alcohol increases baseline GABAergic transmission. Acute alcohol inhibits glutamatergic transmission via effects at N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the CeA, whereas chronic alcohol up-regulates NMDA receptor (NMDAR)-mediated transmission. Pro- (e.g., corticotropin-releasing factor [CRF]) and antistress (e.g., nociceptin/orphanin FQ, oxytocin) neuropeptides affect alcohol- and anxiety-related behaviors, and also alter the alcohol-induced effects on CeA neurotransmission. Alcohol dependence produces plasticity in these neuropeptide systems, reflecting a recruitment of those systems during the transition to alcohol dependence.
Collapse
Affiliation(s)
- Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Dean Kirson
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sophia Khom
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
6
|
Aurelian L, Balan I. GABA AR α2-activated neuroimmune signal controls binge drinking and impulsivity through regulation of the CCL2/CX3CL1 balance. Psychopharmacology (Berl) 2019; 236:3023-3043. [PMID: 31030249 DOI: 10.1007/s00213-019-05220-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Toll-like receptors (TLRs) are a family of innate immune system receptors that respond to pathogen-derived and tissue damage-related ligands and are increasingly recognized for their impact on homeostasis and its dysregulation in the nervous system. TLR signaling participates in brain injury and addiction, but its role in the alcohol-seeking behavior, which initiates alcohol drinking, is still poorly understood. In this review, we discuss our findings designed to elucidate the potential contribution of the activated TLR4 signal located in neurons, on impulsivity and the predisposition to initiate alcohol drinking (binge drinking). RESULTS Our findings indicate that the TLR4 signal is innately activated in neurons from alcohol-preferring subjects, identifying a genetic contribution to the regulation of impulsivity and the alcohol-seeking propensity. Signal activation is through the non-canonical, previously unknown, binding of TLR4 to the α2 subunit of the γ-aminobutyric 2 acid A receptor (GABAAR α2). Activation is sustained by the stress hormone corticotrophin-releasing factor (CRF) and additional still poorly recognized ligand/scaffold proteins. Focus is on the effect of TLR4 signal activation on the balance between pro- and anti-inflammatory chemokines [chemokine (C-C motif) ligand 2 (CCL2)/chemokine (C-X3-C motif) ligand 1 (CX3CL1)] and its effect on binge drinking. CONCLUSION The results are discussed within the context of current findings on the distinct activation and functions of TLR signals located in neurons, as opposed to immune cells. They indicate that the balance between pro- and anti-inflammatory TLR4 signaling plays a major role in binge drinking. These findings have major impact on future basic and translational research, including the development of potential therapeutic and preventative strategies.
Collapse
Affiliation(s)
- Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Stanford University School of Medicine OFDD, Stanford, CA, 94305, USA.
| | - Irina Balan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
7
|
Abstract
The term neurosteroid refers to rapid membrane actions of steroid hormones and their derivatives that can modulate physiological functions and behavior via their interactions with ligand-gated ion channels. This chapter will highlight recent advances pertaining to the modulatory effects of a select group of neurosteroids that are primarily potent positive allosteric modulators of γ-aminobutyric acidA receptors (GABAARs). Nanomolar concentrations of neurosteroids, which occur in vivo, potentiate phasic and tonic forms of GABAAR-mediated inhibition, indicating that both synaptic and extrasynaptic GABAARs possess sensitivity to neurosteroids and contribute to the overall ability of neurosteroids to modulate central nervous system excitability. Common effects of alcohol and neurosteroids at GABAARs have stimulated research on the ability of neurosteroids to modulate alcohol's acute and chronic effects. Background on neurosteroid pharmacology and biosynthetic enzymes will be provided as it relates to experimental findings. Data will be summarized on alcohol and neurosteroid interactions across neuroanatomical regions and models of intoxication, consumption, dependence, and withdrawal. Evidence supports independent regulation of neurosteroid synthesis between periphery and brain as well as across brain regions following acute alcohol administration and during withdrawal. Local mechanisms for fine-tuning neuronal excitability via manipulation of neurosteroid synthesis exert predicted behavioral and electrophysiological responses on GABAAR-mediated inhibition. Collectively, targeting neurosteroidogenesis may be a beneficial treatment strategy for alcohol use disorders.
Collapse
|
8
|
Ch'ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:108-125. [PMID: 29330137 DOI: 10.1016/j.pnpbp.2018.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse.
Collapse
Affiliation(s)
- Sarah Ch'ng
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
9
|
Pandy V, Wai YC, Amira Roslan NF, Sajat A, Abdulla Jallb AH, Vijeepallam K. Methanolic extract of Morinda citrifolia Linn. unripe fruit attenuates methamphetamine-induced conditioned place preferences in mice. Biomed Pharmacother 2018; 107:368-373. [DOI: 10.1016/j.biopha.2018.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/20/2018] [Accepted: 08/03/2018] [Indexed: 01/07/2023] Open
|
10
|
Cheng T, Wallace DM, Ponteri B, Tuli M. Valium without dependence? Individual GABA A receptor subtype contribution toward benzodiazepine addiction, tolerance, and therapeutic effects. Neuropsychiatr Dis Treat 2018; 14:1351-1361. [PMID: 29872302 PMCID: PMC5973310 DOI: 10.2147/ndt.s164307] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Benzodiazepines are one of the most prescribed medications as first-line treatment of anxiety, insomnia, and epilepsy around the world. Over the past two decades, advances in the neuropharmacological understanding of gamma aminobutyric acid (GABA)A receptors revealed distinct contributions from each subtype and produced effects. Recent findings have highlighted the importance of α1 containing GABAA receptors in the mechanisms of addiction and tolerance in benzodiazepine treatments. This has shown promise in the development of tranquilizers with minimal side effects such as cognitive impairment, dependence, and tolerance. A valium-like drug without its side effects, as repeatedly demonstrated in animals, is achievable.
