1
|
Kos J, Langiu M, Hellyer SD, Gregory KJ. Pharmacology, Signaling and Therapeutic Potential of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. ACS Pharmacol Transl Sci 2024; 7:3671-3690. [PMID: 39698283 PMCID: PMC11651194 DOI: 10.1021/acsptsci.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 12/20/2024]
Abstract
Metabotropic glutamate receptors are a family of eight class C G protein-coupled receptors regulating higher order brain functions including cognition and motion. Metabotropic glutamate receptors have thus been heavily investigated as potential drug targets for treating neurological disorders. Drug discovery efforts directed toward metabotropic glutamate receptor subtype 5 (mGlu5) have been particularly fruitful, with a wealth of drug candidates and pharmacological tools identified. mGlu5 negative allosteric modulators (NAMs) are promising novel therapeutics for developmental, neuropsychiatric and neurodegenerative disorders (e.g., Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, amyotrophic lateral sclerosis, autism spectrum disorders, substance use disorders, stroke, anxiety and depression) and show promise in ameliorating adverse effects induced by other medications (e.g., L-dopa induced dyskinesia in Parkinson's Disease). However, despite preclinical success, mGlu5 NAMs are yet to reach the market due to poor safety and efficacy profiles in clinical trials. Herein, we review the physiology and signal transduction of mGlu5. We provide a comprehensive critique of therapeutic options with respect to mGlu5 inhibitors, spanning from orthosteric antagonists to NAMs. Finally, we address the challenges associated with drug development and highlight future directions to guide rational drug discovery of safe and effective novel therapeutics.
Collapse
Affiliation(s)
- Jackson
A. Kos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Shane D. Hellyer
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
2
|
Fateeva A, Eddy K, Chen S. Overview of current melanoma therapies. Pigment Cell Melanoma Res 2024; 37:562-568. [PMID: 38063139 PMCID: PMC11161550 DOI: 10.1111/pcmr.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 06/09/2024]
Abstract
Melanoma is the most aggressive type of skin cancer and is responsible for the majority of deaths from skin cancer. Therapeutic advances in the last few decades, notably the development of novel targeted therapies and immunotherapies have significantly improved patient outcomes; nonetheless, these options remain limited due to the onset of resistance to treatment modalities and relapse. In this review, we focus on the available therapeutic options, their benefits, and limitations.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, New Jersey, USA
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, New Jersey, USA
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, New Jersey, USA
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
3
|
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel) 2024; 16:1571. [PMID: 38672652 PMCID: PMC11049326 DOI: 10.3390/cancers16081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- U.S. Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
4
|
Teng L, Qin Q, Zhou Z, Zhou F, Cao C, Yang J, Ding J. Glutamate secretion by embryonic stem cells as an autocrine signal to promote proliferation. Sci Rep 2023; 13:19069. [PMID: 37925518 PMCID: PMC10625544 DOI: 10.1038/s41598-023-46477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
Glutamate, the major excitatory neurotransmitter in the central nervous system, has also been found to play a role in embryonic stem (ES) cells. However, the exact mechanism and function of glutamatergic signaling in ES cells remain poorly understood. In this study, we identified a glutamatergic transmission circuit in ES cells that operates through an autocrine mechanism and regulates cell proliferation. We performed biological analyses to identify the key components involved in glutamate biosynthesis, packaging for secretion, reaction, and reuptake in ES cells, including glutaminase, vesicular glutamate transporter, glutamate N-methyl-D-aspartate (NMDA) receptor, and cell membrane excitatory amino-acid transporter (EAAT). We directly quantified the released glutamate signal using microdialysis-high performance liquid chromatography-tandem mass spectrometry (MD-HPLC-MS-MS). Pharmacological inhibition of endogenous glutamate release and the resulting tonic activation of NMDA receptors significantly affected ES cell proliferation, suggesting that ES cells establish a glutamatergic autocrine niche via releasing and responding to the transmitter for their own regulation.
Collapse
Affiliation(s)
- Lin Teng
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
- College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and Immunotherapy, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Qin Qin
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Ziyi Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Fei Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Chunyu Cao
- College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and Immunotherapy, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Jian Yang
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Jiawang Ding
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China.
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China.
| |
Collapse
|
5
|
Zheng H, Wang S, Wu Y, Zou S, Dietemann V, Neumann P, Chen Y, Li-Byarlay H, Pirk C, Evans J, Hu F, Feng Y. Genomic signatures underlying the oogenesis of the ectoparasitic mite Varroa destructor on its new host Apis mellifera. J Adv Res 2022; 44:1-11. [PMID: 36725182 PMCID: PMC9936524 DOI: 10.1016/j.jare.2022.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Host shift of parasites may have devastating effects on the novel hosts. One remarkable example is that of the ectoparasitic mite Varroa destructor, which has shifted its host from Eastern honey bees (Apis cerana) to Western honey bees (Apis mellifera) and posed a global threat to apiculture. OBJECTIVES To identify the genetic factors underlying the reproduction of host-shifted V. destructor on the new host. METHODS Genome sequencing was conducted to construct the phylogeny of the host-shifted and non-shifted mites and to screen for genomic signatures that differentiated them. Artificial infestation experiment was conducted to compare the reproductive difference between the mites, and transcriptome sequencing was conducted to find differentially expressed genes (DEGs) during the reproduction process. RESULTS The host-shifted and non-shifted V. destructor mites constituted two genetically distinct lineages, with 15,362 high-FST SNPs identified between them. Oogenesis was upregulated in host-shifted mites on the new host A. mellifera relative to non-shifted mites. The transcriptomes of the host-shifted and non-shifted mites differed significantly as early as 1h post-infestation. The DEGs were associated with nine genes carrying nonsynonymous high-FST SNPs, including mGluR2-like, Lamb2-like and Vitellogenin 6-like, which were also differentially expressed, and eIF4G, CG5800, Dap160 and Sas10, which were located in the center of the networks regulating the DEGs based on protein-protein interaction analysis. CONCLUSIONS The annotated functions of these genes were all associated with oogenesis. These genes appear to be the key genetic determinants of the oogenesis of host-shifted mites on the new host. Further study of these candidate genes will help elucidate the key mechanism underlying the success of host shifts of V. destructor.
