1
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Du Y, Qiu R, Chen L, Chen Y, Zhong Z, Li P, Fan F, Cheng Y. Identification of serum exosomal metabolomic and proteomic profiles for remote ischemic preconditioning. J Transl Med 2023; 21:241. [PMID: 37009888 PMCID: PMC10069038 DOI: 10.1186/s12967-023-04070-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/18/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Remote ischemic preconditioning (RIPC) refers to a brief episode of exposure to potential adverse stimulation and prevents injury during subsequent exposure. RIPC has been shown to increase tolerance to ischemic injury and improve cerebral perfusion status. Exosomes have a variety of activities, such as remodeling the extracellular matrix and transmitting signals to other cells. This study aimed to investigate the potential molecular mechanism of RIPC-mediated neuroprotection. METHODS Sixty adult male military personnel participants were divided into the control group (n = 30) and the RIPC group (n = 30). We analyzed the differential metabolites and proteins in the serum exosomes of RIPC participants and control subjects. RESULTS Eighty-seven differentially expressed serum exosomal metabolites were found between the RIPC and control groups, which were enriched in pathways related to tyrosine metabolism, sphingolipid metabolism, serotonergic synapses, and multiple neurodegeneration diseases. In addition, there were 75 differentially expressed exosomal proteins between RIPC participants and controls, which involved the regulation of insulin-like growth factor (IGF) transport, neutrophil degranulation, vesicle-mediated transport, etc. Furthermore, we found differentially expressed theobromine, cyclo gly-pro, hemopexin (HPX), and apolipoprotein A1 (ApoA1), which are associated with neuroprotective benefits in ischemia/reperfusion injury. In addition, five potential metabolite biomarkers, including ethyl salicylate, ethionamide, piperic acid, 2, 6-di-tert-butyl-4-hydroxymethylphenol and zerumbone, that separated RIPC from control individuals were identified. CONCLUSION Our data suggest that serum exosomal metabolites are promising biomarkers for RIPC, and our results provide a rich dataset and framework for future analyses of cerebral ischemia‒reperfusion injury under ischemia/reperfusion conditions.
Collapse
Affiliation(s)
- Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Rui Qiu
- Institute of National Security, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Zhong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, (Third Military Medical University), Chongqing, China
| | - Peng Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, (Third Military Medical University), Chongqing, China
| | - Fangcheng Fan
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China.
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| |
Collapse
|
3
|
Murotomi K, Kagiwada H, Hirano K, Yamamoto S, Numata N, Matsumoto Y, Kaneko H, Namihira M. Cyclo-glycylproline attenuates hydrogen peroxide-induced cellular damage mediated by the MDM2-p53 pathway in human neural stem cells. J Cell Physiol 2023; 238:434-446. [PMID: 36585955 DOI: 10.1002/jcp.30940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Cyclo-glycylproline (cGP), a cyclic dipeptide containing a condensation bond between glycine and proline, is produced by the cyclization of the N-terminal tripeptide of insulin-like growth factor-1. Previous studies have shown that cGP administration exerts a neuroprotective effect and enhances the regenerative ability in rats with ischemic brain injury. The efficacy of cGP is medicated by regulating the bioavailability of insulin-like growth factor-1 (IGF-1), however, the molecular mechanisms underlying the neuroprotective effects of cGP on brain damage remains to be elucidated. In the current study, we investigated the cGP-mediated molecular mechanism in human fetal neural stem cells (hfNSCs) exposed to oxidative stress, which is a key factor affecting the development of several brain diseases, including traumatic brain injury and Parkinson's disease. We found that cGP treatment attenuated oxidative stress-induced cell death in cultured hfNSCs in a dose-dependent manner. Transcriptome analysis revealed that under oxidative stress conditions, p53-mediated signaling was activated, accompanied by upregulation of mouse double minute 2 homolog (MDM2), a p53-specific E3 ubiquitin ligase, in cGP-treated hfNSCs. By using a comprehensive protein phosphorylation array, we found that cGP induced the activation of Akt signaling pathway, which enhanced the expression of MDM2, in hfNSCs exposed to oxidative stress. Moreover, the MDM2 inhibitor nutlin-3 inhibited the protective effect of cGP on oxidative stress-induced cell death and apoptosis. Therefore, cGP attenuates oxidative stress-induced cell death mediated by the interplay between IGF-1 signaling and the MDM2-p53 pathway in human NSCs. We revealed the molecular mechanism underlying cGP-induced neuroprotective properties in a model of brain damage.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Harumi Kagiwada
- Biological Data Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kazumi Hirano
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Shoko Yamamoto
- Technical Center, Jellice Co., Ltd., Miyagi, Tagajo, Japan
| | - Noriaki Numata
- Technical Center, Jellice Co., Ltd., Miyagi, Tagajo, Japan
| | - Yo Matsumoto
- Technical Center, Jellice Co., Ltd., Miyagi, Tagajo, Japan
| | - Hidekazu Kaneko
- Neurorehabilitation Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Masakazu Namihira
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
4
|
Guan J, Li F, Kang D, Anderson T, Pitcher T, Dalrymple-Alford J, Shorten P, Singh-Mallah G. Cyclic Glycine-Proline (cGP) Normalises Insulin-Like Growth Factor-1 (IGF-1) Function: Clinical Significance in the Ageing Brain and in Age-Related Neurological Conditions. Molecules 2023; 28:molecules28031021. [PMID: 36770687 PMCID: PMC9919809 DOI: 10.3390/molecules28031021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) function declines with age and is associated with brain ageing and the progression of age-related neurological conditions. The reversible binding of IGF-1 to IGF binding protein (IGFBP)-3 regulates the amount of bioavailable, functional IGF-1 in circulation. Cyclic glycine-proline (cGP), a metabolite from the binding site of IGF-1, retains its affinity for IGFBP-3 and competes against IGF-1 for IGFBP-3 binding. Thus, cGP and IGFBP-3 collectively regulate the bioavailability of IGF-1. The molar ratio of cGP/IGF-1 represents the amount of bioavailable and functional IGF-1 in circulation. The cGP/IGF-1 molar ratio is low in patients with age-related conditions, including hypertension, stroke, and neurological disorders with cognitive impairment. Stroke patients with a higher cGP/IGF-1 molar ratio have more favourable clinical outcomes. The elderly with more cGP have better memory retention. An increase in the cGP/IGF-1 molar ratio with age is associated with normal cognition, whereas a decrease in this ratio with age is associated with dementia in Parkinson disease. In addition, cGP administration reduces systolic blood pressure, improves memory, and aids in stroke recovery. These clinical and experimental observations demonstrate the role of cGP in regulating IGF-1 function and its potential clinical applications in age-related brain diseases as a plasma biomarker for-and an intervention to improve-IGF-1 function.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Brain Research New Zealand, The Centre for Research Excellent, Dunedin 9016, New Zealand
- The cGP Lab Limited New Zealand, Auckland 1021, New Zealand
- Correspondence: ; Tel.: +64-9-923-6134
| | - Fengxia Li
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510075, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Dali Kang
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Brain Research New Zealand, The Centre for Research Excellent, Dunedin 9016, New Zealand
- Shenyang Medical College, Shenyang 110034, China
| | - Tim Anderson
- New Zealand Brain Research Institute, Christchurch 4710, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
| | - Toni Pitcher
- New Zealand Brain Research Institute, Christchurch 4710, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
| | - John Dalrymple-Alford
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
- Department of Psychology, University of Canterbury, Christchurch 4710, New Zealand
| | - Paul Shorten
- AgResearch Ltd., Ruakura Research Centre, Hamilton 3214, New Zealand
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | - Gagandeep Singh-Mallah
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
5
|
Cyclic Glycine-Proline Improves Memory and Reduces Amyloid Plaque Load in APP/PS1 Transgenic Mouse Model of Alzheimer's Disease. Int J Alzheimers Dis 2023; 2023:1753791. [PMID: 36909366 PMCID: PMC9995210 DOI: 10.1155/2023/1753791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that is pathologically characterized by the presence of amyloid plaques and neurofibrillary tangles. Animal models of AD have been useful in understanding the disease process and in investigating the effects of compounds on pathology and behavior. APP/PS1 mice develop amyloid plaques and show memory impairment. Cyclic glycine-proline (cGP) is a cyclic dipeptide that is likely produced from a tripeptide, glycine-proline-glutamate, which itself is generated after proteolytic cleavage of insulin-like growth factor-1. Here, we show that cGP improves spatial memory and reduces amyloid plaque burden in APP/PS1 mice. The results thus suggest that cGP could potentially provide beneficial effects in AD.
