1
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
2
|
Kim HD, Wei J, Call T, Ma X, Quintus NT, Summers AJ, Carotenuto S, Johnson R, Nguyen A, Cui Y, Park JG, Qiu S, Ferguson D. SIRT1 Coordinates Transcriptional Regulation of Neural Activity and Modulates Depression-Like Behaviors in the Nucleus Accumbens. Biol Psychiatry 2024; 96:495-505. [PMID: 38575105 PMCID: PMC11338727 DOI: 10.1016/j.biopsych.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Major depression and anxiety disorders are significant causes of disability and socioeconomic burden. Despite the prevalence and considerable impact of these affective disorders, their pathophysiology remains elusive. Thus, there is an urgent need to develop novel therapeutics for these conditions. We evaluated the role of SIRT1 in regulating dysfunctional processes of reward by using chronic social defeat stress to induce depression- and anxiety-like behaviors. Chronic social defeat stress induces physiological and behavioral changes that recapitulate depression-like symptomatology and alters gene expression programs in the nucleus accumbens, but cell type-specific changes in this critical structure remain largely unknown. METHODS We examined transcriptional profiles of D1-expressing medium spiny neurons (MSNs) lacking deacetylase activity of SIRT1 by RNA sequencing in a cell type-specific manner using the RiboTag line of mice. We analyzed differentially expressed genes using gene ontology tools including SynGO and EnrichR and further demonstrated functional changes in D1-MSN-specific SIRT1 knockout (KO) mice using electrophysiological and behavioral measurements. RESULTS RNA sequencing revealed altered transcriptional profiles of D1-MSNs lacking functional SIRT1 and showed specific changes in synaptic genes including glutamatergic and GABAergic (gamma-aminobutyric acidergic) receptors in D1-MSNs. These molecular changes may be associated with decreased excitatory and increased inhibitory neural activity in Sirt1 KO D1-MSNs, accompanied by morphological changes. Moreover, the D1-MSN-specific Sirt1 KO mice exhibited proresilient changes in anxiety- and depression-like behaviors. CONCLUSIONS SIRT1 coordinates excitatory and inhibitory synaptic genes to regulate the GABAergic output tone of D1-MSNs. These findings reveal a novel signaling pathway that has potential for the development of innovative treatments for affective disorders.
Collapse
Affiliation(s)
- Hee-Dae Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Jing Wei
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Tanessa Call
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Xiaokuang Ma
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Nicole Teru Quintus
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Alexander J Summers
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Samantha Carotenuto
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Ross Johnson
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Angel Nguyen
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Yuehua Cui
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Jin G Park
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Deveroux Ferguson
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona.
| |
Collapse
|
3
|
Sun Q, Zhao N, Zhang TJ, Wang SY, Wang L, Meng FH. Development of a novel UHPLC-MS/MS method for the quantification of corynoxeine: Application to pharmacokinetics and tissue distribution studies in normal and chronic unpredictable mild stress-induced depression rats. J Pharm Biomed Anal 2024; 238:115850. [PMID: 37948778 DOI: 10.1016/j.jpba.2023.115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/19/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Corynoxeine, a natural active alkaloid found in Genus Uncaria, has been reported to have anti-depressant effects. In this study, a sensitive and efficient ultra-high performance liquid chromatography tandem mass spectrometry method for quantifying corynoxeine in rat plasma and tissues was established, validated and applied to investigate the pharmacokinetics and tissue distribution differences between normal rats and chronic unpredictable mild stress (CUMS)-induced depression model rats following oral administration. All bio-samples were prepared by methanol protein precipitation method with theophylline as internal standard (IS). Chromatographic separation was conducted on an Agilent ZORBAX Eclipse Plus C18 column using mobile phase A (acetonitrile) and B (0.1% formic acid in water) in gradient elution mode with a flow rate of 0.3 mL/min. Mass spectrometric detection was performed in multiple-reaction monitoring mode with positive electrospray ionization source. The transitions of m/z 383.0→160.2 for corynoxeine and m/z 181.1→124.0 for IS were chosen for quantification. The method showed good linearity, stability, accuracy, precision, recovery, and non-significant matrix effect, which were within the acceptable ranges. The pharmacokinetic results revealed that the absorption and bioavailability of corynoxeine in depression rats decreased compared to normal rats. The tissue distribution of corynoxeine trended to be mostly in the intestine and stomach and the distribution of this compound in intestine tissue of depression rats was significantly increased compared to the normal rats. The pharmacokinetics and tissue distribution profiles of corynoxeine were altered in CUMS-induced depression rats compared to normal rats and these experimental findings could provide beneficial information to the mechanism research and clinical applications of corynoxeine.