Collapse
Affiliation(s)
- Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuqi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shengmei Zou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Vincent Dietemann
- Swiss Bee Research Center, Agroscope, Bern, Switzerland; Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Peter Neumann
- Swiss Bee Research Center, Agroscope, Bern, Switzerland; Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Hongmei Li-Byarlay
- Agricultural Research and Development Program, Central State University, Wilberforce, OH 45384, USA; Department of Agricultural and Life Science, Central State University, Wilberforce, OH 45384, USA
| | - Christian Pirk
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Jay Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Chavoshinezhad S, Zibaii MI, Seyed Nazari MH, Ronaghi A, Asgari Taei A, Ghorbani A, Pandamooz S, Salehi MS, Valian N, Motamedi F, Haghparast A, Dargahi L. Optogenetic stimulation of entorhinal cortex reveals the implication of insulin signaling in adult rat's hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110344. [PMID: 33964323 DOI: 10.1016/j.pnpbp.2021.110344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/29/2022]
Abstract
Adult neurogenesis in the hippocampal dentate gyrus plays a critical role in learning and memory. Projections originating from entorhinal cortex, known as the perforant pathway, provide the main input to the dentate gyrus and promote neurogenesis. However, neuromodulators and molecular changes mediating neurogenic effects of this pathway are not yet fully understood. Here, by means of an optogenetic approach, we investigated neurogenesis and synaptic plasticity in the hippocampus of adult rats induced by stimulation of the perforant pathway. The lentiviruses carrying hChR2 (H134R)-mCherry gene under the control of the CaMKII promoter were injected into the medial entorhinal cortex region of adult rats. After 21 days, the entorhinal cortex region was exposed to the blue laser (473 nm) for five consecutive days (30 min/day). The expression of synaptic plasticity and neurogenesis markers in the hippocampus were evaluated using molecular and histological approaches. In parallel, the changes in the gene expression of insulin and its signaling pathway, trophic factors, and components of mitochondrial biogenesis were assessed. Our results showed that optogenetic stimulation of the entorhinal cortex promotes hippocampal neurogenesis and synaptic plasticity concomitant with the increased levels of insulin mRNA and its signaling markers, neurotrophic factors, and activation of mitochondrial biogenesis. These findings suggest that effects of perforant pathway stimulation on the hippocampus, at least in part, are mediated by insulin increase in the dentate gyrus and subsequently activation of its downstream signaling pathway.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | | | - Abdolaziz Ronaghi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Asgari Taei
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zhang Z, Wang L, Liu Y, Luan Y, Zhu K, Tian Y, Liu Y, Zheng X. Activation of type 4 metabotropic glutamate receptor attenuates oxygen and glucose deprivation-induced apoptosis in human neural stem cells via inhibition of ASK1-p38 signaling pathway. Brain Res 2021; 1767:147561. [PMID: 34133989 DOI: 10.1016/j.brainres.2021.147561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/19/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Hypoxic ischemic brain injury (HIBI) has been one of the most severe central nervous system (CNS) diseases with high fatality and disability rate. Neural stem cells (NSCs) persist in the mammalian brain throughout life and NSCs-associated therapies might be a promising strategy for the HIBI treatment. In this study, we identified that type 4 metabotropic glutamate receptor (mGluR4) was expressed in cultured human NSCs (hNSCs) isolated from the human fetus cortex and further established the oxygen and glucose deprivation (OGD) model in hNSCs to study the role of mGluR4 in hypoxic and ischemic injury. The results indicated that mGluR4 activation by using VU0155041 (mGluR4-specific agonist) markedly attenuated the OGD-induced alterations in TUNEL staining, apoptosis rate, cleavages of pro-caspase-8, -9, -3, and Bcl-2/Bax expression balance. Furthermore, mGluR4 activation inhibited the ASK1/p38 signaling pathway. Asiatic acid, as a p38 MAPK activator, is capable of abolishing the neuroprotective effect of mGluR4, while both NQDI-1 (ASK-1 inhibitor) and SB203580 (p38 MAPK inhibitor) exerted similar effects to VU0155041 in the OGD-induced hNSC damage. In conclusion, this study indicates that mGluR4 activation protects hNSCs against the OGD-induced cell death via inhibiting the ASK1-p38 pathway. Activation of mGluR4 might be a promising strategy for enhancing NSCs survival in hypoxic and ischemic injury.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Li Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Kun Zhu
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710061, China
| | - Yumei Tian
- Department of Rehabilitation, Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.
| | - Xiaoyan Zheng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
8
|
Targeting the dysfunction of glutamate receptors for the development of novel antidepressants. Pharmacol Ther 2021; 226:107875. [PMID: 33901503 DOI: 10.1016/j.pharmthera.2021.107875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
Increasing evidence indicates that dysfunction of glutamate receptors is involved in the pathophysiology of major depressive disorder (MDD). Although accumulating efforts have been made to elucidate the applications and mechanisms underlying antidepressant-like effects of ketamine, a non-selective antagonist of N-methyl-d-aspartate receptor (NMDAR), the role of specific glutamate receptor subunit in regulating depression is not completely clear. The current review aims to discuss the relationships between glutamate receptor subunits and depressive-like behaviors. Research literatures were searched from inception to July 2020. We summarized the alterations of glutamate receptor subunits in patients with MDD and animal models of depression. Animal behaviors in response to dysfunction of glutamate receptor subunits were also surveyed. To fully understand mechanisms underlying antidepressant-like effects of modulators targeting glutamate receptors, we discussed effects of each glutamate receptor subunit on serotonin system, synaptic plasticity, neurogenesis and neuroinflammation. Finally, we collected most recent clinical applications of glutamate receptor modulators and pointed out the limitations of these candidates in the treatment of MDD.
Collapse
|
9
|
Sareddy GR, Pratap UP, Venkata PP, Zhou M, Alejo S, Viswanadhapalli S, Tekmal RR, Brenner AJ, Vadlamudi RK. Activation of estrogen receptor beta signaling reduces stemness of glioma stem cells. Stem Cells 2021; 39:536-550. [PMID: 33470499 DOI: 10.1002/stem.3337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 11/08/2022]
Abstract
Glioblastoma (GBM) is the most common and deadliest tumor of the central nervous system. GBM has poor prognosis and glioma stem cells (GSCs) are implicated in tumor initiation and therapy resistance. Estrogen receptor β (ERβ) is expressed in GBM and exhibit tumor suppressive function. However, the role of ERβ in GSCs and the therapeutic potential of ERβ agonists on GSCs remain largely unknown. Here, we examined whether ERβ modulates GSCs stemness and tested the utility of two ERβ selective agonists (LY500307 and Liquiritigenin) to reduce the stemness of GSCs. The efficacy of ERβ agonists was examined on GSCs isolated from established and patient derived GBMs. Our results suggested that knockout of ERβ increased the proportion of CD133+ and SSEA+ positive GSCs and overexpression of ERβ reduced the proportion of GSCs in GBM cells. Overexpression of ERβ or treatment with ERβ agonists significantly inhibited the GSCs cell viability, neurosphere formation, self-renewal ability, induced the apoptosis and reduced expression of stemness markers in GSCs. RNA sequencing analysis revealed that ERβ agonist modulate pathways related to stemness, differentiation and apoptosis. Mechanistic studies showed that ERβ overexpression or agonist treatment reduced glutamate receptor signaling pathway and induced apoptotic pathways. In orthotopic models, ERβ overexpression or ERβ agonists treatment significantly reduced the GSCs mediated tumor growth and improved the mice overall survival. Immunohistochemical studies demonstrated that ERβ overexpression decreased SOX2 and GRM3 expression and increased expression of GFAP in tumors. These results suggest that ERβ activation could be a promising therapeutic strategy to eradicate GSCs.
Collapse
Affiliation(s)
- Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Mei Zhou
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha Shi, Hunan, People's Republic of China
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Andrew J Brenner
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA.,Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
10
|
Zhang Z, Liu Y, Luan Y, Zhu K, Hu B, Ma B, Chen L, Liu X, Lu H, Chen X, Liu Y, Zheng X. Activation of Type 4 Metabotropic Glutamate Receptor Regulates Proliferation and Neuronal Differentiation in a Cultured Rat Retinal Progenitor Cell Through the Suppression of the cAMP/PTEN/AKT Pathway. Front Mol Neurosci 2020; 13:141. [PMID: 32973444 PMCID: PMC7469868 DOI: 10.3389/fnmol.2020.00141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/10/2020] [Indexed: 02/02/2023] Open
Abstract
Retinal progenitor cells (RPCs) remain in the eye throughout life and can be characterized by their ability for self-renewal as well as their specialization into different cell types. A recent study has suggested that metabotropic glutamate receptors (mGluRs) participate in the processes of multiple types of stem cells. Therefore, clarifying the functions of different subtypes of mGluRs in RPCs may provide a novel treatment strategy for regulating the proliferation and differentiation of endogenous RPCs after retinal degeneration. In this study, we observed that mGluR4 was functionally expressed in RPCs, with an effect on cell viability and intracellular cAMP concentration. The activation of mGluR4 by VU0155041 (VU, mGluR4 positive allosteric selective modulator) reduced the number of BrdU+/Pax6+ double-positive cells and Cyclin D1 expression levels while increasing the number of neuron-specific class III beta-tubulin (Tuj1)- and Doublecortin (DCX)-positive cells. The knockdown of mGluR4 by target-specific siRNA abolished the effects of VU on RPC proliferation and neuronal differentiation. Further investigation demonstrated that mGluR4 activation inhibited AKT phosphorylation and up-regulated PTEN protein expression. Moreover, the VU0155041-induced inhibition of proliferation and enhancement of neuronal differentiation in RPCs were significantly hampered by Forskolin (adenylyl cyclase activator) and VO-OHpic trihydrate (PTEN inhibitor). In contrast, the effect of LY294002 (a highly selective Akt inhibitor) on proliferation and differentiation was similar to that of VU. These results indicate that mGluR4 activation can suppress proliferation and promote the neural differentiation of cultured rat RPCs through the cAMP/PTEN/AKT pathway. Our research lays the foundation for further pharmacological work exploring a novel potential therapy for several retinal diseases.