Collapse
|
6
|
Sahrawat P, Kowalczyk P, Koszelewski D, Szymczak M, Kramkowski K, Wypych A, Ostaszewski R. Influence of Open Chain and Cyclic Structure of Peptidomimetics on Antibacterial Activity in E. coli Strains. Molecules 2022; 27:molecules27113633. [PMID: 35684570 PMCID: PMC9182016 DOI: 10.3390/molecules27113633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/25/2022] Open
Abstract
An efficient method for the synthesis of functionalized peptidomimetics via multicomponent Ugi reaction has been developed. The application of trifluoroethanol (TFE) as a reaction medium provided desired products with good yields. Further, using the developed cyclisation reaction, the obtained peptidomimetics were transformed into the cyclic analogues (diketopiperazines, DKPs). The goal of the performed studies was to revised and compare whether the structure of the obtained structurally flexible acyclic peptidomimetics and their rigid cycling analogue DKPs affect antimicrobial activity. We studied the potential of synthesized peptidomimetics, both cyclic and acyclic, as antimicrobial drugs on model E. coli bacteria strains (k12, R2–R4). The biological assays reveal that DKPs hold more potential as antimicrobial drugs compared to open chain Ugi peptidomimetics. We believe that it can be due to the rigid cyclic structure of DKPs which promotes the membrane penetration in the cell of studied pathogens. The obtained data clearly indicate the high antibiotic potential of synthesized diketopiperazine derivatives over tested antibiotics.
Collapse
Affiliation(s)
- Parul Sahrawat
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (P.S.); (D.K.)
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
- Correspondence: (P.K.); (R.O.)
| | - Dominik Koszelewski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (P.S.); (D.K.)
| | - Mateusz Szymczak
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 Str., 15-089 Białystok, Poland;
| | - Aleksandra Wypych
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, ul. Wileńska 4, 87-100 Toruń, Poland;
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (P.S.); (D.K.)
- Correspondence: (P.K.); (R.O.)
| |
Collapse
|
7
|
Kaneko H, Namihira M, Yamamoto S, Numata N, Hyodo K. Oral administration of cyclic glycyl-proline facilitates task learning in a rat stroke model. Behav Brain Res 2022; 417:113561. [PMID: 34509530 DOI: 10.1016/j.bbr.2021.113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Cyclic glycyl-proline (cGP) exerts neuroprotective effects against ischemic stroke and may promote neural plasticity or network remodeling. We sought to determine to what extent oral administration of cGP could facilitate task learning in rats with ischemic lesions. We trained rats to perform a choice reaction time task using their forepaws. One week after changing the food to pellets containing cGP (no cGP: 0 mg/kg; low cGP: 25 mg/kg; and high cGP: 75 mg/kg), we made a focal ischemic lesion on the left or right forepaw area of the sensorimotor cortex. After recovery of task performance, we altered the correct-response side of the task, and then analyzed the number of training days required for the rat to reach a learning criterion (error rate < 15%) and the regulation of adult neurogenesis in the subventricular zones (SVZs), taking lesion size into account. The low-cGP group required fewer training days for task learning than the no-cGP group. Unexpectedly, rats with larger lesions required fewer training days in the no-cGP and low-cGP groups, but more training days in the high-cGP group. The number of Ki67-immunopositive cells (indicating proliferative cells) in ipsilesional SVZ increased more rapidly in the low-cGP and high-cGP groups than in the no-cGP group. However, lesion size had only a small effect on required training days and the number of Ki67-immunopositive cells. We conclude that oral administration of cGP can facilitate task learning in rats with focal ischemic infarction through neural plasticity and network remodeling, even with minimal neuroprotective effects.
Collapse
Affiliation(s)
- Hidekazu Kaneko
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
| | - Masakazu Namihira
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | | | | | - Koji Hyodo
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| |
Collapse
|
8
|
Zainullina LF, Ivanova TV, Gudasheva TA, Vakhitova YV, Seredenin SB. Effect of Neuropeptide Cyclo-L-Prolylglycine on Cell Proliferative Activity. Bull Exp Biol Med 2020; 169:347-350. [PMID: 32737722 DOI: 10.1007/s10517-020-04884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 10/23/2022]
Abstract
Endogenous neuropeptide cyclo-L-prolylglycine possesses mnemotropic and neuroprotective properties, which can result from its positive effect on the level of brain-derived neurotrophic factor and modulation of activity of insulin-like growth factor-1 and AMPA receptors. For detection of possible mitogenic action of cyclo-L-prolylglycine, we analyzed its effect on proliferative activity of HEK293 and SH-SY5Y cells assessed by expression of Ki-67 proliferation marker, cell cycle examination, and incorporation of modified nucleotide analog EdU into DNA. Cyclo-L-prolylglycine did not affect the level of Ki-67 in examined cell lines and distribution of the cells over G1 and G2 phases of the cell cycle, although it insignificantly reduced the percentage of S phase cells, which attested to the absence of intrinsic mitogenic activity of the peptide. At the same time, cyclo-L-prolylglycine reduced the number of the early apoptotic cells, which can be a mechanisms of its protective action.
Collapse
Affiliation(s)
- L F Zainullina
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - T V Ivanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, Ufa, Republic of Bashkortostan, Russia
| | - T A Gudasheva
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - Yu V Vakhitova
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia.
| | - S B Seredenin
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
9
|
Fan D, Pitcher T, Dalrymple‐Alford J, MacAskill M, Anderson T, Guan J. Changes of plasma cGP/IGF-1 molar ratio with age is associated with cognitive status of Parkinson disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12025. [PMID: 32671179 PMCID: PMC7346731 DOI: 10.1002/dad2.12025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/09/2020] [Accepted: 01/23/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Cognitive impairment is a common feature of Parkinson disease (PD), for which age is a major contributing factor. Insulin-like growth factor-1 (IGF-1) declines with age and contributes to age-related cognitive impairment in PD. Cyclic glycine-proline (cGP) is a metabolite of IGF-1 and normalizes bioavailable IGF-1. Plasma cGP/IGF-1 molar ratio that represents bioactive IGF-1 in circulation, may associate with the cognitive status in PD. METHODS We examined the association of plasma cGP/IGF-1 molar ratio with the cognitive scores or age in PD patients with normal cognition (PD-N, n = 74), mild cognitive impairment (PD-MCI, n = 71), or dementia (PD-D, n = 33), and with the cognitive scores in 23 age-matched healthy controls. Plasma concentrations of IGF-1, IGF binding protein-3, and cGP were evaluated using enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography-mass spectrometry (HPLC-MS), respectively. RESULTS The cGP/IGF-1 molar ratio was positively correlated with the age of PD-N group, negatively correlated with the age of PD-D group, and not associated with the age of PD-MCI group. Independent of age, the cGP/IGF-1 molar ratio was positively correlated with the cognitive scores of healthy controls, but not in PD groups. CONCLUSION Old healthy people with a higher cGP/IGF-1 molar ratio showed better preserved cognition, possibly due to improved IGF-1 function. Increased cGP/IGF-1 molar ratio with age may contribute to cognitive retention in the PD-N group. The absence or reversal of such association with age in the PD-MCI and PD-D groups may indicate the conversion of cognitive status in PD, if confirmed through longitudinal investigations within the individuals with advancing cognitive impairment.