Collapse
Affiliation(s)
| | | | | | - Mahir Tuli
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Bell RL, Hauser SR, Liang T, Sari Y, Maldonado-Devincci A, Rodd ZA. Rat animal models for screening medications to treat alcohol use disorders. Neuropharmacology 2017; 122:201-243. [PMID: 28215999 PMCID: PMC5659204 DOI: 10.1016/j.neuropharm.2017.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/21/2023]
Abstract
The purpose of this review is to present animal research models that can be used to screen and/or repurpose medications for the treatment of alcohol abuse and dependence. The focus will be on rats and in particular selectively bred rats. Brief introductions discuss various aspects of the clinical picture, which provide characteristics of individuals with alcohol use disorders (AUDs) to model in animals. Following this, multiple selectively bred rat lines will be described and evaluated in the context of animal models used to screen medications to treat AUDs. Next, common behavioral tests for drug efficacy will be discussed particularly as they relate to stages in the addiction cycle. Tables highlighting studies that have tested the effects of compounds using the respective techniques are included. Wherever possible the Tables are organized chronologically in ascending order to describe changes in the focus of research on AUDs over time. In general, high ethanol-consuming selectively bred rats have been used to test a wide range of compounds. Older studies usually followed neurobiological findings in the selected lines that supported an association with a propensity for high ethanol intake. Most of these tests evaluated the compound's effects on the maintenance of ethanol drinking. Very few compounds have been tested during ethanol-seeking and/or relapse and fewer still have assessed their effects during the acquisition of AUDs. Overall, while a substantial number of neurotransmitter and neuromodulatory system targets have been assessed; the roles of sex- and age-of-animal, as well as the acquisition of AUDs, ethanol-seeking and relapse continue to be factors and behaviors needing further study. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Richard L Bell
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA.
| | - Sheketha R Hauser
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Gastroenterology, Indianapolis, IN 46202, USA
| | - Youssef Sari
- University of Toledo, Department of Pharmacology, Toledo, OH 43614, USA
| | | | - Zachary A Rodd
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Pleil KE, Helms CM, Sobus JR, Daunais JB, Grant KA, Kash TL. Effects of chronic alcohol consumption on neuronal function in the non-human primate BNST. Addict Biol 2016. [PMID: 26223349 DOI: 10.1111/adb.12289] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alterations in hypothalamic-pituitary-adrenal axis function contribute to many of the adverse behavioral effects of chronic voluntary alcohol drinking, including alcohol dependence and mood disorders; limbic brain structures such as the bed nucleus of the stria terminalis (BNST) may be key sites for these effects. Here, we measured circulating levels of several steroid hormones and performed whole-cell electrophysiological recordings from acutely prepared BNST slices of male rhesus monkeys allowed to self-administer alcohol for 12 months or a control solution. Initial comparisons revealed that BNST neurons in alcohol-drinking monkeys had decreased membrane resistance, increased frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) with no change in spontaneous excitatory postsynaptic currents (sEPSCs). We then used a combined variable cluster analysis and linear mixed model statistical approach to determine whether specific factors including stress and sex hormones, age and measures of alcohol consumption and intoxication are related to these BNST measures. Modeling results showed that specific measures of alcohol consumption and stress-related hormone levels predicted differences in membrane conductance in BNST neurons. Distinct groups of adrenal stress hormones were negatively associated with the frequency of sIPSCs and sEPSCs, and alcohol drinking measures and basal neuronal membrane properties were additional positive predictors of inhibitory, but not excitatory, PSCs. The amplitude of sEPSCs was highly positively correlated with age, independent of other variables. Together, these results suggest that chronic voluntary alcohol consumption strongly influences limbic function in non-human primates, potentially via interactions with or modulation by other physiological variables, including stress steroid hormones and age.
Collapse
Affiliation(s)
- Kristen E. Pleil
- Bowles Center for Alcohol Studies & Department of Pharmacology, School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Christa M. Helms
- Division of Neuroscience, Oregon National Primate Research Center; Oregon Health & Science University; Beaverton OR USA
| | - Jon R. Sobus
- Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, Office of Research and Development; U.S. Environmental Protection Agency; Research Triangle Park NC USA
| | - James B. Daunais
- Department of Physiology & Pharmacology; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research Center; Oregon Health & Science University; Beaverton OR USA
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies & Department of Pharmacology, School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| |
Collapse
|
13
|
Pandy V, Khan Y. Noni (Morinda citrifolia Linn.) fruit juice attenuates the rewarding effect of ethanol in conditioned place preference in mice. Exp Anim 2016; 65:437-445. [PMID: 27333840 PMCID: PMC5111847 DOI: 10.1538/expanim.16-0018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Morinda citrifolia L. commonly known as noni or Indian mulberry belongs
to the family Rubiaceae. Noni fruit juice has recently become a very popular remedy for
the treatment of several diseases, including psychiatric disorders. This study aimed to
investigate the anticraving effect of Tahitian Noni® Juice (TNJ) against ethanol seeking
behavior in ICR male mice using the conditioned place preference (CPP) test. The CPP
procedure consisted of four phases: preconditioning, conditioning, extinction, and
reinstatement. During conditioning, intraperitoneal (i.p.) injections of ethanol (2 g/kg
body weight (bw)) and normal saline (10 ml/kg bw) were given on alternate days for 12
days. Then, the animals were subjected to extinction trials for the next 12 days to weaken
CPP. Finally, CPP was reinstated in the extinguished animals by a single low-dose priming
injection of ethanol (0.4 g/kg bw, i.p.). The effect of TNJ (as a source of drinking
water) on different phases of ethanol CPP in mice was studied. TNJ-treated mice showed a
significant reduction in ethanol seeking behavior in the CPP test. The reference drug,
acamprosate (ACAM) also showed a similar effect in the CPP test. The outcome of this study
suggests that TNJ is effective in attenuating ethanol craving in mice and could be
utilized for the treatment of alcohol dependence. Further clinical studies in this
direction are warranted to support the present preclinical findings.