Collapse
Affiliation(s)
- Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kun Zhu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Baoqi Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Chen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoyan Zheng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Zhang Z, Zheng X, Liu Y, Luan Y, Wang L, Zhao L, Zhang J, Tian Y, Lu H, Chen X, Liu Y. Activation of metabotropic glutamate receptor 4 regulates proliferation and neural differentiation in neural stem/progenitor cells of the rat subventricular zone and increases phosphatase and tensin homolog protein expression. J Neurochem 2020; 156:465-480. [PMID: 32052426 DOI: 10.1111/jnc.14984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/13/2022]
Abstract
Neural stem/progenitor cells (NSPCs) persist in the mammalian subventricular zone throughout life, where they can be activated in response to physiological and pathophysiological stimuli. A recent study indicates metabotropic glutamate receptor 4 (mGluR4) is involved in regulating NSPCs behaviors. Therefore, defining mGluR4 function in NSPCs is necessary for determining novel strategies to enhance the intrinsic potential for brain regeneration after injuries. In this study, mGluR4 was functionally expressed in SVZ-derived NSPCs from male Sprague-Dawley rats, in which the cyclic adenosine monophosphate concentration was reduced after treatment with the mGluR4-specific agonist VU0155041. Additionally, lateral ventricle injection of VU0155041 significantly decreased 5-bromo-2'-deoxyuridine (BrdU)+ and Ki67+ cells, while increased Doublecortin (DCX)/BrdU double-positive cells in SVZ. In cultured NSPCs, mGluR4 activation decreased the ratio of BrdU+ cells, G2/M-phase cells, and inhibited Cyclin D1 expression, whereas it increased neuron-specific class III β-tubulin (Tuj1) expression and the number of Tuj1, DCX, and PSA-NCAM-positive cells. However, pharmacological blocking mGluR4 with the antagonist MSOP or knockdown of mGluR4 abolished the effects of VU0155041 on NSPCs proliferation and neuronal differentiation. Further investigation demonstrated that VU0155041 treatment down-regulated AKT phosphorylation and up-regulated expression of the phosphatase and tensin homolog protein (PTEN) in NSPCs culture. Moreover VU0155041-induced proliferating inhibition and neuronal differentiating amplification in NSPCs were significantly hampered by VO-OHpic, a PTEN inhibitor. We conclude that activation of mGluR4 in SVZ-derived NSPCs suppresses proliferation and enhances their neuronal differentiation, and regulation of PTEN may be involved as a potential intracellular target of mGluR4 signal. Cover Image for this issue: https://doi.org/10.1111/jnc.15052.
Collapse
Affiliation(s)
- Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiaoyan Zheng
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi, China
| | - Lingyu Zhao
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jianshui Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yumei Tian
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Wang C, Wang Z, Liu W, Ai Z. CD133 promotes the self-renewal capacity of thyroid cancer stem cells through activation of glutamate aspartate transporter SLC1A3 expression. Biochem Biophys Res Commun 2019; 511:87-91. [DOI: 10.1016/j.bbrc.2019.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
|
13
|
Multiple effects of the herbicide glufosinate-ammonium and its main metabolite on neural stem cells from the subventricular zone of newborn mice. Neurotoxicology 2018; 69:152-163. [DOI: 10.1016/j.neuro.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/13/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
|
14
|
Zhang Z, Zheng X, Luan Y, Liu Y, Li X, Liu C, Lu H, Chen X, Liu Y. Activity of Metabotropic Glutamate Receptor 4 Suppresses Proliferation and Promotes Apoptosis With Inhibition of Gli-1 in Human Glioblastoma Cells. Front Neurosci 2018; 12:320. [PMID: 29867331 PMCID: PMC5962807 DOI: 10.3389/fnins.2018.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/24/2018] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal glioma variant in the adult brain and among the deadliest of human cancers. Increasing evidence has shown that metabotropic glutamate receptor subtype 4 (mGluR4) expression may play roles in regulating the growth of neural stem cells as well as several cancer cell lines. Here, we investigated the effects of mGluR4 on the growth and apoptosis of the LN229 GBM cell line. Involvement of Gli-1, one of the key transcription factors in the sonic Hedgehog (SHH) signaling pathway, was further explored. In this study, mGluR4 was activated using selective agonist VU0155041; and gene-targeted siRNAs were used to generate loss of function of mGluR4 and Gli-1 in LN229 cells. The results demonstrated that LN229 cells expressed mGluR4 and the agonist VU0155041 decreased cell viability in a dose- and time-dependent manner. Activation of mGluR4 inhibited cyclin D1 expression, activated pro-caspase-8/9/3, and disrupted the balance of Bcl-2/Bax expression, which indicated cell cycle arrest and apoptosis of LN229 cells, respectively. Furthermore, Gli-1 expression was reduced by mGluR4 activation in LN229 cells, and downregulation of Gli-1 expression by gene-targeted siRNA resulted in both inhibition of cell proliferation and promotion of apoptosis. Moreover, VU0155041 treatment substantially blocked SHH-induced cyclin D1 expression and cell proliferation, while increasing TUNEL-positive cells and the activation of apoptosis-related proteins. We concluded that activation of mGluR4 expressed in LN229 cells could inhibit GBM cell growth by decreasing cell proliferation and promoting apoptosis. Further suppression of intracellular Gli-1 expression might be involved in the action of mGluR4 on cancer cells. Our study suggested a novel role of mGluR4, which might serve as a potential drug target for control of GBM cell growth.
Collapse
Affiliation(s)
- Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Human Anatomy, Histology and Embryology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoyan Zheng
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xingxing Li
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chongxiao Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Neurosurgery, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Human Anatomy, Histology and Embryology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
15
|
Hachem LD, Mothe AJ, Tator CH. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors. Stem Cells Dev 2016; 25:1223-33. [PMID: 27316370 DOI: 10.1089/scd.2015.0389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI.
Collapse
Affiliation(s)
- Laureen D Hachem
- 1 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada
| | - Andrea J Mothe
- 1 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada
| | - Charles H Tator
- 1 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada .,2 Division of Neurosurgery, Department of Surgery, University of Toronto , Toronto, Canada
| |
Collapse
|
16
|
Götz M, Nakafuku M, Petrik D. Neurogenesis in the Developing and Adult Brain-Similarities and Key Differences. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018853. [PMID: 27235475 DOI: 10.1101/cshperspect.a018853] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adult neurogenesis in the mammalian brain is often viewed as a continuation of neurogenesis at earlier, developmental stages. Here, we will critically review the extent to which this is the case highlighting similarities as well as key differences. Although many transcriptional regulators are shared in neurogenesis at embryonic and adult stages, recent findings on the molecular mechanisms by which these neuronal fate determinants control fate acquisition and maintenance have revealed profound differences between development and adulthood. Importantly, adult neurogenesis occurs in a gliogenic environment, hence requiring adult-specific additional and unique mechanisms of neuronal fate specification and maintenance. Thus, a better understanding of the molecular logic for continuous adult neurogenesis provides important clues to develop strategies to manipulate endogenous stem cells for the purpose of repair.