Collapse
Affiliation(s)
- Qi Sun
- School of pharmacy, China Medical University, Shenyang 110122, PR China
| | - Nan Zhao
- School of pharmacy, China Medical University, Shenyang 110122, PR China
| | - Ting-Jian Zhang
- School of pharmacy, China Medical University, Shenyang 110122, PR China
| | - Si-Yu Wang
- School of pharmacy, China Medical University, Shenyang 110122, PR China
| | - Lin Wang
- School of pharmacy, China Medical University, Shenyang 110122, PR China
| | - Fan-Hao Meng
- School of pharmacy, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
4
|
Villalba S, González B, Junge S, Bernardi A, González J, Fagúndez C, Torterolo P, Carrera I, Urbano FJ, Bisagno V. 5-HT 2A Receptor Knockout Mice Show Sex-Dependent Differences following Acute Noribogaine Administration. Int J Mol Sci 2024; 25:687. [PMID: 38255760 PMCID: PMC10815577 DOI: 10.3390/ijms25020687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Noribogaine (noribo) is the primary metabolite from ibogaine, an atypical psychedelic alkaloid isolated from the root bark of the African shrub Tabernanthe iboga. The main objective of this study was to test the hypothesis that molecular, electrophysiological, and behavioral responses of noribo are mediated by the 5-HT2A receptor (5-HT2AR) in mice. In that regard, we used male and female, 5-HT2AR knockout (KO) and wild type (WT) mice injected with a single noribo dose (10 or 40 mg/kg; i.p.). After 30 min., locomotor activity was recorded followed by mRNA measurements by qPCR (immediate early genes; IEG, glutamate receptors, and 5-HT2AR levels) and electrophysiology recordings of layer V pyramidal neurons from the medial prefrontal cortex. Noribo 40 decreased locomotion in male, but not female WT. Sex and genotype differences were observed for IEG and glutamate receptor expression. Expression of 5-HT2AR mRNA increased in the mPFC of WT mice following Noribo 10 (males) or Noribo 40 (females). Patch-clamp recordings showed that Noribo 40 reduced the NMDA-mediated postsynaptic current density in mPFC pyramidal neurons only in male WT mice, but no effects were found for either KO males or females. Our results highlight that noribo produces sexually dimorphic effects while the genetic removal of 5HT2AR blunted noribo-mediated responses to NMDA synaptic transmission.
Collapse
Affiliation(s)
- Sofía Villalba
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Mariano Acosta 1611, Buenos Aires B1629WWA, Argentina; (S.V.); (S.J.)
- Departamento de Fisiología, Biología Molecular y Celular Prof. Héctor Maldonado, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Bruno González
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Avenida General Flores 2124, Montevideo 11800, Uruguay; (B.G.); (C.F.); (I.C.)
| | - Stephanie Junge
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Mariano Acosta 1611, Buenos Aires B1629WWA, Argentina; (S.V.); (S.J.)
- Departamento de Fisiología, Biología Molecular y Celular Prof. Héctor Maldonado, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Alejandra Bernardi
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Mariano Acosta 1611, Buenos Aires B1629WWA, Argentina; (S.V.); (S.J.)