Collapse
Affiliation(s)
- Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | |
Collapse
|
14
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
15
|
Narasingam M, Pandy V, Mohamed Z. Noni (Morinda citrifolia L.) fruit extract attenuates the rewarding effect of heroin in conditioned place preference but not withdrawal in rodents. Exp Anim 2016; 65:157-64. [PMID: 26744024 PMCID: PMC4873484 DOI: 10.1538/expanim.15-0088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The present study was designed to investigate the effect of a methanolic extract of
Morinda citrifolia Linn. fruit (MMC) on the rewarding effect of heroin
in the rat conditioned place preference (CPP) paradigm and naloxone-precipitated
withdrawal in mice. In the first experiment, following a baseline preference test
(preconditioning score), the rats were subjected to conditioning trials with five
counterbalanced escalating doses of heroin versus saline followed by a preference test
conducted under drug-free conditions (post-conditioning score) using the CPP test.
Meanwhile, in the second experiment, withdrawal jumping was precipitated by naloxone
administration after heroin dependence was induced by escalating doses for 6 days (3×/
day). The CPP test results revealed that acute administration of MMC (1, 3, and 5 g/kg
body weight (bw), p.o.), 1 h prior to the CPP test on the 12th day significantly reversed
the heroin-seeking behavior in a dose-dependent manner, which was similar to the results
observed with a reference drug, methadone (3 mg/kg bw, p.o.). On the other hand, MMC (0.5,
1, and 3 g/kg bw, p.o.) did not attenuate the heroin withdrawal jumps precipitated by
naloxone. These findings suggest that the mechanism by which MMC inhibits the rewarding
effect of heroin is distinct from naloxone-precipitated heroin withdrawal.
Collapse
Affiliation(s)
- Megala Narasingam
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
16
|
Yeganeh F, Ranjbar A, Hatam M, Nasimi A. Mechanism of the cardiovascular effects of the GABAA receptors of the ventral tegmental area of the rat brain. Neurosci Lett 2015; 600:193-8. [PMID: 26079327 DOI: 10.1016/j.neulet.2015.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
The ventral tegmental area (VTA) contains GABA terminals involved in the regulation of the cardiovascular system. Previously, we demonstrated that blocking GABAA but not GABAB receptors produced a pressor response accompanied by marked bradycardia. This study was performed to find the possible mechanisms involved in these responses by blocking ganglionic nicotinic receptors, peripheral muscarinic receptors or peripheral V1 vasopressin receptors. Experiments were performed on urethane anesthetized male Wistar rats. Drugs were microinjected unilaterally into the VTA (100 nl). The average changes in mean arterial pressure (MAP) and heart rate (HR) were compared between pre- and post-treatment using paired t-test. Injection of bicuculline methiodide (BMI), a GABAA antagonist, into the VTA caused a significant increase in MAP and a decrease in HR. Administration (i.v.) of the nicotinic receptor blocker, hexamethonium, enhanced the pressor response but abolished the bradycardic response to BMI, which ruled out involvement of the sympathetic nervous system. Blockade of the peripheral muscarinic receptors by homatropine (i.v.) abolished the bradycardic effect of BMI, but had no effect on the pressor response, indicating that bradycardia was produced by the parasympathetic outflow to the heart. Both the pressor and bradycardic responses to BMI were blocked by V1 receptor antagonist (i.v.), indicating that administration of BMI in the VTA disinhibited the release of vasopressin into the circulation. In conclusion, we demonstrated that GABAergic mechanism of the VTA exerts a tonic inhibition on vasopressin release through activation of GABAA receptors. The sympathetic system is not involved in the decrease of blood pressure by GABA of the VTA.
Collapse
Affiliation(s)
- Fahimeh Yeganeh
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Ranjbar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Hatam
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Nasimi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
A proposed resolution to the paradox of drug reward: Dopamine's evolution from an aversive signal to a facilitator of drug reward via negative reinforcement. Neurosci Biobehav Rev 2015; 56:50-61. [PMID: 26116542 DOI: 10.1016/j.neubiorev.2015.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 06/09/2015] [Accepted: 06/19/2015] [Indexed: 11/21/2022]
Abstract
The mystery surrounding how plant neurotoxins came to possess reinforcing properties is termed the paradox of drug reward. Here we propose a resolution to this paradox whereby dopamine - which has traditionally been viewed as a signal of reward - initially signaled aversion and encouraged escape. We suggest that after being consumed, plant neurotoxins such as nicotine activated an aversive dopaminergic pathway, thereby deterring predatory herbivores. Later evolutionary events - including the development of a GABAergic system capable of modulating dopaminergic activity - led to the ability to down-regulate and 'control' this dopamine-based aversion. We speculate that this negative reinforcement system evolved so that animals could suppress aversive states such as hunger in order to attend to other internal drives (such as mating and shelter) that would result in improved organismal fitness.
Collapse
|
18
|
Ramaker MJ, Strong-Kaufman MN, Ford MM, Phillips TJ, Finn DA. Effect of nucleus accumbens shell infusions of ganaxolone or gaboxadol on ethanol consumption in mice. Psychopharmacology (Berl) 2015; 232:1415-26. [PMID: 25342197 PMCID: PMC4412309 DOI: 10.1007/s00213-014-3777-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/10/2014] [Indexed: 01/16/2023]
Abstract
RATIONALE Allopregnanolone (ALLO) is an endogenous neuroactive steroid thought to alter the reinforcement value of alcohol (ethanol) due to its actions as a positive modulator of the GABAA receptor (GABAAR). Extrasynaptic GABAARs may be a particularly sensitive target of ethanol and neuroactive steroids. Previous work showed that systemic injections of an ALLO analog, ganaxolone (GAN), or an extrasynaptic GABAAR agonist (gaboxadol; THIP) decreased ethanol intake in male mice with limited access to ethanol. OBJECTIVES The present studies tested whether activation of GABAARs in the nucleus accumbens (NAc) shell by GAN or THIP was sufficient to reduce ethanol intake. C57BL/6J male mice had 2-h access to 10 % ethanol (10E) and water, and 10E intake was measured following site-specific infusions of GAN or THIP. RESULTS Decreases in limited-access 10E consumption were observed following site-specific bilateral infusions of either drug into the NAc shell. Significant changes in intake were absent when the drugs were infused in a region dorsal to the target site (GAN) or into the lateral ventricle (THIP). Locomotor data confirmed that the decreases in intake were not due to a sedative effect of the drugs. CONCLUSIONS These data demonstrate the sufficiency of GABAAR activation by a positive allosteric modulator or an agonist with selectivity for extrasynaptic GABAARs to decrease ethanol consumption in mice. Importantly, more refined GABAAR-active targets that decrease ethanol intake may enhance our understanding and ability to treat alcohol use disorders.