Collapse
Affiliation(s)
- Dawei Fan
- Department of Pharmacology and Clinical PharmacologySchool of Medical SciencesFaculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchSchool of Medical SciencesFaculty of Medical and Health ScienceUniversity of AucklandAucklandNew Zealand
- Brain Research New Zealand, A Centre of Research ExcellenceAucklandNew Zealand
| | - Toni Pitcher
- Brain Research New Zealand, A Centre of Research ExcellenceAucklandNew Zealand
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoDunedinNew Zealand
| | - John Dalrymple‐Alford
- Brain Research New Zealand, A Centre of Research ExcellenceAucklandNew Zealand
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of PsychologyUniversity of CanterburyChristchurchNew Zealand
| | - Michael MacAskill
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoDunedinNew Zealand
| | - Tim Anderson
- Brain Research New Zealand, A Centre of Research ExcellenceAucklandNew Zealand
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoDunedinNew Zealand
- Department of NeurologyCanterbury District Health BoardChristchurchNew Zealand
| | - Jian Guan
- Department of Pharmacology and Clinical PharmacologySchool of Medical SciencesFaculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchSchool of Medical SciencesFaculty of Medical and Health ScienceUniversity of AucklandAucklandNew Zealand
- Brain Research New Zealand, A Centre of Research ExcellenceAucklandNew Zealand
| |
Collapse
|
10
|
Li F, Liu K, Gray C, Harris P, Reynolds CM, Vickers MH, Guan J. Cyclic glycine-proline normalizes systolic blood pressure in high-fat diet-induced obese male rats. Nutr Metab Cardiovasc Dis 2020; 30:339-346. [PMID: 31753784 DOI: 10.1016/j.numecd.2019.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Insulin-like growth factor (IGF)-1 deficiency is associated with a range of metabolic disorders. Cyclic glycine-proline (cGP) is a natural nutrient and regulates the amount of active IGF-1 in plasma. Plasma cGP decreases in hypertensive women whereas increases in obese women, suggesting its involvement in cardio-metabolic function. We therefore examined the effects of cGP on metabolic profiles and blood pressure in high-fat diet (HFD)-induced obese male rats. METHODS Male rats were fed either a HFD or a standard chow diet (STD) ad-libitum from 3 to 15 weeks of age. Rats were administered either saline or cGP from 11 to 15 weeks of age. At 14 weeks of age, systolic-blood pressure (SBP) was measured by tail-cuff plethysmography and body composition quantified by DEXA. Blood and retroperitoneal fat tissues were collected. Plasma concentrations of insulin, IGF-1, IGF binding protein (IGFBP)-3 and cGP were evaluated using ELISA and HPLC-MS respectively. RESULTS Compared to STD, HFD feeding increased SBP, total fat mass and fat/lean ratio, retroperitoneal fat weight, fasting plasma insulin and cGP concentrations whereas decreased plasma IGF-1 and IGFBP-3 concentrations. Administration of cGP reduced SBP and retroperitoneal fat weight, but had no effect on body composition and plasma insulin concentrations. CONCLUSION HFD-associated decreases in IGFBP-3 and increases in cGP represent an autocrine response to normalize IGF-1 function through improving the amount of bioavailable IGF-1 in the circulation of obese male rats. The beneficial effects of cGP on SBP and retroperitoneal fat mass may suggest a therapeutic potential for cGP in HFD-associated cardio-metabolic complications.
Collapse
Affiliation(s)
- Fengxia Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Guangming District, Shenzhen, 518107, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510000, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou Higher Education Mega Center, 280 Waihuangdong Road, Guangzhou, 510008, China; The Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand; Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand
| | - Karen Liu
- The Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand; Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand
| | - Clint Gray
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand
| | - Paul Harris
- Department of Medicinal Chemistry, School of Chemistry, Faculty of Science, University of Auckland, 1142, New Zealand
| | - Clare M Reynolds
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand
| | - Mark H Vickers
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand
| | - Jian Guan
- The Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand; Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand; Brain Research New Zealand, A Centre of Research Excellence, New Zealand.
| |
Collapse
|
11
|
Misiura M, Miltyk W. Proline-containing peptides-New insight and implications: A Review. Biofactors 2019; 45:857-866. [PMID: 31430415 DOI: 10.1002/biof.1554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The family of regulatory proline-containing peptides (PCPs), also known as glyprolines, exhibit significant biological activity. The group of glyprolines includes Gly-Pro (GP), Pro-Gly-Pro (PGP), cyclic Gly-Pro (cGP), as well as PGP derivatives, for example, N-acetylated PGP (N-a-PGP) and N-methylated PGP (N-m-PGP). PCPs are engaged in various biological processes including the proinflammatory neutrophil chemoattraction in lung diseases, inflammatory bowel diseases or ischemic stroke. Glyprolines have been also postulated to play an important role as atheroprotective and anticoagulant agents, exhibit neuroprotective effects in Parkinson's disease, as well as regulate insulin-like growth factor (IGF) homeostasis. It was also noticed that PCPs inhibit proliferation and migration of keratinocytes in wound healing, protection of the gastric mucosa and stimulation of its regeneration. The regulatory glyprolines are derived from endogenous and exogenous sources. Most PCPs are derived from collagen or diet protein degradation. Recently, great interest is concentrated on short proline-rich oligopeptides derived from IGF-1 degradation. The mechanism of PCPs biological activity is not fully explained. It involves receptor-mediated mechanisms, for example, N-a-PGP acts as CXCR1/2 receptor ligand, whereas cGP regulates IGF-1 bioavailability by modifying the IGF-1 binding to the IGF-1 binding protein-3. PGP has been observed to interact with collagen-specific receptors. The data suggest a promising role of PGP as a target of various diseases therapy. This review is focused on the effect of PCPs on metabolic processes in different tissues and the molecular mechanism of their action as an approach to pharmacotherapy of PCPs-dependent diseases.
Collapse
Affiliation(s)
- Magdalena Misiura
- Department of Pharmaceutical Analysis and Bioanalysis, Medical University of Bialystok, Białystok, Poland
| | - Wojciech Miltyk
- Department of Pharmaceutical Analysis and Bioanalysis, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
12
|
Chou MY, Chen YJ, Lin LH, Nakao Y, Lim AL, Wang MF, Yong SM. Protective Effects of Hydrolyzed Chicken Extract (Probeptigen®/Cmi-168) on Memory Retention and Brain Oxidative Stress in Senescence-Accelerated Mice. Nutrients 2019; 11:E1870. [PMID: 31408929 PMCID: PMC6722682 DOI: 10.3390/nu11081870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
The senescence-accelerated prone (SAMP8) mouse model shows age-dependent deterioration in learning and memory and increased oxidative stress in the brain. We previously showed that healthy subjects on a six-week supplementation of a chicken meat hydrolysate (ProBeptigen®/CMI-168) demonstrated enhanced and sustained cognitive performance up until two weeks after the termination of supplementation. In this study, we investigate the effect of ProBeptigen on the progression of age-related cognitive decline. Three-month old SAMP8 mice were orally administered different doses of ProBeptigen (150,300 or 600 mg/kg/day) or saline daily for 13 weeks. Following ProBeptigen supplementation, mice showed lower scores of senescence and improved learning and memory in avoidance tasks. ProBeptigen treatment also increased antioxidant enzyme activity and dopamine level while reducing protein and lipid peroxidation and mitochondrial DNA damage in the brain. Microarray analysis of hippocampus revealed several processes that may be involved in the improvement of cognitive ability by ProBeptigen, including heme binding, insulin growth factor (IGF) regulation, carboxylic metabolic process, oxidation-reduction process and endopeptidase inhibition. Genes found to be significantly altered in both ProBeptigen treated male and female mice include Mup1, Mup17, Mup21, Ahsg and Alb. Taken together, these results suggest a potential anti-aging effect of ProBeptigen in alleviating cognitive deficits and promoting the antioxidant defense system.