- Departamento de Fisiología, Biología Molecular y Celular Prof. Héctor Maldonado, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Joaquín González
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo 11800, Uruguay; (J.G.); (P.T.)
| | - Catherine Fagúndez
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Avenida General Flores 2124, Montevideo 11800, Uruguay; (B.G.); (C.F.); (I.C.)
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo 11800, Uruguay; (J.G.); (P.T.)
| | - Ignacio Carrera
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Avenida General Flores 2124, Montevideo 11800, Uruguay; (B.G.); (C.F.); (I.C.)
| | - Francisco J. Urbano
- Departamento de Fisiología, Biología Molecular y Celular Prof. Héctor Maldonado, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Verónica Bisagno
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET-Universidad Austral, Mariano Acosta 1611, Buenos Aires B1629WWA, Argentina; (S.V.); (S.J.)
| |
Collapse
|
5
|
Rudolph M, Kopruszinski C, Wu C, Navratilova E, Schwedt TJ, Dodick DW, Porreca F, Anderson T. Identification of brain areas in mice with peak neural activity across the acute and persistent phases of post-traumatic headache. Cephalalgia 2023; 43:3331024231217469. [PMID: 38016977 PMCID: PMC11149587 DOI: 10.1177/03331024231217469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Post-traumatic headache is very common after a mild traumatic brain injury. Post-traumatic headache may persist for months to years after an injury in a substantial proportion of people. The pathophysiology underlying post-traumatic headache remains unknown but is likely distinct from other headache disorders. Identification of brain areas activated in acute and persistent phases of post-traumatic headache can provide insights into the underlying circuits mediating headache pain. We used an animal model of mild traumatic brain injury-induced post-traumatic headache and c-fos immunohistochemistry to identify brain regions with peak activity levels across the acute and persistent phases of post-traumatic headache. METHODS Male and female C57BL/6 J mice were briefly anesthetized and subjected to a sham procedure or a weight drop closed-head mild traumatic brain injury . Cutaneous allodynia was assessed in the periorbital and hindpaw regions using von Frey filaments. Immunohistochemical c-fos based neural activity mapping was then performed on sections from whole brain across the development of post-traumatic headache (i.e. peak of the acute phase at 2 days post- mild traumatic brain injury), start of the persistent phase (i.e. >14 days post-mild traumatic brain injury) or after provocation with stress (bright light). Brain areas with consistent and peak levels of c-fos expression across mild traumatic brain injury induced post-traumatic headache were identified and included for further analysis. RESULTS Following mild traumatic brain injury, periorbital and hindpaw allodynia was observed in both male and female mice. This allodynia was transient and subsided within the first 14 days post-mild traumatic brain injury and is representative of acute post-traumatic headache. After this acute post-traumatic headache phase, exposure of mild traumatic brain injury mice to a bright light stress reinstated periorbital and hindpaw allodynia for several hours - indicative of the development of persistent post-traumatic headache. Acute post-traumatic headache was coincident with an increase in neuronal c-fos labeling in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and the nucleus accumbens. Neuronal activation returned to baseline levels by the persistent post-traumatic headache phase in the spinal nucleus of the trigeminal caudalis and primary somatosensory cortex but remained elevated in the nucleus accumbens. In the persistent post-traumatic headache phase, coincident with allodynia observed following bright light stress, we observed bright light stress-induced c-fos neural activation in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens. CONCLUSION Examination of mild traumatic brain injury-induced changes in peak c-fos expression revealed brain regions with significantly increased neural activity across the acute and persistent phases of post-traumatic headache. Our findings suggest mild traumatic brain injury-induced post-traumatic headache produces neural activation along pain relevant pathways at time-points matching post-traumatic headache-like pain behaviors. These observations suggest that the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens may contribute to both the induction and maintenance of post-traumatic headache.