Collapse
Affiliation(s)
- Marcia J. Ramaker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | | | - Matthew M. Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239,Department of Veterans Affairs Medical Research, Portland, OR 97239
| | - Deborah A. Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239,Department of Veterans Affairs Medical Research, Portland, OR 97239
| |
Collapse
|
19
|
Sweetened-fat intake sensitizes gamma-aminobutyric acid-mediated feeding responses elicited from the nucleus accumbens shell. Biol Psychiatry 2013; 73:843-50. [PMID: 23312563 PMCID: PMC3885159 DOI: 10.1016/j.biopsych.2012.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/02/2012] [Accepted: 11/02/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is much interest in exploring whether reward-driven feeding can produce druglike plasticity in the brain. The gamma-aminobutyric acid (GABA) system in the nucleus accumbens (Acb) shell, which modulates hypothalamic feeding systems, is well placed to "usurp" homeostatic control of feeding. Nevertheless, it is unknown whether feeding-induced neuroadaptations occur in this system. METHODS Separate groups of ad libitum-maintained rats were exposed to daily bouts of sweetened-fat intake, predator stress, or intra-Acb shell infusions of either d-amphetamine (2 or 10 μg) or the μ-opioid agonist D-[Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO, 2.5 μg), then challenged with intra-Acb shell infusion of the GABAA agonist, muscimol (10 ng). RESULTS Exposure to sweetened fat robustly sensitized muscimol-induced feeding. Sensitization was present 1 week after cessation of the palatable feeding regimen but had abated by 2 weeks. Rats exposed to sweetened fat did not show an altered feeding response to food deprivation. Repeated intra-Acb shell infusions of DAMGO (2.5 μg) also sensitized intra-Acb shell muscimol-driven feeding. However, neither repeated intra-Acb shell d-amphetamine infusions (2 or 10 μg) nor intermittent exposure to an aversive stimulus (predator stress) altered sensitivity to muscimol. CONCLUSIONS Palatable feeding engenders hypersensitivity of Acb shell GABA responses; this effect may involve feeding-induced release of opioid peptides. Heightened arousal, aversive experiences, or increased catecholamine transmission alone are insufficient to produce the effect, and a hunger-induced feeding drive is insufficient to reveal the effect. These findings reveal a novel type of food-induced neuroadaptation within the Acb; possible implications for understanding crossover effects between food reward and drug reward are discussed.
Collapse
|
20
|
Wills TA, Winder DG. Ethanol effects on N-methyl-D-aspartate receptors in the bed nucleus of the stria terminalis. Cold Spring Harb Perspect Med 2013; 3:a012161. [PMID: 23426579 DOI: 10.1101/cshperspect.a012161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The extended amygdala is a series of interconnected, embryologically similar series of nuclei in the brain that are thought to play key roles in aspects of alcohol dependence, specifically in stress-induced increases in alcohol-seeking behaviors. Plasticity of excitatory transmission in these and other brain regions is currently an intense area of scrutiny as a mechanism underlying aspects of addiction. N-methyl-D-aspartate (NMDA) receptors (NMDARs) play a critical role in plasticity at excitatory synapses and have been identified as major molecular targets of ethanol. Thus, this article will explore alcohol and NMDAR interactions first at a general level and then focusing within the extended amygdala, in particular on the bed nucleus of the stria terminalis (BNST).
Collapse
Affiliation(s)
- Tiffany A Wills
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | |
Collapse
|
21
|
Ting-A-Kee R, Vargas-Perez H, Bufalino MR, Bahi A, Dreyer JL, Tyndale RF, van der Kooy D. Infusion of brain-derived neurotrophic factor into the ventral tegmental area switches the substrates mediating ethanol motivation. Eur J Neurosci 2012; 37:996-1003. [PMID: 23279128 DOI: 10.1111/ejn.12105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/26/2012] [Accepted: 11/25/2012] [Indexed: 11/30/2022]
Abstract
Recent work has shown that infusion of brain-derived neurotrophic factor (BDNF) into the ventral tegmental area (VTA) promotes a switch in the mechanisms mediating morphine motivation, from a dopamine-independent to a dopamine-dependent pathway. Here we showed that a single infusion of intra-VTA BDNF also promoted a switch in the mechanisms mediating ethanol motivation, from a dopamine-dependent to a dopamine-independent pathway (exactly opposite to that seen with morphine). We suggest that intra-VTA BDNF, via its actions on TrkB receptors, precipitates a switch similar to that which occurs naturally when mice transit from a drug-naive, non-deprived state to a drug-deprived state. The opposite switching of the mechanisms underlying morphine and ethanol motivation by BDNF in previously non-deprived animals is consistent with their proposed actions on VTA GABAA receptors.
Collapse
Affiliation(s)
- Ryan Ting-A-Kee
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | | | | | | | | | | | | |
Collapse
|
22
|
Roberto M, Gilpin NW, Siggins GR. The central amygdala and alcohol: role of γ-aminobutyric acid, glutamate, and neuropeptides. Cold Spring Harb Perspect Med 2012; 2:a012195. [PMID: 23085848 PMCID: PMC3543070 DOI: 10.1101/cshperspect.a012195] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Alcohol dependence is a chronically relapsing disorder characterized by compulsive drug seeking and drug taking, loss of control in limiting intake, and the emergence of a withdrawal syndrome in the absence of the drug. Accumulating evidence suggests an important role for synaptic transmission in the central amygdala (CeA) in mediating alcohol-related behaviors and neuroadaptative mechanisms associated with alcohol dependence. Acute alcohol facilitates γ-aminobutyric acid-ergic (GABAergic) transmission in CeA via both pre- and postsynaptic mechanisms, and chronic alcohol increases baseline GABAergic transmission. Acute alcohol inhibits glutamatergic transmission via effects at N-methyl-d-aspartate (NMDA) and AMPA receptors in CeA, whereas chronic alcohol up-regulates N-methyl-d-aspartate receptor (NMDAR)-mediated transmission. Pro- (e.g., corticotropin-releasing factor [CRF]) and anti-stress (e.g., NPY, nociceptin) neuropeptides affect alcohol- and anxiety-related behaviors, and also alter the alcohol-induced effects on CeA neurotransmission. Alcohol dependence produces plasticity in these neuropeptide systems, reflecting a recruitment of those systems during the transition to alcohol dependence.