Collapse
Affiliation(s)
- Ming-Yu Chou
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
- Quanzhou Preschool Education College, Quanzhou 362000, China
| | - Ying-Ju Chen
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Liang-Hung Lin
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Yoshihiro Nakao
- Scientific Research and Applications, BRAND'S Suntory Asia, Singapore 048423, Singapore
| | - Ai Lin Lim
- Scientific Research and Applications, BRAND'S Suntory Asia, Singapore 048423, Singapore
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan.
| | - Shan May Yong
- Scientific Research and Applications, BRAND'S Suntory Asia, Singapore 048423, Singapore.
| |
Collapse
|
13
|
Wang J, Zhang Q, Zhou B, Yang C, Li X, Cheng JP. Bi(III)-Catalyzed Enantioselective Allylation Reactions of Ketimines. iScience 2019; 16:511-523. [PMID: 31229898 PMCID: PMC6593186 DOI: 10.1016/j.isci.2019.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
Chiral homoallylic amines not only are found in pharmaceutically relevant compounds but also serve as versatile building blocks for chemical synthesis. However, catalytic allylation of ketimines with allylboronates, an attractive approach to synthesize chiral homoallylic amine scaffolds remain scarce. Herein, we develop a highly enantioselective allylation of isatin-derived ketimines with boron allylation reagents catalyzed by a Bi(OAc)3-chiral phosphoric acid catalyst system. The reactions are remarkably efficient and mild, most of which were completed in less than an hour at room temperature with only 1/2 mol% (Bi(OAc)3/CPA) catalyst loading. A wide range of chiral 3-allyl 3-aminooxindoles were obtained in excellent yields and enantioselectivities. The synthetic utility was demonstrated by efficient formal synthesis of (+)-AG-041R and (−)-psychotriasine. Preliminary mechanism was studied by control experiments and theoretical calculations. Asymmetric allylation of ketimines Bi(OAc)3-chiral phosphoric acid catalyst Downstream synthetic transformations
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qingxia Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Biying Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chen Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Zhang J, Wu J, Liu F, Tong L, Chen Z, Chen J, He H, Xu R, Ma Y, Huang C. Neuroprotective effects of anthocyanins and its major component cyanidin-3-O-glucoside (C3G) in the central nervous system: An outlined review. Eur J Pharmacol 2019; 858:172500. [PMID: 31238064 DOI: 10.1016/j.ejphar.2019.172500] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 01/02/2023]
Abstract
Anthocyanins, a class of water soluble flavonoids extracted from plants like berries and soybean seed, have been shown to display obvious anti-oxidative, anti-inflammatory, and anti-apoptotic activities. They are recommended as a supplementation for prevention and/or treatment of disorders ranging from cardiovascular disease, metabolic syndrome, and cancer. In the central nervous system (CNS), anthocyanins and its major component cyanidin-3-O-glucoside (C3G) have been reported to produce preventive and/or therapeutic activities in a wide range of disorders, such as cerebral ischemia, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and glioblastoma. Both anthocyanins and C3G can also affect some important processes in aging, including neuronal apoptosis and death as well as learning and memory impairment. Further, the anthocyanins and C3G have been shown to prevent neuro-toxicities induced by different toxic factors, such as lipopolysaccharide, hydrogen peroxide, ethanol, kainic acid, acrolein, glutamate, and scopolamine. Mechanistic studies have shown that inhibition of oxidative stress and neuroinflammation are two critical mechanisms by which anthocyanins and C3G produce protective effects in CNS disorder prevention and/or treatment. Other mechanisms, including suppression of c-Jun N-terminal kinase (JNK) activation, amelioration of cellular degeneration, activation of the brain-derived neurotrophic factor (BDNF) signaling, and restoration of Ca2+ and Zn2+ homeostasis, may also mediate the neuroprotective effects of anthocyanins and C3G. In this review, we summarize the pharmacological effects of anthocyanins and C3G in CNS disorders as well as their possible mechanisms, aiming to get a clear insight into the role of anthocyanins in the CNS.
Collapse
Affiliation(s)
- Jinlin Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, #30 Tongyang North Road, Nantong, 226361, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou, 215021, Jiangsu, China
| | - Fengguo Liu
- Department of Neurology, Danyang People's Hospital, Danyang, 212300, Jiangsu, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Jinliang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Haiyan He
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Rong Xu
- Department of Pharmacy and Medical Technology, Nantong Health College of Jiangsu Province, #288, Zhenxing East Road, Nantong Economic Development Zone, Nantong, 226009, Jiangsu, China
| | - Yaoying Ma
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
15
|
Fan D, Alamri Y, Liu K, MacAskill M, Harris P, Brimble M, Dalrymple-Alford J, Prickett T, Menzies O, Laurenson A, Anderson T, Guan J. Supplementation of Blackcurrant Anthocyanins Increased Cyclic Glycine-Proline in the Cerebrospinal Fluid of Parkinson Patients: Potential Treatment to Improve Insulin-Like Growth Factor-1 Function. Nutrients 2018; 10:nu10060714. [PMID: 29865234 PMCID: PMC6024688 DOI: 10.3390/nu10060714] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/04/2023] Open
Abstract
Background: Insulin-like growth factor-1 (IGF-1) function is impaired in Parkinson disease. Cyclic glycine-proline (cGP), a metabolite of IGF-1, is neuroprotective through improving IGF-1 function. Parkinson disease patients score lower on Hospital-associated Anxiety and Depression Scale after supplementing blackcurrant anthocyanins (BCA), which may be associated with IGF-1 function. We evaluated the changes of cGP and IGF-1 before and after the supplementation. Methods: Plasma and cerebrospinal fluid (CSF) were collected from 11 male patients before and after 28 day supplementation of BCA. The concentrations of IGF-1, IGF binding protein (IGFBP)-3, and cGP were measured using ELISA and HPLC-MS assays. The presence of cGP in the BCA was evaluated. Results: cGP presented in the BCA. BCA supplementation increased the concentration of cGP (p < 0.01), but not IGF-1 and IGFBP-3 in the CSF. CSF concentration of cGP was correlated with plasma concentration of cGP (R = 0.68, p = 0.01) and cGP/IGF-1 molar ratio (R = 0.66, p = 0.01). The CSF/plasma ratio was high in cGP and low in IGF-1 and IGFBP-3. Conclusion: cGP is a natural nutrient to the BCA. The increased CSF cGP in Parkinson disease patients may result from the central uptake of plasma cGP. Given neurotrophic function, oral availability, and effective central uptake of cGP, the BCA has the potential to be developed to treat neurological conditions with IGF-1 deficiency.
Collapse
Affiliation(s)
- Dawei Fan
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
- Centre for Brain Research, Faculty of Medicine and Health Science, University of Auckland, Auckland 1142, New Zealand.
- Brain Research New Zealand, A Centre of Research Excellence, New Zealand.
| | - Yassar Alamri
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand.
- Canterbury District Health Board, Christchurch 8041, New Zealand.
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand.
| | - Karen Liu
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
- Centre for Brain Research, Faculty of Medicine and Health Science, University of Auckland, Auckland 1142, New Zealand.
- Brain Research New Zealand, A Centre of Research Excellence, New Zealand.
| | - Michael MacAskill
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand.
| | - Paul Harris
- Department of Medicinal Chemistry, School of Chemistry, University of Auckland, Auckland 1142, New Zealand.
| | - Margaret Brimble
- Brain Research New Zealand, A Centre of Research Excellence, New Zealand.
- Department of Medicinal Chemistry, School of Chemistry, University of Auckland, Auckland 1142, New Zealand.
| | - John Dalrymple-Alford
- Brain Research New Zealand, A Centre of Research Excellence, New Zealand.
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand.
- Department of Psychology, University of Canterbury, Christchurch 8041, New Zealand.
| | - Tim Prickett
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand.
| | - Oliver Menzies
- Department of Geriatric Medicine, Auckland District Health Board, Auckland, 1142, New Zealand.
| | - Andrew Laurenson
- Canterbury District Health Board, Christchurch 8041, New Zealand.
| | - Tim Anderson
- Centre for Brain Research, Faculty of Medicine and Health Science, University of Auckland, Auckland 1142, New Zealand.
- Brain Research New Zealand, A Centre of Research Excellence, New Zealand.
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand.
- Canterbury District Health Board, Christchurch 8041, New Zealand.
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand.
- Department of Neurology, Christchurch Public Hospital, Christchurch 8140, New Zealand.
| | - Jian Guan
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
- Centre for Brain Research, Faculty of Medicine and Health Science, University of Auckland, Auckland 1142, New Zealand.