Collapse
Affiliation(s)
- Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Munich, Germany Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, 80336 Munich, Germany Synergy, Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Masato Nakafuku
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45140 Departments of Pediatrics and Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - David Petrik
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Munich, Germany Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, 80336 Munich, Germany
| |
Collapse
|
17
|
Activation of type 5 metabotropic glutamate receptor promotes the proliferation of rat retinal progenitor cell via activation of the PI-3-K and MAPK signaling pathways. Neuroscience 2016; 322:138-51. [DOI: 10.1016/j.neuroscience.2016.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 11/20/2022]
|
18
|
Choi HY, Saha SK, Kim K, Kim S, Yang GM, Kim B, Kim JH, Cho SG. G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells. BMB Rep 2015; 48:68-80. [PMID: 25413305 PMCID: PMC4352616 DOI: 10.5483/bmbrep.2015.48.2.250] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of selfrenewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Kyeongseok Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Sangsu Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - BongWoo Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Jin-hoi Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
19
|
Mahato P, Pandey S, Bhattacharyya S. Differential effects of protein phosphatases in the recycling of metabotropic glutamate receptor 5. Neuroscience 2015; 306:138-50. [DOI: 10.1016/j.neuroscience.2015.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/28/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
|
20
|
Zhang Z, Ma W, Wang L, Gong H, Tian Y, Zhang J, Liu J, Lu H, Chen X, Liu Y. Activation of Type 4 Metabotropic Glutamate Receptor Attenuates Oxidative Stress-Induced Death of Neural Stem Cells with Inhibition of JNK and p38 MAPK Signaling. Stem Cells Dev 2015; 24:2709-22. [PMID: 26176363 DOI: 10.1089/scd.2015.0067] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Promoting both endogenous and exogenous neural stem cells' (NSCs) survival in the hostile host environments is essential to cell replacement therapy for central nervous system (CNS) disorders. Type 4 metabotropic glutamate receptor (mGluR4), one of the members of mGluRs, has been shown to protect neurons from acute and chronic excitotoxic insults in various brain damages. The present study investigated the preventive effects of mGluR4 on NSC injury induced by oxidative stress. Under challenge with H2O2, loss of cell viability was observed in cultured rat NSCs, and treatment with selective mGluR4 agonist VU0155041 conferred protective effects against the loss of cellular viability in a concentration-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Pretreatment of VU0155041 (30 μM) also inhibited the excessive NSC death induced by H2O2, and group III mGluRs antagonist (RS)-a-methylserine-O-phosphate (MSOP) or gene-targeted knockdown abolished the protective action of mGluR4, indicated by propidium iodide-Hoechst and terminal deoxynucleotidyl transferase-mediated UTP nick end labeling (TUNEL) staining. Western blot assay demonstrated that mGluR4 activation reversed the decreased procaspase-8/9/3and the destructed Bcl-2/Bax expressing balance, and likewise, MSOP and mGluR4 knockdown abrogated the action of mGluR4 activity. Furthermore, inhibition of JNK and p38 mitogen-activated protein kinases (MAPKs) were observed after mGluR4 activation, and as paralleling control, JNK-specific inhibitor SP600125 and p38-specific inhibitor SB203580 significantly rescued the H2O2-mediated NSC apoptosis and cleavage of procaspase-3. We suggest that activation of mGluR4 prevents oxidative stress-induced NSC death and apoptotic-associated protein activities with involvement of inhibiting the JNK and p38 pathways in cell culture. Our findings may help to develop strategies for enhancing the resided and transplanted NSC survival after oxidative stress insult of CNS.
Collapse
Affiliation(s)
- Zhichao Zhang
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Wen Ma
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Li Wang
- 2 Department of Obstetrics and Gynecology, The Affiliated Hospital of Xi'an Medical College , Xi'an, Shaanxi, China
| | - Hanshi Gong
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Yumei Tian
- 3 Xi'an Mental Health Center , Xi'an, Shaanxi, China
| | - Jianshui Zhang
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Jianxin Liu
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Haixia Lu
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Xinlin Chen
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Yong Liu
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| |
Collapse
|
21
|
Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice. Proc Natl Acad Sci U S A 2015. [PMID: 26195764 DOI: 10.1073/pnas.1510291112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell-cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors.
Collapse
|
22
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
23
|
Erichsen JL, Blaabjerg M, Bogetofte H, Serrano AM, Meyer M. Group I Metabotropic Glutamate Receptors: A Potential Target for Regulation of Proliferation and Differentiation of an Immortalized Human Neural Stem Cell Line. Basic Clin Pharmacol Toxicol 2014; 116:329-36. [DOI: 10.1111/bcpt.12324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/03/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Julie Ladeby Erichsen
- Department of Neurobiology Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - Morten Blaabjerg
- Department of Neurology; Odense University Hospital; Odense Denmark
| | - Helle Bogetofte
- Department of Neurobiology Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - Alberto Martinez Serrano
- Department of Molecular Biology and Center of Molecular Biology Severo Ochoa; University Autonoma Madrid-C.S.I.C. Campus Cantoblanco; Madrid Spain
| | - Morten Meyer
- Department of Neurobiology Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| |
Collapse
|
24
|
Jansson LC, Åkerman KE. The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells. J Neural Transm (Vienna) 2014; 121:819-36. [DOI: 10.1007/s00702-014-1174-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/04/2014] [Indexed: 12/19/2022]
|
25
|
Forostyak O, Romanyuk N, Verkhratsky A, Sykova E, Dayanithi G. Plasticity of calcium signaling cascades in human embryonic stem cell-derived neural precursors. Stem Cells Dev 2013; 22:1506-21. [PMID: 23294113 PMCID: PMC3653370 DOI: 10.1089/scd.2012.0624] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/07/2013] [Indexed: 01/15/2023] Open
Abstract
Human embryonic stem cell-derived neural precursors (hESC NPs) are considered to be a promising tool for cell-based therapy in central nervous system injuries and neurodegenerative diseases. The Ca(2+) ion is an important intracellular messenger essential for the regulation of various cellular functions. We investigated the role and physiology of Ca(2+) signaling to characterize the functional properties of CCTL14 hESC NPs during long-term maintenance in culture (in vitro). We analyzed changes in cytoplasmic Ca(2+) concentration ([Ca(2+)]i) evoked by high K(+), adenosine-5'-triphosphate (ATP), glutamate, γ-aminobutyric acid (GABA), and caffeine in correlation with the expression of various neuronal markers in different passages (P6 through P10) during the course of hESC differentiation. We found that only differentiated NPs from P7 exhibited significant and specific [Ca(2+)]i responses to various stimuli. About 31% of neuronal-like P7 NPs exhibited spontaneous [Ca(2+)]i oscillations. Pharmacological and immunocytochemical assays revealed that P7 NPs express L- and P/Q-type Ca(2+) channels, P2X2, P2X3, P2X7, and P2Y purinoreceptors, glutamate receptors, and ryanodine (RyR1 and RyR3) receptors. The ATP- and glutamate-induced [Ca(2+)]i responses were concentration-dependent. Higher glutamate concentrations (over 100 μM) caused cell death. Responses to ATP were observed in the presence or in the absence of extracellular Ca(2+). These results emphasize the notion that with time in culture, these cells attain a transient period of operative Ca(2+) signaling that is predictive of their ability to act as stem elements.
Collapse
Affiliation(s)
- Oksana Forostyak
- Department of Molecular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Nataliya Romanyuk
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Alexei Verkhratsky
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience, Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Govindan Dayanithi
- Department of Molecular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institut National de la Santé et de la Recherche Médicale, Unité de recherche U710, Université Montpellier 2, Montpellier; and Ecole Pratique des Hautes Etudes, Paris, France
| |
Collapse
|
26
|
Abstract
Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G protein-coupled receptors in the regulation of stem cells and their potential in future clinical applications.