Collapse
Affiliation(s)
- Megan Rudolph
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Caroline Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Chen Wu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Neurology, Mayo Clinic, Phoenix, USA
| | | | - David W Dodick
- Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
- Atria Academy of Science and Medicine, New York City, New York, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Trent Anderson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
6
|
De Giorgi R, Cowen PJ, Harmer CJ. Statins in depression: a repurposed medical treatment can provide novel insights in mental health. Int Rev Psychiatry 2022; 34:699-714. [PMID: 36786109 DOI: 10.1080/09540261.2022.2113369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Depression has a large burden, but the development of new drugs for its treatment has proved difficult. Progresses in neuroscience have highlighted several physiopathological pathways, notably inflammatory and metabolic ones, likely involved in the genesis of depressive symptoms. A novel strategy proposes to repurpose established medical treatments of known safety and to investigate their potential antidepressant activity. Among numerous candidates, growing evidence suggests that statins may have a positive role in the treatment of depressive disorders, although some have raised concerns about possible depressogenic effects of these widely prescribed medications. This narrative review summarises relevant findings from translational studies implicating many interconnected neurobiological and neuropsychological, cardiovascular, endocrine-metabolic, and immunological mechanisms by which statins could influence mood. Also, the most recent clinical investigations on the effects of statins in depression are presented. Overall, the use of statins for the treatment of depressive symptoms cannot be recommended based on the available literature, though this might change as several larger, methodologically robust studies are being conducted. Nevertheless, statins can already be acknowledged as a driver of innovation in mental health, as they provide a novel perspective to the physical health of people with depression and for the development of more precise antidepressant treatments.
Collapse
Affiliation(s)
- Riccardo De Giorgi
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom.,Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Philip J Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom.,Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom.,Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| |
Collapse
|
7
|
Analysis of Antidepressant-like Effects and Action Mechanisms of GSB-106, a Small Molecule, Affecting the TrkB Signaling. Int J Mol Sci 2021; 22:ijms222413381. [PMID: 34948177 PMCID: PMC8704497 DOI: 10.3390/ijms222413381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Induction of BDNF-TrkB signaling is associated with the action mechanisms of conventional and fast-acting antidepressants. GSB-106, developed as a small dimeric dipeptide mimetic of BDNF, was previously shown to produce antidepressant-like effects in the mouse Porsolt test, tail suspension test, Nomura water wheel test, in the chronic social defeat stress model and in the inflammation-induced model of depression. In the present study, we evaluated the effect of chronic per os administration of GSB-106 to Balb/c mice under unpredictable chronic mild stress (UCMS). It was observed for the first time that long term GSB-106 treatment (1 mg/kg, 26 days) during ongoing UCMS procedure ameliorated the depressive-like behaviors in mice as indicated by the Porsolt test. In addition, chronic per os administration of GSB-106 resulted in an increase in BDNF levels, which were found to be decreased in the prefrontal cortex and hippocampus of mice after UCMS. Furthermore, prolonged GSB-106 treatment was accompanied by an increase in the content of pTrkB706/707 in the prefrontal cortex and by a pronounced increase in the level of pTrkB816 in both studied brain structures of mice subjected to UCMS procedure. In summary, the present data show that chronic GSB-106 treatment produces an antidepressant-like effect in the unpredictable chronic mild stress model, which is likely to be associated with the regulation of the BDNF-TrkB signaling.
Collapse
|
8
|
Tasleem M, Alrehaily A, Almeleebia TM, Alshahrani MY, Ahmad I, Asiri M, Alabdallah NM, Saeed M. Investigation of Antidepressant Properties of Yohimbine by Employing Structure-Based Computational Assessments. Curr Issues Mol Biol 2021; 43:1805-1827. [PMID: 34889886 PMCID: PMC8929124 DOI: 10.3390/cimb43030127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
The use of pharmaceuticals to treat Major Depressive Disorder (MDD) has several drawbacks, including severe side effects. Natural compounds with great efficacy and few side effects are in high demand due to the global rise in MDD and ineffective treatment. Yohimbine, a natural compound, has been used to treat various ailments, including neurological conditions, since ancient times. Serotonergic neurotransmission plays a crucial role in the pathogenesis of depression; thus, serotonergic receptor agonist/antagonistic drugs are promising anti-depressants. Yohimbine was investigated in this study to determine its antidepressant activity using molecular docking and pharmacokinetic analyses. Additionally, the in silico mutational study was carried out to understand the increase in therapeutic efficiency using site-directed mutagenesis. Conformational changes and fluctuations occurring during wild type and mutant serotonergic receptor, 5-hydroxytryptamine receptors 1A (5HT1A) and yohimbine were assessed by molecular dynamics MD simulation studies. Yohimbine was found to satisfy all the parameters for drug-likeness and pharmacokinetics analysis. It was found to possess a good dock score and hydrogen-bond interactions with wild type 5HT1A structure. Our findings elaborate the substantial efficacy of yohimbine against MDD; however, further bench work studies may be carried out to prove the same.