- Brain Research New Zealand, A Centre of Research Excellence, New Zealand.
| |
Collapse
|
16
|
Hirata Y, Sasaki T, Kanki H, Choong CJ, Nishiyama K, Kubo G, Hotei A, Taniguchi M, Mochizuki H, Uesato S. New 5-Aryl-Substituted 2-Aminobenzamide-Type HDAC Inhibitors with a Diketopiperazine Group and Their Ameliorating Effects on Ischemia-Induced Neuronal Cell Death. Sci Rep 2018; 8:1400. [PMID: 29362442 PMCID: PMC5780423 DOI: 10.1038/s41598-018-19664-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
We previously synthesized new 5-thienyl-substituted 2-aminobenzamide-type HDAC1, 2 inhibitors with the (4-ethyl-2,3-dioxopiperazine-1-carboxamido) methyl group. K-560 (1a) protected against neuronal cell death in a Parkinson’s disease model by up-regulating the expression of XIAP. This finding prompted us to design new K-560-related compounds. We examined the structure activity relationship (SAR) for the neuronal protective effects of newly synthesized and known K-560 derivatives after cerebral ischemia. Among them, K-856 (8), containing the (4-methyl-2,5-dioxopiperazin-1-yl) methyl group, exhibited a promising neuronal survival activity. The SAR study strongly suggested that the attachment of a monocyclic 2,3- or 2,5-diketopiperazine group to the 2-amino-5-aryl (but not 2-nitro-5-aryl) scaffold is necessary for K-560-related compounds to exert a potent neuroprotective effect.
Collapse
Affiliation(s)
- Yoshiyuki Hirata
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan.,Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Chi-Jing Choong
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Genki Kubo
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Ayana Hotei
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Masahiko Taniguchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shinichi Uesato
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan. .,Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
17
|
Wu L, Shao Q, Yang G, Zhang W. Cobalt-Catalyzed Asymmetric Allylation of Cyclic Ketimines. Chemistry 2017; 24:1241-1245. [DOI: 10.1002/chem.201704760] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Liang Wu
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Qihang Shao
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Guoqiang Yang
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Wanbin Zhang
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 P.R. China
| |
Collapse
|
18
|
Singh-Mallah G, McMahon CD, Guan J, Singh K. Cyclic-glycine-proline accelerates mammary involution by promoting apoptosis and inhibiting IGF-1 function. J Cell Physiol 2017; 232:3369-3383. [PMID: 28063218 DOI: 10.1002/jcp.25782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/15/2022]
Abstract
In rodents, post-lactational involution of mammary glands is characterized by the loss of mammary epithelial cells via apoptosis, which is associated with a decline in the expression of insulin-like growth factor-1 (IGF-1). Overexpression of IGF-1 delays involution by inhibiting apoptosis of epithelial cells and preserving the remaining secretory alveoli. Cyclic-glycine-proline (cGP), a metabolite of IGF-1, normalizes IGF-1 function under pathological conditions by regulating the bioavailability of IGF-1. The present study investigated the effect of cGP on the physiological decline in IGF-1 function during post-lactational mammary involution. Rat dams were gavaged with either cGP (3 mg/kg) or saline once per day from post-natal d8-22. Before collecting tissue on post-natal d23, a pair of mammary glands were sealed on d20 (72 hr-engorgement, thus representative of late-involution) and d22 (24 hr-engorgement, thus representative of mid-involution), while the remaining glands were allowed to involute naturally (early-involution). During early-involution, cGP accelerated the loss of mammary cells through apoptosis, resulting in an earlier clearance of intact secretory alveoli compared with the control group. This coincided with an earlier up-regulation of the cell survival factors, Bcl-xl and IGF-1R, in the early-involution cGP glands compared with the control glands. During late-involution, cGP reduced the bioactivity of IGF-1, which was evident through decreased phosphorylation of IGF-1R in the regressed alveoli. Maternal administration of cGP did not alter milk production and composition during early-, peak-, or late-stage of lactation. These data show that cGP accelerates post-lactational involution by promoting apoptosis and the physiological decline in IGF-1 function.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Liggins Institute, University of Auckland, Auckland, New Zealand.,AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand.,Gravida, National Centre for Growth and Development, Liggins Institute, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher D McMahon
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand.,Gravida, National Centre for Growth and Development, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jian Guan
- Gravida, National Centre for Growth and Development, Liggins Institute, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Brain Research New Zealand, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Faculty of Medical and Health Sciences, Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Kuljeet Singh
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand.,Gravida, National Centre for Growth and Development, Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Borthwick AD, Da Costa NC. 2,5-diketopiperazines in food and beverages: Taste and bioactivity. Crit Rev Food Sci Nutr 2017; 57:718-742. [PMID: 25629623 DOI: 10.1080/10408398.2014.911142] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
2,5-Diketopiperazines (2,5-DKPs) have been found to occur in a wide range of food and beverages, and display an array of chemesthetic effects (bitter, astringent, metallic, and umami) that can contribute to the taste of a variety of foods. These smallest cyclic peptides also occur as natural products and have been found to display a variety of bioactivities from antibacterial, antifungal, to anthroprotective effects and have the potential to be used in the development of new functional foods. An overview of the synthesis of these small chiral molecules and their molecular properties is presented. The occurrence, taste, and bioactivity of all simple naturally occurring 2,5-DKPs to date have been reviewed and those found in food from yeasts, fungi, and bacteria that have been used in food preparation or contamination, as well as metabolites of sweeteners and antibiotics added to food are also reviewed.
Collapse
Affiliation(s)
| | - Neil C Da Costa
- b International Flavors & Fragrances, Inc. , Union Beach , New Jersey , USA
| |
Collapse
|
20
|
Virgone-Carlotta A, Dufour E, Bacot S, Ahmadi M, Cornou M, Moni L, Garcia J, Chierici S, Garin D, Marti-Batlle D, Perret P, Ghersi-Egea J, Moulin Sallanon M, Fagret D, Ghezzi C. New diketopiperazines as vectors for peptide protection and brain delivery: Synthesis and biological evaluation. J Labelled Comp Radiopharm 2016; 59:517-530. [DOI: 10.1002/jlcr.3442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 07/10/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022]
Affiliation(s)
| | - E. Dufour
- Université Grenoble Alpes; Grenoble France
- Département de Chimie Moléculaire; Centre National de la Recherche Scientifique, UMR 5250; Grenoble France
| | - S. Bacot
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - M. Ahmadi
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - M. Cornou
- Université Grenoble Alpes; Grenoble France
- Département de Chimie Moléculaire; Centre National de la Recherche Scientifique, UMR 5250; Grenoble France
| | - L. Moni
- Université Grenoble Alpes; Grenoble France
- Département de Chimie Moléculaire; Centre National de la Recherche Scientifique, UMR 5250; Grenoble France
| | - J. Garcia
- Université Grenoble Alpes; Grenoble France
- Département de Chimie Moléculaire; Centre National de la Recherche Scientifique, UMR 5250; Grenoble France
| | - S. Chierici
- Université Grenoble Alpes; Grenoble France
- Département de Chimie Moléculaire; Centre National de la Recherche Scientifique, UMR 5250; Grenoble France
| | - D. Garin
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - D. Marti-Batlle
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - P. Perret
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - J.F. Ghersi-Egea
- INSERM, U1028; CNRS, UMR5292; Lyon France
- BIP Platform, Lyon Neuroscience Research Center; Université Lyon 1; Lyon France
| | - M. Moulin Sallanon
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - D. Fagret
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| | - C. Ghezzi
- INSERM U1039; La Tronche France
- Université Grenoble Alpes; Grenoble France
| |
Collapse
|
21
|
Gudasheva TA, Koliasnikova KN, Antipova TA, Seredenin SB. Neuropeptide cycloprolylglycine increases the levels of brain-derived neurotrophic factor in neuronal cells. DOKL BIOCHEM BIOPHYS 2016; 469:273-6. [DOI: 10.1134/s1607672916040104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 11/22/2022]
|
22
|