Collapse
Affiliation(s)
- VAN A. DOZE
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA (V.A.D.), and Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA (D.M.P.)
| | - DIANNE M. PEREZ
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA (V.A.D.), and Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA (D.M.P.)
| |
Collapse
|
27
|
Matosin N, Newell KA. Metabotropic glutamate receptor 5 in the pathology and treatment of schizophrenia. Neurosci Biobehav Rev 2012; 37:256-68. [PMID: 23253944 DOI: 10.1016/j.neubiorev.2012.12.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/27/2012] [Accepted: 12/09/2012] [Indexed: 02/07/2023]
Abstract
Metabotropic glutamate receptor 5 (mGluR5) potentiates the NMDA receptor (NMDAR) in brain regions implicated in schizophrenia, making it a viable therapeutic target for the treatment of this disorder. mGluR5 positive allosteric modulators may represent a valuable novel strategy for schizophrenia treatment, given the favourable profile of effects in preclinical paradigms. However it remains unclear whether mGluR5 also plays a causal or epiphenomenal role in NMDAR dysfunction in schizophrenia. Animal and cellular data suggest involvement of mGluR5, whilst post-mortem human studies remain inconclusive. This review will explore the molecular, animal and human data to support and refute the involvement of mGluR5 in the pathology of schizophrenia. Furthermore, this review will discuss the potential of mGluR5 modulators in the therapy of schizophrenia as well as aspects of mGluR5 that require further characterisation.
Collapse
Affiliation(s)
- Natalie Matosin
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, School of Health Sciences, University of Wollongong, NSW 2522, Australia
| | | |
Collapse
|
28
|
Metabotropic glutamate receptor 1 (Grm1) is an oncogene in epithelial cells. Oncogene 2012; 32:4366-76. [PMID: 23085756 PMCID: PMC3910169 DOI: 10.1038/onc.2012.471] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/08/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022]
Abstract
Non-neuronal expression of components of the glutamatergic system has been increasingly observed, and our laboratory previously had demonstrated the etiological role of ectopically expressed metabotropic glutamate receptor 1 (Grm1/mGluR1) in mouse models of melanoma. We hypothesize that inappropriate glutamatergic signaling in other cell types can dysregulate growth leading to transformation and tumorigenesis. As most cancers are carcinomas, we selected an immortalized primary baby mouse kidney (iBMK) cell model to assess whether Grm1 can transform epithelial cells. These iBMK cells, engineered to be immortal yet non-tumorigenic and retaining normal epithelial characteristics, were used as recipients for exogenous Grm1 cDNA. Several stable Grm1 expressing clones were isolated and the Grm1-receptors were shown to be functional, as evidenced by the accumulation of second messengers in response to Grm1 agonist. Additionally activated by agonist were MAPK and AKT signaling cascades, major intracellular pathways shown by many investigators to be critical in melanomagenesis and other neoplasms. These Grm1-iBMK cells exhibited enhanced cell proliferation in in vitro MTT assays and significant tumorigenicity in in vivo allografts. Persistent Grm1 expression was required for the maintenance of the in vivo tumorigenic phenotype as demonstrated by an inducible Grm1-silencing RNA. These are the first results that indicate Grm1 can be an oncogene in epithelial cells. Additionally, relevance to human disease in the corresponding tumor type of renal cell carcinoma (RCC) may be suggested by observed expression of GRM1/mGluR1 in a number of RCC tumor biopsy samples and cell lines, and the effects of GRM1 modulation on tumorigenicity therein. Moreover RCC cell lines exhibited elevated levels of extracellular glutamate, and some lines responded to drugs which modulate the glutamatergic system. These findings imply a possible role for glutamate signaling apparatus in RCC cell growth, and that the glutamatergic system may be a therapeutic target in renal cell carcinoma.
Collapse
|
29
|
Abstract
The importance of adult neurogenesis has only recently been accepted, resulting in a completely new field of investigation within stem cell biology. The regulation and functional significance of adult neurogenesis is currently an area of highly active research. G-protein-coupled receptors (GPCRs) have emerged as potential modulators of adult neurogenesis. GPCRs represent a class of proteins with significant clinical importance, because approximately 30% of all modern therapeutic treatments target these receptors. GPCRs bind to a large class of neurotransmitters and neuromodulators such as norepinephrine, dopamine, and serotonin. Besides their typical role in cellular communication, GPCRs are expressed on adult neural stem cells and their progenitors that relay specific signals to regulate the neurogenic process. This review summarizes the field of adult neurogenesis and its methods and specifies the roles of various GPCRs and their signal transduction pathways that are involved in the regulation of adult neural stem cells and their progenitors. Current evidence supporting adult neurogenesis as a model for self-repair in neuropathologic conditions, adult neural stem cell therapeutic strategies, and potential avenues for GPCR-based therapeutics are also discussed.
Collapse
Affiliation(s)
- Van A Doze
- Department of Molecular Cardiology, NB50, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | |
Collapse
|
30
|
Transient mGlu5R inhibition enhances the survival of granule cell precursors in the neonatal cerebellum. Neuroscience 2012; 219:271-9. [PMID: 22677205 DOI: 10.1016/j.neuroscience.2012.05.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/28/2012] [Indexed: 12/31/2022]
Abstract
The generation of the most abundant neurons of the cerebellum, the granule cells, relies on a balance between clonal expansion and apoptosis during the first 10 days after birth in the external germinal layer (EGL). The amino acid glutamate controls such critical phases of cell development in other systems through specific receptors such as metabotropic glutamate receptor 5 (mGlu(5)R). However, the function of mGlu(5)Rs on the proliferation and survival of granule cell precursors (GCPs) remains elusive. We found mGlu(5)R mRNA transcripts in EGL using RT-PCR and observed mGlu(5)R-mediated Ca(2+) responses in GCPs in acute slices as early as postnatal day (P) 2-3. Using in vivo injections of the selective non-competitive mGlu(5)R antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) in P7-P9 mice, we found a 20% increase in the number of proliferative GCPs labeled at P7 with the S-phase marker bromodeoxyuridine (BrdU), but no increase in cell proliferation examined 2h following a BrdU injection. Furthermore, similar treatments led to a significant 70% decrease in the number of apoptotic GCPs in the EGL as determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. In contrast, in vivo treatment with the mGlu(5)R agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) resulted in a ∼60% increase in the number of TUNEL-labeled GCPs compared to control. These findings identify a unique role for glutamate acting at mGlu(5)Rs as a functional switch regulating GCP survival in the EGL, thus controlling the total number of cerebellar granule cells produced.
Collapse
|
31
|
Neuron-astroglial interactions in cell-fate commitment and maturation in the central nervous system. Neurochem Res 2012; 37:2402-18. [PMID: 22614925 DOI: 10.1007/s11064-012-0798-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/18/2012] [Accepted: 05/07/2012] [Indexed: 01/24/2023]
Abstract
Neuron-astroglia interactions play a key role in several events of brain development, such as neuronal generation, migration, survival, and differentiation; axonal growth; and synapse formation and function. While there is compelling evidence of the effects of astrocyte factors on neurons, their effects on astrocytes have not been fully determined. In this review, we will focus on the role of neurons in astrocyte generation and maturation. Further, we highlight the great heterogeneity and diversity of astroglial and neural progenitors such as radial glia cells, and discuss the importance of the variety of cellular interactions in controlling the structural and functional organization of the brain. Finally, we present recent data on a new role of astrocytes in neuronal maturation, as mediators of the action of biolipids in the cerebral cortex. We will argue that the functional architecture of the brain depends on an intimate neuron-glia partnership, by briefly discussing the emerging view of how neuron-astrocyte dysfunctions might be associated with neurodegenerative diseases and neurological disorders.