Collapse
Affiliation(s)
- Munazzah Tasleem
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Correspondence: (M.T.); (M.S.)
| | - Abdulwahed Alrehaily
- Department of Biology, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia;
| | - Tahani M. Almeleebia
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, P.O. Box 61413, Abha 62529, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 62529, Saudi Arabia; (M.Y.A.); (I.A.); (M.A.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 62529, Saudi Arabia; (M.Y.A.); (I.A.); (M.A.)
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 62529, Saudi Arabia; (M.Y.A.); (I.A.); (M.A.)
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohd Saeed
- Department of Biology, College of Sciences University of Hail, P.O. Box 2440, Hail 2440, Saudi Arabia
- Correspondence: (M.T.); (M.S.)
| |
Collapse
|
9
|
Nakajima K, Oiso S. Upregulating Effect of Wheat on Brain-Derived Neurotrophic Factor in Human Lung Adenocarcinoma A549 Cells. J Oleo Sci 2021; 70:867-874. [PMID: 33967169 DOI: 10.5650/jos.ess20327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neurotrophic hypothesis of depression, that is, a deficiency in hippocampal brain-derived neurotrophic factor (BDNF) leads to depression, has gained widespread acceptance. BDNF is synthesized in various peripheral tissues such as the lung, kidney, liver, heart and testis, besides the brain. Peripheral BDNF can traverse the blood-brain barrier and reach the hippocampus; accordingly, substances that upregulate BDNF production in peripheral tissues may be useful in the treatment of depression. The Mediterranean diet, containing high amounts of whole grains including unrefined wheat, vegetables, fruits, nuts, and olive oil, reportedly reduces the risk of depression. The association between the high consumption of unrefined wheat in the Mediterranean diet and BDNF production in peripheral tissues is unclear. In this study, we investigated the BDNF production capacity of human lung adenocarcinoma cell line A549 and the effect of wheat on BDNF production in the cells. Methanol extracts of whole-wheat flour and wheat bran, which are forms of unrefined wheat, increased the BDNF level in the culture medium of A549 cells. However, methanol extract of wheat endosperm had no effect on the BDNF level in these cells. Our findings suggest that wheat bran contains ingredients that upregulate BDNF production in peripheral tissues, and unrefined wheat potentially contributes to the elevation in peripheral BDNF level.
Collapse
Affiliation(s)
- Kensuke Nakajima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Shigeru Oiso
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University.,Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
10
|
Blues in the Brain and Beyond: Molecular Bases of Major Depressive Disorder and Relative Pharmacological and Non-Pharmacological Treatments. Genes (Basel) 2020; 11:genes11091089. [PMID: 32961910 PMCID: PMC7564223 DOI: 10.3390/genes11091089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the extensive research conducted in recent decades, the molecular mechanisms underlying major depressive disorder (MDD) and relative evidence-based treatments remain unclear. Various hypotheses have been successively proposed, involving different biological systems. This narrative review aims to critically illustrate the main pathogenic hypotheses of MDD, ranging from the historical ones based on the monoaminergic and neurotrophic theories, through the subsequent neurodevelopmental, glutamatergic, GABAergic, inflammatory/immune and endocrine explanations, until the most recent evidence postulating a role for fatty acids and the gut microbiota. Moreover, the molecular effects of established both pharmacological and non-pharmacological approaches for MDD are also reviewed. Overall, the existing literature indicates that the molecular mechanisms described in the context of these different hypotheses, rather than representing alternative ones to each other, are likely to contribute together, often with reciprocal interactions, to the development of MDD and to the effectiveness of treatments, and points at the need for further research efforts in this field.