Singh-Mallah G, Singh K, McMahon CD, Harris P, Brimble MA, Thorstensen E, Guan J. Maternally Administered Cyclic Glycine-Proline Increases Insulin-Like Growth Factor-1 Bioavailability and Novelty Recognition in Developing Offspring. Endocrinology 2016; 157:3130-9. [PMID: 27355491 DOI: 10.1210/en.2016-1189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cyclic glycine-proline (cGP), a metabolite of IGF-1, is an endogenous neuropeptide that improves memory in adult rats. The presence and concentrations of endogenous cGP, and its association with IGF-1 and IGF binding protein-3 (IGFBP-3) in rat milk and plasma, were evaluated during postnatal development. Maternal-infantile transfer of cGP during lactation and its efficacy on the memory of developing offspring were also investigated. Dams were gavaged with either cGP (3 mg/kg) or saline daily from postnatal days 8-22. Concentrations of cGP were measured in dams' milk, and concentrations of cGP, IGF-1, and IGFBP-3 were measured in the plasma of dams, pups, and young adults. The recognition memory, locomotor function, and anxiety-like behavior of offspring were evaluated using behavioral tests. Endogenous cGP was detected in rat milk, and its concentration was higher during peak lactation compared with late lactation. Comparisons within control groups showed low endogenous IGF-1 and IGFBP-3 and high endogenous cGP concentrations in the plasma of male pups. The reduced IGFBP-3 and increased cGP may be a response to increase the bioavailability of IGF-1 during infancy. Exogenous cGP showed oral bioavailability and effective maternal-infantile transfer through milk. Maternally transferred cGP also led to improved recognition memory in the developing offspring, possibly through increased IGF-1 bioavailability, with no effect on locomotor activity and anxiety-like behavior. These results show that cGP is an essential endogenous peptide during early postnatal development as it improves the bioavailability of IGF-1 during infancy. Furthermore, maternal cGP supplementation offers an effective and natural route of administration for improving memory in the developing offspring.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Department of Pharmacology and Clinical Pharmacology (G.S.-M., J.G.), School of Medical Sciences, Faculty of Medical and Health Sciences, Gravida (G.S.-M., K.S., C.D.M., E.T., J.G.), National Centre for Growth and Development, Liggins Institute, Centre for Brain Research (G.S.-M., J.G.), Faculty of Medical and Health Sciences, Brain Research New Zealand (J.G.), Faculty of Medical and Health Sciences, and Department of Medicinal Chemistry (P.H., M.A.G.), School of Chemistry, University of Auckland, Grafton, 1142 Auckland, New Zealand; AgResearch Ltd (G.S.-M., K.S., C.D.M.), Ruakura Research Centre, Hamilton 3240, New Zealand
| | - Kuljeet Singh
- Department of Pharmacology and Clinical Pharmacology (G.S.-M., J.G.), School of Medical Sciences, Faculty of Medical and Health Sciences, Gravida (G.S.-M., K.S., C.D.M., E.T., J.G.), National Centre for Growth and Development, Liggins Institute, Centre for Brain Research (G.S.-M., J.G.), Faculty of Medical and Health Sciences, Brain Research New Zealand (J.G.), Faculty of Medical and Health Sciences, and Department of Medicinal Chemistry (P.H., M.A.G.), School of Chemistry, University of Auckland, Grafton, 1142 Auckland, New Zealand; AgResearch Ltd (G.S.-M., K.S., C.D.M.), Ruakura Research Centre, Hamilton 3240, New Zealand
| | - Christopher D McMahon
- Department of Pharmacology and Clinical Pharmacology (G.S.-M., J.G.), School of Medical Sciences, Faculty of Medical and Health Sciences, Gravida (G.S.-M., K.S., C.D.M., E.T., J.G.), National Centre for Growth and Development, Liggins Institute, Centre for Brain Research (G.S.-M., J.G.), Faculty of Medical and Health Sciences, Brain Research New Zealand (J.G.), Faculty of Medical and Health Sciences, and Department of Medicinal Chemistry (P.H., M.A.G.), School of Chemistry, University of Auckland, Grafton, 1142 Auckland, New Zealand; AgResearch Ltd (G.S.-M., K.S., C.D.M.), Ruakura Research Centre, Hamilton 3240, New Zealand
| | - Paul Harris
- Department of Pharmacology and Clinical Pharmacology (G.S.-M., J.G.), School of Medical Sciences, Faculty of Medical and Health Sciences, Gravida (G.S.-M., K.S., C.D.M., E.T., J.G.), National Centre for Growth and Development, Liggins Institute, Centre for Brain Research (G.S.-M., J.G.), Faculty of Medical and Health Sciences, Brain Research New Zealand (J.G.), Faculty of Medical and Health Sciences, and Department of Medicinal Chemistry (P.H., M.A.G.), School of Chemistry, University of Auckland, Grafton, 1142 Auckland, New Zealand; AgResearch Ltd (G.S.-M., K.S., C.D.M.), Ruakura Research Centre, Hamilton 3240, New Zealand
| | - Margaret A Brimble
- Department of Pharmacology and Clinical Pharmacology (G.S.-M., J.G.), School of Medical Sciences, Faculty of Medical and Health Sciences, Gravida (G.S.-M., K.S., C.D.M., E.T., J.G.), National Centre for Growth and Development, Liggins Institute, Centre for Brain Research (G.S.-M., J.G.), Faculty of Medical and Health Sciences, Brain Research New Zealand (J.G.), Faculty of Medical and Health Sciences, and Department of Medicinal Chemistry (P.H., M.A.G.), School of Chemistry, University of Auckland, Grafton, 1142 Auckland, New Zealand; AgResearch Ltd (G.S.-M., K.S., C.D.M.), Ruakura Research Centre, Hamilton 3240, New Zealand
| | - Eric Thorstensen
- Department of Pharmacology and Clinical Pharmacology (G.S.-M., J.G.), School of Medical Sciences, Faculty of Medical and Health Sciences, Gravida (G.S.-M., K.S., C.D.M., E.T., J.G.), National Centre for Growth and Development, Liggins Institute, Centre for Brain Research (G.S.-M., J.G.), Faculty of Medical and Health Sciences, Brain Research New Zealand (J.G.), Faculty of Medical and Health Sciences, and Department of Medicinal Chemistry (P.H., M.A.G.), School of Chemistry, University of Auckland, Grafton, 1142 Auckland, New Zealand; AgResearch Ltd (G.S.-M., K.S., C.D.M.), Ruakura Research Centre, Hamilton 3240, New Zealand
| | - Jian Guan
- Department of Pharmacology and Clinical Pharmacology (G.S.-M., J.G.), School of Medical Sciences, Faculty of Medical and Health Sciences, Gravida (G.S.-M., K.S., C.D.M., E.T., J.G.), National Centre for Growth and Development, Liggins Institute, Centre for Brain Research (G.S.-M., J.G.), Faculty of Medical and Health Sciences, Brain Research New Zealand (J.G.), Faculty of Medical and Health Sciences, and Department of Medicinal Chemistry (P.H., M.A.G.), School of Chemistry, University of Auckland, Grafton, 1142 Auckland, New Zealand; AgResearch Ltd (G.S.-M., K.S., C.D.M.), Ruakura Research Centre, Hamilton 3240, New Zealand
| |
Collapse
|
23
|
Neuropeptide Cycloprolylglycine Exhibits Neuroprotective Activity after Systemic Administration to Rats with Modeled Incomplete Global Ischemia and in In Vitro Modeled Glutamate Neurotoxicity. Bull Exp Biol Med 2016; 160:653-5. [DOI: 10.1007/s10517-016-3241-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 10/22/2022]
|
24
|
Ferro JNDS, de Aquino FLT, de Brito RG, dos Santos PL, Quintans JDSS, de Souza LC, de Araújo AF, Diaz BL, Lucca-Júnior W, Quintans-Júnior LJ, Barreto E. Cyclo-Gly-Pro, a cyclic dipeptide, attenuates nociceptive behaviour and inflammatory response in mice. Clin Exp Pharmacol Physiol 2015; 42:1287-95. [DOI: 10.1111/1440-1681.12480] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 05/08/2015] [Accepted: 08/08/2015] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | - Lucas Costa de Souza
- Laboratory of Inflammation; Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | | | - Bruno Lourenço Diaz
- Laboratory of Inflammation; Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | | | | | - Emiliano Barreto
- Laboratory of Cell Biology; Federal University of Alagoas; Maceió Brazil
| |
Collapse
|
25
|
Guan J, Harris P, Brimble M, Lei Y, Lu J, Yang Y, Gunn AJ. The role for IGF-1-derived small neuropeptides as a therapeutic target for neurological disorders. Expert Opin Ther Targets 2015; 19:785-93. [PMID: 25652713 DOI: 10.1517/14728222.2015.1010514] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Exogenous IGF-1 protects the brain from ischemic injury and improves function. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake and mitogenic potential. AREAS COVERED In this review, the authors have discussed the efficacy, pharmacokinetics and mechanisms of IGF-1 derivatives on protecting acute brain injury, preventing memory impairment and improving recovery from neurological degenerative conditions evaluated in various animal models. We have included natural metabolites of IGF-1, glycine-proline-glutamate (GPE), cleaved from N-terminal IGF-1 and cyclic glycine-proline (cGP) as well as the structural analogues of GPE and cGP, glycine-2-methyl-proline-glutamate and cyclo-l-glycyl-l-2-allylproline, respectively. In addition, the regulatory role for cGP in bioavailability of IGF-1 has also been discussed. EXPERT OPINION These small neuropeptides provide effective neuroprotection by offering an improved pharmacokinetic profile and more practical route of administration compared with IGF-1 administration. Developing modified neuropeptides to overcome the limitations of their endogenous counterparts represents a novel strategy of pharmaceutical discovery for neurological disorders. The mechanism of action may involve a regulation of IGF-1 bioavailability.