Collapse
Affiliation(s)
- Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
23
|
Bell RL, Sable HJ, Colombo G, Hyytia P, Rodd ZA, Lumeng L. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity. Pharmacol Biochem Behav 2012; 103:119-55. [PMID: 22841890 PMCID: PMC3595005 DOI: 10.1016/j.pbb.2012.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 07/07/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023]
Abstract
The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L. Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Helen J.K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Monserrato, Italy
| | - Petri Hyytia
- Institute of Biomedicine, University of Helsinki, Finland
| | - Zachary A. Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lawrence Lumeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
24
|
Rewal M, Donahue R, Gill TM, Nie H, Ron D, Janak PH. Alpha4 subunit-containing GABAA receptors in the accumbens shell contribute to the reinforcing effects of alcohol. Addict Biol 2012; 17:309-21. [PMID: 21507158 DOI: 10.1111/j.1369-1600.2011.00333.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The α4βδ gamma-aminobutyric acid A receptor (GABA(A) R) has been proposed to mediate the rewarding effects of low-to-moderate concentrations of alcohol (ethanol) that approximate those achieved by social drinking. If this is true, then this receptor should be necessary for the reinforcing effects of ethanol as assessed in an instrumental self-administration procedure in which rats are trained to lever press for oral ethanol. We used viral-mediated RNA interference to transiently reduce expression of the α4 GABA(A) R subunit in the shell region of the nucleus accumbens (NAc). We found that responding for ethanol was significantly reduced after α4 reductions in the NAc shell, but not NAc core. This reduction was specific to ethanol, as responding for sucrose was not altered. The presence of ethanol was also required as unreinforced responding for ethanol in subjects previously trained to respond for ethanol (i.e. responding during an extinction test) was not altered. In addition, responding during reinforced sessions was not altered during the initial 5 minutes of the session, but decreased after 5 minutes, following multiple reinforced responses. Together, these findings indicate that the α4 GABA(A) R subunit in the NAc shell is necessary for the instrumental reinforcing effects of oral ethanol, further supporting a role for α4-containing GABA(A) Rs in the rewarding/reinforcing effects of ethanol. Possible pharmacological and non-pharmacological explanations for these effects are considered.
Collapse
Affiliation(s)
- Mridula Rewal
- Ernest Gallo Clinic and Research Center, University of California at San Francisco, 5858 Horton Street, Emeryville, CA 94608, USA
| | | | | | | | | | | |
Collapse
|
25
|
Gilpin NW, Roberto M. Neuropeptide modulation of central amygdala neuroplasticity is a key mediator of alcohol dependence. Neurosci Biobehav Rev 2012; 36:873-88. [PMID: 22101113 PMCID: PMC3325612 DOI: 10.1016/j.neubiorev.2011.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/01/2011] [Accepted: 11/05/2011] [Indexed: 01/08/2023]
Abstract
Alcohol use disorders are characterized by compulsive drug-seeking and drug-taking, loss of control in limiting intake, and withdrawal syndrome in the absence of drug. The central amygdala (CeA) and neighboring regions (extended amygdala) mediate alcohol-related behaviors and chronic alcohol-induced plasticity. Acute alcohol suppresses excitatory (glutamatergic) transmission whereas chronic alcohol enhances glutamatergic transmission in CeA. Acute alcohol facilitates inhibitory (GABAergic) transmission in CeA, and chronic alcohol increases GABAergic transmission. Electrophysiology techniques are used to explore the effects of neuropeptides/neuromodulators (CRF, NPY, nociceptin, dynorphin, endocannabinoids, galanin) on inhibitory transmission in CeA. In general, pro-anxiety peptides increase, and anti-anxiety peptides decrease CeA GABAergic transmission. These neuropeptides facilitate or block the action of acute alcohol in CeA, and chronic alcohol produces plasticity in neuropeptide systems, possibly reflecting recruitment of negative reinforcement mechanisms during the transition to alcohol dependence. A disinhibition model of CeA output is discussed in the context of alcohol dependence- and anxiety-related behaviors.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA.
| | | |
Collapse
|
26
|
Barson JR, Morganstern I, Leibowitz SF. Neurobiology of consummatory behavior: mechanisms underlying overeating and drug use. ILAR J 2012; 53:35-58. [PMID: 23520598 PMCID: PMC3954603 DOI: 10.1093/ilar.53.1.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Consummatory behavior is driven by both caloric and emotional need, and a wide variety of animal models have been useful in research on the systems that drive consumption of food and drugs. Models have included selective breeding for a specific trait, manipulation of gene expression, forced or voluntary exposure to a substance, and identification of biomarkers that predict which animals are prone to overconsuming specific substances. This research has elucidated numerous brain areas and neurochemicals that drive consummatory behavior. Although energy homeostasis is primarily mediated by the hypothalamus, reinforcement is more strongly mediated by nuclei outside the hypothalamus, in mesocorticolimbic regions. Orexigenic neurochemicals that control food intake can provide a general signal for promoting caloric intake or a more specific signal for stimulating consumption of a particular macronutrient, fat, carbohydrate, or protein. The neurochemicals involved in controlling fat ingestion--galanin, enkephalin, orexin, melanin-concentrating hormone, and the endocannabinoids--show positive feedback with this macronutrient, as these peptides both increase fat intake and are further stimulated by its intake. This positive association offers some explanation for why foods high in fat are so often overconsumed. Consumption of ethanol, a drug of abuse that also contains calories, is similarly driven by the neurochemical systems involved in fat intake, according to evidence that closely relates fat and ethanol consumption. Further understanding of the systems involved in consummatory behavior will enable the development of effective therapies for the treatment of both overeating and drug abuse.