Collapse
|
32
|
Nochi R, Kato T, Kaneko J, Itou Y, Kuribayashi H, Fukuda S, Terazono Y, Matani A, Kanatani S, Nakajima K, Hisatsune T. Involvement of metabotropic glutamate receptor 5 signaling in activity-related proliferation of adult hippocampal neural stem cells. Eur J Neurosci 2012; 36:2273-83. [PMID: 22591399 DOI: 10.1111/j.1460-9568.2012.08128.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adult hippocampal neural stem cells can be activated by hippocampal neural activities. When focal cerebral ischemia, known as middle cerebral artery occlusion (MCAO), occurs, neural stem cells are activated to promote their proliferation. However, the mechanism by which these cells are activated is still unclear. Here, we indicate the involvement of metabotropic glutamate receptor 5 (mGluR5) signaling in neural stem cells in their activity-related proliferation after MCAO. We found mGluR5 molecules on neural stem cells by using calcium imaging. We detected the activation of neural stem cells by adding the mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine. On a hippocampal slice, the activation of neural stem cells to promote their proliferation was initiated by theta-burst electrical stimulation at the perforant pathway, and this activation was significantly blocked by an mGluR5 antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP). In addition to this, the injection of the blood-brain barrier-permeable mGluR5 agonist 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide into live mice promoted the proliferation of neural stem cells. Moreover, in vivo theta-burst electrical stimulation induced proliferation of neural stem cells. A chronic field recording study showed that the activity of the hippocampal formation was elevated after MCAO. Finally, we observed that the mGluR5 antagonist MPEP significantly blocked the stimulated proliferation of neural stem cells induced by MCAO, by blocking mGluR5 signaling. Our results suggest that glutamates released by the elevated neural activities after MCAO may trigger mGluR5 signaling in neural stem cells to promote their proliferation.
Collapse
Affiliation(s)
- Rokuya Nochi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Bioscience Bldg 402, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Molecular Alterations Associated with the NMDA Preconditioning-Induced Neuroprotective Mechanism Against Glutamate Cytotoxicity. J Mol Neurosci 2011; 47:519-32. [DOI: 10.1007/s12031-011-9668-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022]
|
34
|
Gilley JA, Kernie SG. Excitatory amino acid transporter 2 and excitatory amino acid transporter 1 negatively regulate calcium-dependent proliferation of hippocampal neural progenitor cells and are persistently upregulated after injury. Eur J Neurosci 2011; 34:1712-23. [PMID: 22092549 DOI: 10.1111/j.1460-9568.2011.07888.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Using a transgenic mouse (Mus musculus) in which nestin-expressing progenitors are labeled with enhanced green fluorescent protein, we previously characterized the expression of excitatory amino acid transporter 2 (GltI) and excitatory amino acid transporter 1 (Glast) on early neural progenitors in vivo. To address their functional role in this cell population, we manipulated their expression in P7 neurospheres isolated from the dentate gyrus. We observed that knockdown of GltI or Glast was associated with decreased bromodeoxyuridine incorporation and neurosphere formation. Moreover, we determined that both glutamate transporters regulated progenitor proliferation in a calcium-dependent and metabotropic glutamate receptor-dependent manner. To address the relevance of this in vivo, we utilized models of acquired brain injury, which are known to induce hippocampal neurogenesis. We observed that GltI and Glast were specifically upregulated in progenitors following brain injury, and that this increased expression was maintained for many weeks. Additionally, we found that recurrently injured animals with increased expression of glutamate transporters within the progenitor population were resistant to subsequent injury-induced proliferation. These findings demonstrate that GltI and Glast negatively regulate calcium-dependent proliferation in vitro and that their upregulation after injury is associated with decreased proliferation after brain trauma.
Collapse
Affiliation(s)
- Jennifer A Gilley
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
35
|
Abstract
G-protein coupled receptors (GPCR) represent a class of therapeutic targets that have been widely exploited for drug designs and development. Metabotropic glutamate receptors (mGluRs) belong to Class C GPCRs and are predominantly involved in maintaining cellular homeostasis in the central nervous system (CNS). The surprising accumulating evidence suggesting other functional roles of mGluRs in human malignancies in addition to synaptic transmission has presented intriguing possibilities to make mGluRs putative novel targets for human cancers. Since our group first described the aberrant expression of mGluR1 as the driving force in melanomagenesis in transgenic mouse models, other subtypes of mGluRs have been implicated in the pathogenesis of various cancer types such as malignant gliomas and medulloblastomas. As such, increased efforts have been generated to elucidate the mechanisms by which mGluRs confer oncogenic potentials. Current knowledge on the participation of various mGluRs in several human cancers suggests that mGluRs are "druggable" members of the GPCR superfamily and their oncogenic implications in cancer, so further understanding on anti-mGluR strategies will be beneficial.
Collapse
Affiliation(s)
- Jessica Teh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Susan Lehman Cullman Laboratory for Cancer Research, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854-8020
| | | |
Collapse
|
36
|
Chronic agomelatine treatment corrects behavioral, cellular, and biochemical abnormalities induced by prenatal stress in rats. Psychopharmacology (Berl) 2011; 217:301-13. [PMID: 21503609 DOI: 10.1007/s00213-011-2280-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/23/2011] [Indexed: 12/16/2022]
Abstract
RATIONALE AND OBJECTIVES The rat model of prenatal restraint stress (PRS) replicates factors that are implicated in the etiology of anxious/depressive disorders. We used this model to test the therapeutic efficacy of agomelatine, a novel antidepressant that behaves as a mixed MT1/MT2 melatonin receptor agonist/5-HT(2c) serotonin receptor antagonist. RESULTS Adult PRS rats showed behavioral, cellular, and biochemical abnormalities that were consistent with an anxious/depressive phenotype. These included an increased immobility in the forced swim test, an anxiety-like behavior in the elevated plus maze, reduced hippocampal levels of phosphorylated cAMP-responsive element binding protein (p-CREB), reduced hippocampal levels of mGlu2/3 and mGlu5 metabotropic glutamate receptors, and reduced neurogenesis in the ventral hippocampus, the specific portion of the hippocampus that encodes memories related to stress and emotions. All of these changes were reversed by a 3- or 6-week treatment with agomelatine (40-50 mg/kg, i.p., once a day). Remarkably, agomelatine had no effect in age-matched control rats, thereby behaving as a "disease-dependent" drug. CONCLUSIONS These data indicate that agomelatine did not act on individual symptoms but corrected all aspects of the pathological epigenetic programming triggered by PRS. Our findings strongly support the antidepressant activity of agomelatine and suggest that the drug impacts mechanisms that lie at the core of anxious/depressive disorders.
Collapse
|
37
|
Expression of the metabotropic glutamate receptor 5 (mGluR5) induces melanoma in transgenic mice. Proc Natl Acad Sci U S A 2011; 108:15219-24. [PMID: 21896768 DOI: 10.1073/pnas.1107304108] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian CNS and mediates fast synaptic transmission upon activation of glutamate-gated ion channels. In addition, glutamate modulates a variety of other synaptic responses and intracellular signaling by activating metabotropic glutamate receptors (mGluRs), which are G protein-coupled receptors. The mGluRs are also expressed in nonneuronal tissues and are implicated in a variety of normal biological functions as well as diseases. To study mGluR-activated calcium signaling in neurons, we generated mGluR5 transgenic animals using a Thy1 promoter to drive expression in the forebrain, and one founder unexpectedly developed melanoma. To directly investigate the role of mGluR5 in melanoma formation, we generated mGluR5 transgenic lines under a melanocyte-specific promoter, tyrosinase-related protein 1. A majority of the founders showed a severe phenotype with early onset. Hyperpigmentation of the pinnae and tail could be detected as early as 3-5 d after birth for most of the mGluR5 transgene-positive mice. There was 100% penetrance in the progeny from the tyrosinase-related protein 1-mGluR5 lines generated from founders that developed melanoma. Expression of mGluR5 was detected in melanoma samples by RT-PCR, immunoblotting, and immunohistochemistry. We evaluated the expression of several cancer-related proteins in tumor samples and observed a dramatic increase in the phosphorylation of ERK, implicating ERK as a downstream effector of mGluR5 signaling in tumors. Our findings show that mGluR5-mediated glutamatergic signaling can trigger melanoma in vivo. The aggressive growth and severe phenotype make these mouse lines unique and a potentially powerful tool for therapeutic studies.