Collapse
|
11
|
Oh SJ, Cheng J, Jang JH, Arace J, Jeong M, Shin CH, Park J, Jin J, Greengard P, Oh YS. Hippocampal mossy cell involvement in behavioral and neurogenic responses to chronic antidepressant treatment. Mol Psychiatry 2020; 25:1215-1228. [PMID: 30837688 DOI: 10.1038/s41380-019-0384-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
Abstract
Most antidepressants, including selective serotonin reuptake inhibitors (SSRIs), initiate their drug actions by rapid elevation of serotonin, but they take several weeks to achieve therapeutic onset. This therapeutic delay suggests slow adaptive changes in multiple neuronal subtypes and their neural circuits over prolonged periods of drug treatment. Mossy cells are excitatory neurons in the dentate hilus that regulate dentate gyrus activity and function. Here we show that neuronal activity of hippocampal mossy cells is enhanced by chronic, but not acute, SSRI administration. Behavioral and neurogenic effects of chronic treatment with the SSRI, fluoxetine, are abolished by mossy cell-specific knockout of p11 or Smarca3 or by an inhibition of the p11/AnxA2/SMARCA3 heterohexamer, an SSRI-inducible protein complex. Furthermore, simple chemogenetic activation of mossy cells using Gq-DREADD is sufficient to elevate the proliferation and survival of the neural stem cells. Conversely, acute chemogenetic inhibition of mossy cells using Gi-DREADD impairs behavioral and neurogenic responses to chronic administration of SSRI. The present data establish that mossy cells play a crucial role in mediating the effects of chronic antidepressant medication. Our results indicate that compounds that target mossy cell activity would be attractive candidates for the development of new antidepressant medications.
Collapse
Affiliation(s)
- Seo-Jin Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyenpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Jia Cheng
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Jin-Hyeok Jang
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyenpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Jeffrey Arace
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Minseok Jeong
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyenpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Chang-Hoon Shin
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyenpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Jeongrak Park
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyenpung-myeon, Dalseong-gun, Daegu, Republic of Korea
| | - Junghee Jin
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyenpung-myeon, Dalseong-gun, Daegu, Republic of Korea.
| |
Collapse
|
12
|
Ma L, Hu P, Zhang J, Cui W, Zhao X. Purpurin exerted antidepressant-like effects on behavior and stress axis reactivity: evidence of serotonergic engagement. Psychopharmacology (Berl) 2020; 237:887-899. [PMID: 31900524 DOI: 10.1007/s00213-019-05422-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022]
Abstract
RATIONALE AND OBJECTIVES Major depression represents a significant public health problem worldwide, and effective regimen is lacking. The present study investigated the antidepressant-like effects of purpurin, a natural anthraquinone compound from Rubia tinctorum L., and explored the underlying mechanism(s). METHODS Forced swim test (FST) and tail suspension test (TST) were used to assess antidepressant-like effects of purpurin in mice. Effects of purpurin on neuroendocrine responsivity were evaluated at the level of corticosterone and ACTH following acute restraint stress and intracerebroventricular injection of corticotrophin-releasing-factor (CRF). Serotonergic mechanisms underlying purpurin antidepressant effect were explored using biochemical, neurochemical, and pharmacological paradigms. RESULTS Chronic purpurin treatment exerted in mice dose-dependently antidepressant-like effects on behavior and stress axis reactivity (n = 9-11 per group). The purpurin-triggered antidepressant-like effects are serotonergically dependent, since purpurin-treated mice showed escalated levels of brain serotonin and suppressed monoamine oxidase (MAO) activity (n = 8-11 per group). Consistently, chemical depletion of brain serotonin by p-chlorophenylalanine (PCPA) abolished the antidepressant-like effects of purpurin on behavior and stress axis responsivity (n = 9-10 per group). Moreover, the antidepressant effect by purpurin was preferentially counteracted by 1A-selective 5-HT receptor antagonist WAY-100635, but potentiated by 1A-selective agonist 8-OH-DPAT and sub-effective dose of serotonergic antidepressant fluoxetine (n = 9-11 per group), suggesting a crucial role for 5-HT1A related serotonergic system in mediating such purpurin antidepressant effect. CONCLUSION We have revealed the antidepressant-like effects of purpurin on both behavior and stress axis reactivity in mice, with serotonergic system that preferentially couples with 5-HT1A receptors being critically engaged.