Collapse
Affiliation(s)
- Jessica R Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | | | | |
Collapse
|
27
|
Effects of a stressor and corticotrophin releasing factor on ethanol deprivation-induced ethanol intake and anxiety-like behavior in alcohol-preferring P rats. Psychopharmacology (Berl) 2011; 218:179-89. [PMID: 21643675 DOI: 10.1007/s00213-011-2366-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/20/2011] [Indexed: 02/06/2023]
Abstract
RATIONALE Stress may elevate ethanol drinking and anxiety associated with ethanol drinking. Studies to identify relevant neurobiological substrates are needed. OBJECTIVE To assess roles of brain regions in corticotrophin releasing factor (CRF) effects on stressor-enhanced, ethanol deprivation-induced drinking and anxiety-like behavior. METHODS Ethanol-preferring rats (P rats) were exposed to three cycles of a two-bottle choice paradigm with two 2-day deprivation periods that included 1 h exposure to a restraint stressor. To assess the role of CRF and to identify relevant brain regions, a CRF-1 receptor antagonist (SSR125543; 10 ug) was injected into the nucleus accumbens (NAC), amygdala (Amyg), or dorsal raphe nucleus (DRN) prior to exposure to the restraint stressor. In a second study, CRF (0.5 ug) was injected into one of these regions, or the ventral tegmental area (VTA), or paraventricular nucleus of the hypothalamus (PVN). RESULTS Applying the restraint stressor during deprivation increased voluntary intake and sensitized anxiety-like behavior. Antagonist injection into the NAC prevented increased drinking without affecting anxiety-like behavior, whereas injection into the Amyg or DRN prevented the anxiety-like behavior without affecting drinking. To confirm CRF actions in the stressor effect, CRF was injected into selected brain regions. NAC injections (but not the VTA, Amyg, DRN, or PVN) facilitated drinking but did not change anxiety-like behavior. Injections into the DRN or Amyg (but not PVN or VTA) enhanced anxiety-like behavior. CONCLUSIONS Results emphasize that a restraint stressor elevates ethanol intake and sensitizes ethanol deprivation-induced anxiety-like behavior through CRF1 receptors in the NAC and Amyg/DRN, respectively.
Collapse
|
28
|
Yang ARST, Liu J, Yi HS, Warnock KT, Wang M, June HL, Puche AC, Elnabawi A, Sieghart W, Aurelian L, June HL. Binge Drinking: In Search of its Molecular Target via the GABA(A) Receptor. Front Neurosci 2011; 5:123. [PMID: 22022305 PMCID: PMC3195989 DOI: 10.3389/fnins.2011.00123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/27/2011] [Indexed: 12/02/2022] Open
Abstract
Binge drinking, frequently referred to clinically as problem or hazardous drinking, is a pattern of excessive alcohol intake characterized by blood alcohol levels ≥0.08 g% within a 2-h period. Here, we show that overexpression of α1 subunits of the GABAA receptor contributes to binge drinking, and further document that this involvement is related to the neuroanatomical localization of α1 receptor subunits. Using a herpes simplex virus amplicon vector to deliver small interference RNA (siRNA), we showed that siRNA specific for the α1 subunit (pHSVsiLA1) caused profound, long-term, and selective reduction of gene expression, receptor density, and binge drinking in high-alcohol drinking rats when delivered into the ventral pallidum (VP). Scrambled siRNA (pHSVsiNC) delivered similarly into the VP failed to alter gene expression, receptor density, or binge drinking. Silencing of the α1 gene in the VP, however, failed to alter binge sucrose or water intake. These results, along with our prior research, provide compelling evidence that the α1-containing GABAA receptor subunits are critical in the regulation of binge-like patterns of excessive drinking. Collectively, these data may be useful in the development of gene-based and novel pharmacological approaches for the treatment of excessive drinking.
Collapse
Affiliation(s)
- Andrew R S T Yang
- Neuropsychopharmacology Laboratory, Department of Psychiatry, Division of Alcohol and Drug Abuse, School of Medicine, University of Maryland Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Steroid hormones may alter mnemonic processes. The majority of investigations have focused on the effects of 17β-estradiol (E(2)) to mediate learning. However, progesterone (P(4)), which varies across endogenous hormonal milieu with E(2), may also have effects on cognitive processes. P(4) may have effects in the hippocampus, prefrontal cortex (PFC) and/or striatum to enhance cognitive performance. Cognitive performance/learning has been assessed using tasks that are mediated by the hippocampus (water maze), PFC (object recognition) and striatum (conditioning). Our findings suggest that progestogens can have pervasive effects to enhance cognitive performance and learning in tasks mediated by the hippocampus, PFC and striatum and that these effects may be in part independent of actions at intracellular progestin receptors. Progestogens may therefore influence cognitive processes.
Collapse
|
30
|
Roh S, Matsushita S, Hara S, Maesato H, Matsui T, Suzuki G, Miyakawa T, Ramchandani VA, Li TK, Higuchi S. Role of GABRA2 in moderating subjective responses to alcohol. Alcohol Clin Exp Res 2010; 35:400-7. [PMID: 21118274 DOI: 10.1111/j.1530-0277.2010.01357.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Human twin studies have shown that certain responses to alcohol, including subjective perceptions, are genetically influenced. Previous studies have provided evidence that a low level of response to alcohol predicts future alcohol use disorders in humans. Recent genetic studies suggest an association between alcohol dependence and genetic variation in the γ-aminobutyric acid A (GABA(A)) receptor α2 subunit gene (GABRA2). Based on a haplotypic association of alcohol dependence with GABRA2, we investigated whether GABRA2 alleles are associated with the subjective responses to clamped alcohol concentration. METHODS One hundred and ten healthy social drinkers (53 men) underwent the alcohol clamp. Fifteen minutes after the start of an intravenous infusion of alcohol, the breath alcohol concentration was clamped at a target of 50 ± 5 mg/dl for 165 minutes. Subjective physiologic responses to alcohol and stimulant and sedative effects of alcohol were measured repeatedly during the alcohol clamp. Because aldehyde dehydrogenase 2 (ALDH2) has been shown to have a great impact on the subjective responses to alcohol, we divided subjects by ALDH2 genotype for further analyses. To examine the role of genetic variation in GABRA2, 7 single nucleotide polymorphisms (SNPs) that were informative in association studies were included as factors in the analysis. RESULTS Among these 7 SNPs, 3 SNPs (rs279869, rs279858, and rs279837) located in the middle of the GABRA2 gene showed significant associations with subjective effects of alcohol. Subjects with 1 or 2 copies of the more common allele showed greater subjective responses to alcohol than did individuals homozygous for the alcohol dependence-associated allele regardless of ALDH2 genotype. CONCLUSIONS These findings confirm and extend the observation that the GABRA2 alleles affect the subjective responses to alcohol, and suggest that the genetic variations in GABRA2 might play a role in the risk of alcohol use disorders by moderating the subjective effects of alcohol.