Collapse
Affiliation(s)
- Jian Guan
- University of Auckland, Liggins Institute , Private Bag 92019, Auckland , New Zealand +64 93 737 599 ext. 86134 ; +64 93 082 385 ;
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Despite extensive preclinical research supporting the effectiveness of neuroprotective therapies for brain trauma, there have been no successful randomized controlled clinical trials to date. TBI results in delayed secondary tissue injury due to neurochemical, metabolic and cellular changes; modulating such effects has provided the basis for neuroprotective interventions. To establish more effective neuroprotective treatments for TBI it is essential to better understand the complex cellular and molecular events that contribute to secondary injury. Here we critically review relevant research related to causes and modulation of delayed tissue damage, with particular emphasis on cell death mechanisms and post-traumatic neuroinflammation. We discuss the concept of utilizing multipotential drugs that target multiple secondary injury pathways, rather than more specific "laser"-targeted strategies that have uniformly failed in clinical trials. Moreover, we assess data supporting use of neuroprotective drugs that are currently being evaluated in human clinical trials for TBI, as well as promising emerging experimental multipotential drug treatment strategies. Finally, we describe key challenges and provide suggestions to improve the likelihood of successful clinical translation.
Collapse
Affiliation(s)
- David J Loane
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Zhao YS, Liu Q, Tian P, Tao JC, Lin GQ. Copper-catalyzed asymmetric allylation of chiral N-tert-butanesulfinyl imines: dual stereocontrol with nearly perfect diastereoselectivity. Org Biomol Chem 2015; 13:4174-8. [DOI: 10.1039/c5ob00322a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Copper-catalyzed asymmetric allylation of chiral N-tert-butanesulfinyl imines has been described.
Collapse
Affiliation(s)
- Yi-Shuang Zhao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances
| | - Qiang Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Ping Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Jing-Chao Tao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Guo-Qiang Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
28
|
Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1. Sci Rep 2014; 4:4388. [PMID: 24633053 PMCID: PMC3955921 DOI: 10.1038/srep04388] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/28/2014] [Indexed: 02/02/2023] Open
Abstract
The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation in cell culture suggested that cGP promoted the activity of IGF-1 when it was insufficient, but inhibited the activity of IGF-1 when it was excessive. Mathematical modelling revealed that the efficacy of cGP was a modulated IGF-1 effect via changing the binding of IGF-1 to its binding proteins, which dynamically regulates the balance between bioavailable and non-bioavailable IGF-1. Our data reveal a novel mechanism of auto-regulation of IGF-1, which has physiological and pathophysiological consequences and potential pharmacological utility.
Collapse
|
29
|
Kabadi SV, Faden AI. Neuroprotective strategies for traumatic brain injury: improving clinical translation. Int J Mol Sci 2014; 15:1216-36. [PMID: 24445258 PMCID: PMC3907865 DOI: 10.3390/ijms15011216] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/07/2014] [Accepted: 01/13/2014] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) induces secondary biochemical changes that contribute to delayed neuroinflammation, neuronal cell death, and neurological dysfunction. Attenuating such secondary injury has provided the conceptual basis for neuroprotective treatments. Despite strong experimental data, more than 30 clinical trials of neuroprotection in TBI patients have failed. In part, these failures likely reflect methodological differences between the clinical and animal studies, as well as inadequate pre-clinical evaluation and/or trial design problems. However, recent changes in experimental approach and advances in clinical trial methodology have raised the potential for successful clinical translation. Here we critically analyze the current limitations and translational opportunities for developing successful neuroprotective therapies for TBI.
Collapse
Affiliation(s)
- Shruti V Kabadi
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Alan I Faden
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
30
|
Mathai S, Gunn AJ, Backhaus RA, Guan J. Window of opportunity for neuroprotection with an antioxidant, allene oxide synthase, after hypoxia-ischemia in adult male rats. CNS Neurosci Ther 2012; 18:887-94. [PMID: 22998294 PMCID: PMC6493396 DOI: 10.1111/cns.12004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/18/2012] [Accepted: 08/14/2012] [Indexed: 01/20/2023] Open
Abstract
AIMS Oxidative stress is an early event in the cascade leading in neuronal damage after hypoxic-ischemic (HI) brain injury. In the present study, we examined the dose response and window of opportunity for neuroprotection after HI injury with Allene Oxide Synthase (AOS), an anti-oxidative enzyme of the member of cytochrome P450 family. METHODS Adult male rats received intra-cerebro-ventricular infusions of either saline (vehicle) or AOS (1 μg or 10 μg or 100 μg per rat, intracerebroventricular n = 16 all groups) either 45 min or 3 h after unilateral HI brain injury. Brains were collected 5 days later. The extent of brain damage, neuronal survival, apoptosis, and glial reactions were assessed in the striatum, hippocampus, and cortex. RESULTS Allene Oxide Synthase was associated with reduced neuronal damage scores when given 45 min, but not 3 h, after HI injury (P < 0.0001) in all brain regions. AOS treatment (10 μg) improved neuronal survival in the striatum, cortex, and hippocampus (P < 0.05, P < 0.001) and reduced the microglia reaction (P < 0.05) and numbers of caspase-3-positive cells in the hippocampus (P < 0.01). CONCLUSIONS Early blockade of oxidative stress after HI injury reduces inflammatory response, neuronal necrosis, and apoptosis. The neuroprotective effects of AOS were time of administration-dependent suggesting a relatively restricted window of opportunity for acute brain injury.
Collapse
Affiliation(s)
- Sam Mathai
- The Liggins InstituteThe University of AucklandAucklandNew Zealand
- Department of PhysiologyFaculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Alistair J. Gunn
- Department of PhysiologyFaculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | | | - Jian Guan
- The Liggins InstituteThe University of AucklandAucklandNew Zealand
| |
Collapse
|
31
|
Zhang R, Kadar T, Sirimanne E, MacGibbon A, Guan J. Age-related memory decline is associated with vascular and microglial degeneration in aged rats. Behav Brain Res 2012; 235:210-7. [PMID: 22889927 DOI: 10.1016/j.bbr.2012.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/16/2022]
Abstract
The hippocampus processes memory is an early target of aging-related biological and structural lesions, leading to memory decline. With absent neurodegeneration in the hippocampus, which identified in rodent model of normal aging the pathology underlying age-related memory impairment is not complete. The effective glial-vascular networks are the key for maintaining neuronal functions. The changes of glial cells and cerebral capillaries with age may contribute to memory decline. Thus we examined age associated changes in neurons, glial phenotypes and microvasculature in the hippocampus of aged rats with memory decline. Young adult (6 months) and aged (35 months) male rats (Fisher/Norway-Brown) were used. To evaluate memory, four days of acquisition phase of Morris water maze tasks were carried out in both age groups and followed by a probe trial 2 h after the acquisition. The brains were then collected for analysis using immunochemistry. The aged rats showed a delayed latency (p<0.001) and longer swimming path (p<0.001) to locate a hidden platform. They also spent less time in and made delayed and fewer entries into the correct quadrant during the probe trial. Without seen neuronal degeneration, the aged rats with memory impairments have displayed dopamine depletion, profound vascular and microglial degeneration with reduced vascular endothelial growth factor and elevated GFAP expression in the hippocampus. The data indicate the memory decline with age is associated with neuronal dysfunction, possibly due to impaired glial-vascular-neuronal networks, but not neuronal degeneration. Glial and vascular degeneration found in aged rats may represent early event of aging pathology prior to neuronal degeneration.