Collapse
|
38
|
Selective activation of metabotropic glutamate receptor 7 induces inhibition of cellular proliferation and promotes astrocyte differentiation of ventral mesencephalon human neural stem/progenitor cells. Neurochem Int 2011; 59:421-31. [PMID: 21624409 DOI: 10.1016/j.neuint.2011.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 04/04/2011] [Accepted: 04/11/2011] [Indexed: 11/22/2022]
Abstract
Expression of group III metabotropic glutamate receptors (mGluR) was established by RT-PCR and immunocytochemistry on a cultured clonal human neural stem/progenitor cell (hNSPC) line derived from fetal ventral mesencephalon (VM). Selective activation of these receptors by the group III mGluR agonist L-(+)-2-amino-4-phosphonobutyric acid (L-AP4) prevented increases in cAMP levels following forskolin stimulation, suggesting these receptors are coupled to their canonical G-protein coupled signal transduction pathway. Tonic exposure of undifferentiated cultures to L-AP4 resulted in a decrease in cellular metabolism and proliferation in the absence of toxicity, as measured by MTT and LDH assays, in a dose-dependent manner. This was confirmed by a reduction in BrdU incorporation into nuclear DNA, suggestive of an anti-proliferative effect of L-AP4. This effect was rescued by co-addition of the broad-spectrum group III mGluR competitive antagonist (RS)-a-cyclopropyl-4-phosphonophenylglycine (CPPG), demonstrating a receptor-mediated mechanism, but not mimicked by application of the cell permeable cAMP analogue dibutyrl cAMP (db-cAMP). The potency of these effects of L-AP4 indicates that this is an mGlu7 subtype-mediated effect. Tonic exposure of undifferentiated cultures to the mGlu7 selective allosteric agonist N,N'-bis(diphenylmethyl)-1,2-ethanediamine dihydrochloride (AMN082), but not the mGlu4 selective allosteric agonist (±)-cis-2-(3,5-dicholorphenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041), or the mGlu8 selective agonist (S)-3,4-dicarboxyphenylglycine ((S)-3,4-DCPG) resulted in an identical anti-proliferative effect to L-AP4, confirming the involvement of the mGlu7 subtype. In differentiating cultures, tonic exposure to L-AP4 or AMN082 resulted in a significant shift towards an astrocyte cell fate. The mGlu7 receptor therefore provides a new opportunity to influence the proliferation and differentiation of ventral mesencephalon-derived hNSPC.
Collapse
|
39
|
Callihan P, Mumaw J, Machacek DW, Stice SL, Hooks SB. Regulation of stem cell pluripotency and differentiation by G protein coupled receptors. Pharmacol Ther 2010; 129:290-306. [PMID: 21073897 DOI: 10.1016/j.pharmthera.2010.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 01/25/2023]
Abstract
Stem cell-based therapeutics have the potential to effectively treat many terminal and debilitating human diseases, but the mechanisms by which their growth and differentiation are regulated are incompletely defined. Recent data from multiple systems suggest major roles for G protein coupled receptor (GPCR) pathways in regulating stem cell function in vivo and in vitro. The goal of this review is to illustrate common ground between the growing field of stem cell therapeutics and the long-established field of G protein coupled receptor signaling. Herein, we briefly introduce basic stem cell biology and discuss how several conserved pathways regulate pluripotency and differentiation in mouse and human stem cells. We further discuss general mechanisms by which GPCR signaling may impact these pluripotency and differentiation pathways, and summarize specific examples of receptors from each of the major GPCR subfamilies that have been shown to regulate stem cell function. Finally, we discuss possible therapeutic implications of GPCR regulation of stem cell function.
Collapse
Affiliation(s)
- Phillip Callihan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | | | | | | | | |
Collapse
|
40
|
Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2010; 60:1017-41. [PMID: 21036182 DOI: 10.1016/j.neuropharm.2010.10.022] [Citation(s) in RCA: 487] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/15/2010] [Accepted: 10/21/2010] [Indexed: 12/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson's disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Haukvik UK, Saetre P, McNeil T, Bjerkan PS, Andreassen OA, Werge T, Jönsson EG, Agartz I. An exploratory model for G x E interaction on hippocampal volume in schizophrenia; obstetric complications and hypoxia-related genes. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1259-65. [PMID: 20638435 DOI: 10.1016/j.pnpbp.2010.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/22/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Smaller hippocampal volume has repeatedly been reported in schizophrenia patients. Obstetric complications (OCs) and single nucleotide polymorphism (SNP) variation in schizophrenia susceptibility genes have independently been related to hippocampal volume. We investigated putative independent and interaction effects of severe hypoxia-related OCs and variation in four hypoxia-regulated schizophrenia susceptibility genes (BDNF, DTNBP1, GRM3 and NRG1) on hippocampal volume in schizophrenia patients and healthy controls. METHODS Clinical assessment, structural MRI scans, and blood samples for genotyping of 32 SNPs were obtained from 54 schizophrenia patients and 53 control subjects. Information on obstetric complications was collected from original birth records. RESULTS Severe OCs were related to hippocampal volume in both patients with schizophrenia and healthy control subjects. Of the 32 SNPs studied, effects of severe OCs on hippocampal volume were associated with allele variation in GRM3 rs13242038, but the interaction effect was not specific for schizophrenia. SNP variation in any of the four investigated genes alone did not significantly affect hippocampal volume. CONCLUSIONS The findings suggest a gene-environment (G x E) interaction between GRM3 gene variants and severe obstetric complications on hippocampus volume, independent of a diagnosis of schizophrenia. Due to the modest sample size, the results must be considered preliminary and require replication in independent samples.
Collapse
Affiliation(s)
- Unn Kristin Haukvik
- Department of Clinical Medicine, section Vinderen, University of Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Doumazane E, Scholler P, Zwier JM, Trinquet E, Rondard P, Pin JP. A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 2010; 25:66-77. [PMID: 20826542 DOI: 10.1096/fj.10-163147] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G-protein-coupled receptors (GPCRs) can form heteromeric complexes. Herein, we describe a new approach to test the heteromerization of 2 receptors, or 2 receptor subunits, and to study the stoichiometry of the resulting complexes. As a proof-of-concept study, we investigated whether metabotropic glutamate receptors (mGluRs), in addition to being well-known homodimers, can form heteromers. To that aim, we combine the benefits of time-resolved fluorescence resonance energy transfer (trFRET) with the specific, cell-surface labeling of SNAP- and CLIP-tagged rat mGluR subunits, expressed in a mammalian cell line. First, we show that mGlu2 and mGlu4 subunits (but not mGlu2 and mGlu1) can heteromerize. Moreover, our trFRET data are consistent with mGluR subunits forming strict homodimeric receptors on single expression, and a combination of strict heterodimeric and strict homodimeric receptors on coexpression. Second, a comprehensive analysis reveals that from the 21 possible pairs of 2 mGluR subunits out of 7 subtypes (mGlu1 to 8, but not 6), only 11 are able to form heterodimers. These findings were further validated by biochemical and functional complementation studies. In addition to describing a new method to analyze cell-surface receptor complexes, our data reveal a new level of complexity within the mGluR family.