Collapse
Affiliation(s)
- Sungwon Roh
- Division of Clinical Research, National Hospital Organization Kurihama Alcoholism Center, Yokosuka, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Morganstern I, Tejani-Butt S. Differential patterns of alcohol consumption and dopamine-2 receptor binding in Wistar-Kyoto and Wistar rats. Neurochem Res 2010; 35:1708-15. [PMID: 20680460 PMCID: PMC2997530 DOI: 10.1007/s11064-010-0233-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2010] [Indexed: 11/28/2022]
Abstract
The Wistar-Kyoto (WKY) rat strain has been described as an animal model of depressive behavior that consumes significantly greater amounts of alcohol compared to the Wistar (WIS) rat strain. Since the mesolimbic dopamine (DA) type-2 (D2) receptors mediate reward-related behaviors, the present study measured the binding of [(125)I]-Iodosulpiride to D2 receptors in the brains of WKY versus WIS rats following 24 days of voluntary alcohol or water consumption. Alcohol consuming WKY rats showed a significant increase in D2 receptor binding in several regions of the mesolimbic and nigrostriatal systems. In contrast, alcohol consuming WIS rats showed a reduction in D2 receptor binding in DA cell body areas. The differential regulation of D2 receptors by voluntary alcohol consumption in the two rat strains suggests that D2 receptor mediated neurotransmission may be playing a role in the increased alcohol drinking behavior reported in WKY rats.
Collapse
Affiliation(s)
- Irene Morganstern
- Department of Pharmaceutical Sciences (Box 118), University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA
| | - Shanaz Tejani-Butt
- Department of Pharmaceutical Sciences (Box 118), University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Voluntary alcohol consumption alters stress-induced changes in dopamine-2 receptor binding in Wistar-Kyoto rat brain. Pharmacol Biochem Behav 2009; 94:471-6. [PMID: 19896970 DOI: 10.1016/j.pbb.2009.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 10/27/2009] [Accepted: 10/30/2009] [Indexed: 11/21/2022]
Abstract
The Wistar-Kyoto (WKY) rat has been proposed as an animal model of depressive behavior and exhibits hyper-responsiveness to stressful stimulation when compared to other rat strains. We have demonstrated that WKY rats consume 200% more alcohol under naïve conditions as compared to their outbred counterparts, Wistar (WIS) rats. The present study was designed to understand the influence of stress and alcohol consumption on central dopamine type-2 (D2) receptor sites in these two behaviorally distinct rat strains. The first part of this study examined the effects of chronic stress on alcohol consumption, while the second part examined the binding of [(125)I]-Iodosulpiride to D2 receptors in control, stressed or stress and alcohol co-treated WKY compared to WIS rats. Exposure to chronic stress led to an increase in the amount of alcohol consumed by both rat strains, with WKY rats consuming significantly more alcohol than WIS rats with or without stress exposure. Quantitative autoradiography experiments showed that chronic stress increased D2 receptor binding in the caudate putamen (CPu), nucleus accumbens (NAc), substantia nigra (SN) and ventral tegmental area (VTA) of WKY rats, and reduced receptor binding in the CPu and SN of WIS rats. Compared to the stressed animals, WKY rats co-treated with stress and alcohol demonstrated a reduction in D2 receptor sites in the cell body regions (SN and VTA), while WIS rats showed no changes in receptor binding. The observed changes in D2 receptor sites may indicate altered DA neurotransmission following stress and alcohol exposure. Since stressed WKY rats consumed more alcohol, it is possible that consumption of alcohol reverses the stress-induced D2 receptor alterations in the cell body regions, suggestive of a self medicating phenotype.
Collapse
|
33
|
Ludlow KH, Bradley KD, Allison DW, Taylor SR, Yorgason JT, Hansen DM, Walton CH, Sudweeks SN, Steffensen SC. Acute and chronic ethanol modulate dopamine D2-subtype receptor responses in ventral tegmental area GABA neurons. Alcohol Clin Exp Res 2009; 33:804-11. [PMID: 19298327 DOI: 10.1111/j.1530-0277.2009.00899.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ventral tegmental area (VTA) gamma-aminobutyric acid (GABA) neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in drug reward. VTA GABA neuron firing rate is reduced by acute ethanol and enhanced by DA via D2 receptor activation. The objective of this study was to evaluate the role of D2 receptors in acute ethanol inhibition of VTA GABA neuron activity, as well as the adaptation of D2 receptors by chronic ethanol consumption. METHODS Using electrophysiological methods, we evaluated the effects of intraperitoneal ethanol on DA activation of VTA GABA neurons, the effects of DA antagonists on ethanol inhibition of their firing rate, as well as adaptations in firing rate following chronic ethanol consumption. Using single cell quantitative RT-polymerase chain reaction (PCR), we evaluated the expression of VTA GABA neuron D2 receptors in rats consuming ethanol versus pair-fed controls. RESULTS In acute ethanol studies, microelectrophoretic activation of VTA GABA neurons by DA was inhibited by acute intraperitoneal ethanol, and intravenous administration of the D2 antagonist eticlopride blocked ethanol suppression of VTA GABA neuron firing rate. In chronic ethanol studies, while there were no signs of withdrawal at 24 hours, or significant adaptation in firing rate or response to acute ethanol, there was a significant down-regulation in the expression of D2 receptors in ethanol-consuming rats versus pair-fed controls. CONCLUSIONS Inhibition of DA activation of VTA GABA neuron firing rate by ethanol, as well as eticlopride block of ethanol inhibition of VTA GABA neuron firing rate, suggests an interaction between ethanol and DA neurotransmission via D2 receptors, perhaps via enhanced DA release in the VTA subsequent to ethanol inhibition of GABA neurons. Down-regulation of VTA GABA neuron D2 receptors by chronic ethanol might result from persistent DA release onto GABA neurons.