Collapse
Affiliation(s)
- Rong Zhang
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
32
|
Borthwick AD. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 2012; 112:3641-716. [PMID: 22575049 DOI: 10.1021/cr200398y] [Citation(s) in RCA: 611] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Loane DJ, Faden AI. Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 2010; 31:596-604. [PMID: 21035878 DOI: 10.1016/j.tips.2010.09.005] [Citation(s) in RCA: 418] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/25/2010] [Accepted: 09/27/2010] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) causes secondary biochemical changes that contribute to subsequent tissue damage and associated neuronal cell death. Neuroprotective treatments that limit secondary tissue loss and/or improve behavioral outcome have been well established in multiple animal models of TBI. However, translation of such neuroprotective strategies to human injury have been disappointing, with the failure of more than thirty controlled clinical trials. Both conceptual issues and methodological differences between preclinical and clinical injury have undoubtedly contributed to these translational difficulties. More recently, changes in experimental approach, as well as altered clinical trial methodologies, have raised cautious optimism regarding the outcomes of future clinical trials. Here we critically review developing experimental neuroprotective strategies that show promise, and we propose criteria for improving the probability of successful clinical translation.
Collapse
Affiliation(s)
- David J Loane
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and Emergency Medical Systems, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
34
|
Guan J, Zhang R, Dale-Gandar L, Hodgkinson S, Vickers MH. NNZ-2591, a novel diketopiperazine, prevented scopolamine-induced acute memory impairment in the adult rat. Behav Brain Res 2010; 210:221-8. [DOI: 10.1016/j.bbr.2010.02.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/18/2010] [Accepted: 02/18/2010] [Indexed: 11/29/2022]
|
35
|
Lu XCM, Chen RW, Yao C, Wei H, Yang X, Liao Z, Dave JR, Tortella FC. NNZ-2566, a glypromate analog, improves functional recovery and attenuates apoptosis and inflammation in a rat model of penetrating ballistic-type brain injury. J Neurotrauma 2009; 26:141-54. [PMID: 19119917 DOI: 10.1089/neu.2008.0629] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycine-proline-glutamate (GPE) is an N-terminal tripeptide endogenously cleaved from insulin-like growth factor-1 in the brain and is neuroprotective against hypoxic-ischemic brain injury and neurodegeneration. NNZ-2566 is an analog of GPE designed to have improved bioavailability. In this study, we tested NNZ-2566 in a rat model of penetrating ballistic-type brain injury (PBBI) and assessed its effects on injury-induced histopathology, behavioral deficits, and molecular and cellular events associated with inflammation and apoptosis. In the initial dose-response experiments, NNZ-2566 (0.01-3 mg/kg/h x 12 h intravenous infusion) was given at 30 min post-injury and the therapeutic time window was established by delaying treatments 2-4 h post-injury, but with the addition of a 10- or 30-mg/kg bolus dose. All animals survived 72 h. Neuroprotection was evaluated by balance beam testing and histopathology. The effects of NNZ-2566 on injury-induced changes in Bax and Bcl-2 proteins, activated microgliosis, neutrophil infiltration, and astrocyte reactivity were also examined. Behavioral results demonstrated that NNZ-2566 dose-dependently reduced foot faults by 19-66% after acute treatments, and 35-55% after delayed treatments. Although gross lesion volume was not affected, NNZ-2566 treatment significantly attenuated neutrophil infiltration and reduced the number of activated microglial cells in the peri-lesion regions of the PBBI. PBBI induced a significant upregulation in Bax expression (36%) and a concomitant downregulation in Bcl-2 expression (33%), both of which were significantly reversed by NNZ-2566. Collectively, these results demonstrated that NNZ-2566 treatment promoted functional recovery following PBBI, an effect related to the modulation of injury-induced neural inflammatory and apoptotic mechanisms.
Collapse
Affiliation(s)
- Xi-Chun May Lu
- Department of Applied Neurobiology, Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Guan J, Gluckman PD. IGF-1 derived small neuropeptides and analogues: a novel strategy for the development of pharmaceuticals for neurological conditions. Br J Pharmacol 2009; 157:881-91. [PMID: 19438508 DOI: 10.1111/j.1476-5381.2009.00256.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is neuroprotective and improves long-term function after brain injury. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake and mitogenic potential. Glycine-proline-glutamate (GPE) is naturally cleaved from the IGF-1 N-terminal and it is also neuroprotective after ischemic injury, which provided a novel strategy of drug discovery for neurological disorders. GPE is not enzymatically stable, thus intravenous infusion of GPE becomes necessary for stable and potent neuroprotection. The broad effective dose range and treatment window of 3-7 h after the lesion suggest its potential for treating acute brain injuries. G-2meth-PE, a GPE analogue designed to be more enzymatic resistant, has a prolonged plasma half-life and is more potent in neuroprotection. Neuroprotection by GPE and its analogue may involve modulation of inflammation, promotion of astrocytosis, inhibition of apoptosis and vascular remodelling. Acute administration of GPE also prevents 6-OHDA-induced nigrostrial dopamine depletion. Delayed treatment with GPE does not prevent dopamine loss, but improves long-term function. Cyclo-glycyl-proline (cyclic Gly-Pro) is an endogenous DKP that may be derived from GPE. Cyclic Gly-Pro and its analogue cyclo-L-glycyl-L-2-allylproline (NNZ 2591) are both neuroprotective after ischaemic injury. NNZ2591 is highly enzymatic resistant and centrally accessible. Its peripheral administration improves somatosensory-motor function and long-term histological outcome after brain injury. Our research suggests that small neuropeptides have advantages over growth factors in the treatment of brain injury, and that modified neuropeptides designed to overcome the limitations of their endogenous counterparts represent a novel strategy of pharmaceutical discovery for neurological disorders.
Collapse
Affiliation(s)
- Jian Guan
- Liggins Institute, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | |
Collapse
|
37
|
Krishnamurthi RVM, Mathai S, Kim AH, Zhang R, Guan J. A novel diketopiperazine improves functional recovery given after the onset of 6-OHDA-induced motor deficit in rats. Br J Pharmacol 2009; 156:662-72. [PMID: 19154439 DOI: 10.1111/j.1476-5381.2008.00064.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Cyclo-L-glycyl-L-2-allylproline (NNZ-2591), a modified diketopiperazine, is neuroprotective and improves long-term function after hypoxic-ischaemic brain injury in rats. The present studies were designed to examine both the neuroprotective and neurotrophic actions of NNZ-2591 on neurochemical and behavioural changes in a rat model of Parkinson's disease. EXPERIMENTAL APPROACH To examine its protective effect, either NNZ-2591 (20 ng.day(-1)) or saline was given intracerebroventricularly for 3 days starting 2 h after 6-hydroxydopamine (6-OHDA) induced unilateral striatal lesion. In a subsequent experiment either NNZ-2591 (0.2, 1 and 5 mg.day(-1), s.c.) or saline was administered daily for 14 days starting 2 weeks after the lesion. Behavioural and neurochemical outcomes were examined using the adjusting step test and immunohistochemical staining. KEY RESULTS Cyclo-L-glycyl-L-2-allylproline given 2 h after the lesion reduced the degree of motor deficit compared with the saline-treated group. Delayed treatment with NNZ-2591, initiated after the onset of motor deficit, significantly improved motor function from week 7 onwards compared with the saline-treated group. Neither treatment regime altered nigrostriatal dopamine depletion. NNZ-2591 significantly enhanced the expression of doublecortin-positive neuroblasts in the sub-ventricular zone. CONCLUSIONS AND IMPLICATIONS These studies reveal that early treatment with NNZ-2591 protects against the motor deficit induced by 6-OHDA and that treatment initiated after the establishment of motor impairment significantly improves long-term motor function. These effects of NNZ-2591 on functional recovery were independent of dopamine depletion and also appeared not to be symptomatic as the improved motor function was long-lasting. NNZ-2591 has potential as a therapeutic agent for neurodegenerative disorders.
Collapse
|