Collapse
Affiliation(s)
- Etienne Doumazane
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | | | | | | | | |
Collapse
|
43
|
Fernández ME, Raineteau O. Excitement keeps your brain cells alive. Front Neurosci 2010; 4:46. [PMID: 20631841 PMCID: PMC2903188 DOI: 10.3389/fnins.2010.00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 06/08/2010] [Indexed: 11/13/2022] Open
Affiliation(s)
- María E Fernández
- Brain Research Institute, University of Zurich/ETHZ Zurich, Switzerland
| | | |
Collapse
|
44
|
AMN082 promotes the proliferation and differentiation of neural progenitor cells with influence on phosphorylation of MAPK signaling pathways. Neurochem Int 2010; 57:8-15. [PMID: 20399820 DOI: 10.1016/j.neuint.2010.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 03/18/2010] [Accepted: 04/01/2010] [Indexed: 01/01/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are expressed in neural progenitor cells (NPCs) and may play important roles in the neurogenesis during embryonic development and adult brain repair following injuries. In the present study, we investigated the expression of metabotropic glutamate receptor 7 (mGluR7) and the possible roles of this receptor in the proliferation and differentiation of NPCs isolated from embryonic Sprague-Dawley (SD) rats. The results showed that under the normal culture and the hypoxic condition, both mRNA and protein of mGluR 7 are expressed in NPCs. Administration of AMN082, a selective agonist ofmGluR7, promoted the proliferation and differentiation of NPCs. We also demonstrated that activation of JNK and ERK signaling pathways are involved in the differentiation of NPCs into neurons following AMN082 treatment. AMN082 stimulated p-ERK and p-JNK2 expression in both normal and hypoxic conditions at different time points. But p-p38 decreased in normoxia and increased in hypoxia condition at 6h following treated with AMN082 activation. In conclusion, mGluR7 possesses the potential in promoting rat NPCs proliferation and differentiation in vitro with changes in phosphorylation of mitogen-activated protein kinases (MAPK) signaling pathways, suggesting that mGluR7 may exert an important role in brain development and repair of the central nervous system after injury.
Collapse
|
45
|
Ciceroni C, Mosillo P, Mastrantoni E, Sale P, Ricci-Vitiani L, Biagioni F, Stocchi F, Nicoletti F, Melchiorri D. mGLU3 metabotropic glutamate receptors modulate the differentiation of SVZ-derived neural stem cells towards the astrocytic lineage. Glia 2010; 58:813-22. [DOI: 10.1002/glia.20965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Dong Z, Dreher W, Leibfritz D, Peterson BS. Challenges of using MR spectroscopy to detect neural progenitor cells in vivo. AJNR Am J Neuroradiol 2009; 30:1096-101. [PMID: 19357383 DOI: 10.3174/ajnr.a1557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A recent report of detection of neural progenitor cells (NPCs) in living human brain by using in vivo proton MR spectroscopy ((1)H-MR spectroscopy) has sparked great excitement in the field of biomedicine because of its potential influence and utility in clinical neuroscience research. On the other hand, the method used and the findings described in the report also caused heated debate and controversy. In this article, we will briefly detail the reasons for the debate and controversy from the point of view of the in vivo (1)H-MR spectroscopy methodology and will propose some technical strategies in both data acquisition and data processing to improve the feasibility of detecting NPCs in future studies by using in vivo (1)H-MR spectroscopy.
Collapse
Affiliation(s)
- Z Dong
- Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
47
|
Islam O, Gong X, Rose-John S, Heese K. Interleukin-6 and neural stem cells: more than gliogenesis. Mol Biol Cell 2008; 20:188-99. [PMID: 18971377 DOI: 10.1091/mbc.e08-05-0463] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Besides its wide range of action as a proinflammatory cytokine in the immune system, interleukin-6 (IL-6) has also attracted much attention due to its influence on the nervous system. In the present study we show that the designer fusion protein H-IL-6, consisting of IL-6 and its specific receptor IL-6R-alpha, but not IL-6 alone, mediates both neuro- as well as gliogenesis. Using immunocytochemistry, Western blot, and patch-clamp recording, we demonstrate that H-IL-6 induces the differentiation of neural stem cells (NSCs) specifically into glutamate-responsive neurons and two morphological distinctive astroglia cell types. H-IL-6-activated neurogenesis seems to be induced by the MAPK/CREB (mitogen-activated protein kinase/cAMP response element-binding protein) cascade, whereas gliogenesis is mediated via the STAT-3 (signal transducers and activators of transcription protein-3) signaling pathway. Our finding that IL-6 mediates both processes depending on its specific soluble receptor sIL-6R-alpha has implications for the potential treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Omedul Islam
- Department of Molecular and Cell Biology, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | | | | | | |
Collapse
|
48
|
Sun MK. The quest for treatment of cognitive impairment: AMPA and mGlu5 receptor modulators. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.9.999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Ciceroni C, Arcella A, Mosillo P, Battaglia G, Mastrantoni E, Oliva MA, Carpinelli G, Santoro F, Sale P, Ricci-Vitiani L, De Maria R, Pallini R, Giangaspero F, Nicoletti F, Melchiorri D. Type-3 metabotropic glutamate receptors negatively modulate bone morphogenetic protein receptor signaling and support the tumourigenic potential of glioma-initiating cells. Neuropharmacology 2008; 55:568-76. [PMID: 18621067 DOI: 10.1016/j.neuropharm.2008.06.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/16/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
Targeted-therapies enhancing differentiation of glioma-initiating cells (GICs) are potential innovative approaches to the treatment of malignant gliomas. These cells support tumour growth and recurrence and are resistant to radiotherapy and chemotherapy. We have found that GICs express mGlu3 metabotropic glutamate receptors. Activation of these receptors sustained the undifferentiated state of GICs in culture by negatively modulating the action of bone morphogenetic proteins, which physiologically signal through the phosphorylation of the transcription factors, Smads. The cross-talk between mGlu3 receptors and BMP receptors was mediated by the activation of the mitogen-activated protein kinase pathway. Remarkably, pharmacological blockade of mGlu3 receptors stimulated the differentiation of cultured GICs into astrocytes, an effect that appeared to be long lasting, independent of the growth conditions, and irreversible. In in vivo experiments, a 3-month treatment with the brain-permeant mGlu receptor antagonist, LY341495 limited the growth of infiltrating brain tumours originating from GICs implanted into the brain parenchyma of nude mice. While clusters of tumour cells were consistently found in the brain of control mice, they were virtually absent in a large proportion of mice treated with LY341495. These findings pave the way to a new non-cytotoxic treatment of malignant gliomas based on the use of mGlu3 receptor antagonists.
Collapse
Affiliation(s)
- C Ciceroni
- I.R.C.C.S. San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Essential role for epidermal growth factor receptor in glutamate receptor signaling to NF-kappaB. Mol Cell Biol 2008; 28:5061-70. [PMID: 18541671 DOI: 10.1128/mcb.00578-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Glutamate is a critical neurotransmitter of the central nervous system (CNS) and also an important regulator of cell survival and proliferation. The binding of glutamate to metabotropic glutamate receptors induces signal transduction cascades that lead to gene-specific transcription. The transcription factor NF-kappaB, which regulates cell proliferation and survival, is activated by glutamate; however, the glutamate receptor-induced signaling pathways that lead to this activation are not clearly defined. Here we investigate the glutamate-induced activation of NF-kappaB in glial cells of the CNS, including primary astrocytes. We show that glutamate induces phosphorylation, nuclear accumulation, DNA binding, and transcriptional activation function of glial p65. The glutamate-induced activation of NF-kappaB requires calcium-dependent IkappaB kinase alpha (IKKalpha) and IKKbeta activation and induces p65-IkappaBalpha dissociation in the absence of IkappaBalpha phosphorylation or degradation. Moreover, glutamate-induced IKK preferentially targets the phosphorylation of p65 but not IkappaBalpha. Finally, we show that the ability of glutamate to activate NF-kappaB requires cross-coupled signaling with the epidermal growth factor receptor. Our results provide insight into a glutamate-induced regulatory pathway distinct from that described for cytokine-induced NF-kappaB activation and have important implications with regard to both normal glial cell physiology and pathogenesis.
Collapse
|