Collapse
Affiliation(s)
- Kimberly H Ludlow
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ting-A-Kee R, Dockstader C, Heinmiller A, Grieder T, van der Kooy D. GABAAreceptors mediate the opposing roles of dopamine and the tegmental pedunculopontine nucleus in the motivational effects of ethanol. Eur J Neurosci 2009; 29:1235-44. [DOI: 10.1111/j.1460-9568.2009.06684.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Kash TL, Matthews RT, Winder DG. Alcohol inhibits NR2B-containing NMDA receptors in the ventral bed nucleus of the stria terminalis. Neuropsychopharmacology 2008; 33:1379-90. [PMID: 17625498 PMCID: PMC2864636 DOI: 10.1038/sj.npp.1301504] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Components of the mesolimbic dopamine system, in particular dopaminergic cells in the ventral tegmental area (VTA), have been implicated in the acute reinforcing actions of ethanol. The ventral bed nucleus of the stria terminalis (vBNST) potently regulates dopaminergic cell firing in the VTA, and has been implicated in the behavioral actions of ethanol. The N-methyl-D-asparate receptor (NMDAR) is a major molecular target of ethanol, however, current evidence suggests that ethanol regulation of NMDAR function is widely variable and likely depends on a number of factors. Thus, it is critical to investigate ethanol regulation of NMDAR function at synapses relevant to ethanol-regulated behaviors, such as in the vBNST. Here we show, using multiple techniques, that ethanol inhibits NMDAR function in vBNST neurons in a postsynaptic fashion. Further, we demonstrate the functional presence of both NR2A and NR2B-containing NMDARs in the vBNST. While genetic removal of NR2A did not alter the magnitude of ethanol inhibition, pharmacological blockade of NR2B rendered synaptically activated NMDARs insensitive to ethanol inhibition. Finally, we demonstrate that ethanol inhibits NMDARs in cells in the vBNST that project to the VTA, providing a direct means by which ethanol in the vBNST can modulate the dopaminergic system.
Collapse
Affiliation(s)
- Thomas L Kash
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert T Matthews
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
- JF Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
- Correspondence: Dr DG Winder, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 23rd and Pierce Ave S, Room 724B, RRB, Nashville, TN 37232-0615, USA, Tel: +1 615 322 1144, Fax: +1 615 322 1462,
| |
Collapse
|
36
|
He J, Crews FT. Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 2007; 210:349-58. [PMID: 18190912 DOI: 10.1016/j.expneurol.2007.11.017] [Citation(s) in RCA: 387] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/02/2007] [Accepted: 11/13/2007] [Indexed: 01/12/2023]
Abstract
Cytokines and microglia have been implicated in anxiety, depression, neurodegeneration as well as the regulation of alcohol drinking and other consumatory behaviors, all of which are associated with alcoholism. Studies using animal models of alcoholism suggest that microglia and proinflammatory cytokines contribute to alcoholic pathologies [Crews, F.T., Bechara, R., Brown, L.A., Guidot, D.M., Mandrekar, P., Oak, S., Qin, L., Szabo, G., Wheeler, M., Zou, J., (2006) Cytokines and alcohol. Alcohol., Clin. Exp. Res. 30:720-730]. In the current study, human postmortem brains from moderate drinking controls and alcoholics obtained from the New South Wales Tissue Resource Center were used to study the cytokine, monocyte chemoattractant protein 1 (MCP-1,CCL2) and microglia markers in various brain regions. Since MCP-1 is a key proinflammatory cytokine induced by chronic alcohol treatment of mice, and known to regulate drinking behavior in mice, MCP-1 protein levels from human brain homogenate were measured using ELISA, and indicated increased MCP-1 concentration in ventral tegmental area (VTA), substantia nigra (SN), hippocampus and amygdala of alcoholic brains as compared with controls. Immunohistochemistry was further performed to visualize human microglia using ionized calcium binding adaptor protein-1 (Iba-1), and Glucose transporter-5 (GluT5). Alcoholics were found to have brain region-specific increases in microglial markers. In cingulate cortex, both Iba-1 and GluT5 were increased in alcoholic brains relative to controls. Alternatively, no detectable change was found in amygdala nuclei. In VTA and midbrain, only GluT5, but not Iba-1 was increased in alcoholic brains. These data suggest that the enhanced expression of MCP-1 and microglia activities in alcoholic brains could contribute to ethanol-induced pathogenesis.
Collapse
Affiliation(s)
- Jun He
- Bowles Center for Alcohol Studies, Department of Pharmacology and Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA.
| | | |
Collapse
|
37
|
Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol 2007; 75:266-322. [PMID: 17764663 DOI: 10.1016/j.bcp.2007.07.030] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 02/08/2023]
Abstract
Evidence that psychoactive substance use disorders, bulimia nervosa, pathological gambling, and sexual addiction share an underlying biopsychological process is summarized. Definitions are offered for addiction and addictive process, the latter being the proposed designation for the underlying biopsychological process that addictive disorders are hypothesized to share. The addictive process is introduced as an interaction of impairments in three functional systems: motivation-reward, affect regulation, and behavioral inhibition. An integrative review of the literature that addresses the neurobiology of addiction is then presented, organized according to the three functional systems that constitute the addictive process. The review is directed toward identifying candidate neurochemical substrates for the impairments in motivation-reward, affect regulation, and behavioral inhibition that could contribute to an addictive process.
Collapse
Affiliation(s)
- Aviel Goodman
- Minnesota Institute of Psychiatry, 1347 Summit Avenue, St. Paul, MN 55105, USA.
| |
Collapse
|