Collapse
Affiliation(s)
- Li Ma
- Department of Neurology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei Province, China
| | - Pei Hu
- Department of Vasculocardiology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei Province, China
| | - Junfang Zhang
- Department of Pharmacology, Ningbo University, School of Medical Science, Ningbo, China
| | - Wugeng Cui
- Department of Pharmacology, Ningbo University, School of Medical Science, Ningbo, China.
| | - Xin Zhao
- Department of Pharmacology, Ningbo University, School of Medical Science, Ningbo, China.
| |
Collapse
|
13
|
The Relationship between DNA Methylation and Antidepressant Medications: A Systematic Review. Int J Mol Sci 2020; 21:ijms21030826. [PMID: 32012861 PMCID: PMC7037192 DOI: 10.3390/ijms21030826] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 01/31/2023] Open
Abstract
Major depressive disorder (MDD) is the leading cause of disability worldwide and is associated with high rates of suicide and medical comorbidities. Current antidepressant medications are suboptimal, as most MDD patients fail to achieve complete remission from symptoms. At present, clinicians are unable to predict which antidepressant is most effective for a particular patient, exposing patients to multiple medication trials and side effects. Since MDD’s etiology includes interactions between genes and environment, the epigenome is of interest for predictive utility and treatment monitoring. Epigenetic mechanisms of antidepressant medications are incompletely understood. Differences in epigenetic profiles may impact treatment response. A systematic literature search yielded 24 studies reporting the interaction between antidepressants and eight genes (BDNF, MAOA, SLC6A2, SLC6A4, HTR1A, HTR1B, IL6, IL11) and whole genome methylation. Methylation of certain sites within BDNF, SLC6A4, HTR1A, HTR1B, IL11, and the whole genome was predictive of antidepressant response. Comparing DNA methylation in patients during depressive episodes, during treatment, in remission, and after antidepressant cessation would help clarify the influence of antidepressant medications on DNA methylation. Individuals’ unique methylation profiles may be used clinically for personalization of antidepressant choice in the future.
Collapse
|
14
|
Serotonergically dependent antidepressant-like activity on behavior and stress axis responsivity of acacetin. Pharmacol Res 2019; 146:104310. [DOI: 10.1016/j.phrs.2019.104310] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/27/2019] [Accepted: 06/10/2019] [Indexed: 01/22/2023]
|
15
|
Brown SSG, Rutland JW, Verma G, Feldman RE, Alper J, Schneider M, Delman BN, Murrough JM, Balchandani P. Structural MRI at 7T reveals amygdala nuclei and hippocampal subfield volumetric association with Major Depressive Disorder symptom severity. Sci Rep 2019; 9:10166. [PMID: 31308432 PMCID: PMC6629636 DOI: 10.1038/s41598-019-46687-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Subcortical volumetric changes in major depressive disorder (MDD) have been purported to underlie depressive symptomology, however, the evidence to date remains inconsistent. Here, we investigated limbic volumes in MDD, utilizing high-resolution structural images to allow segmentation of the hippocampus and amygdala into their constituent substructures. Twenty-four MDD patients and twenty matched controls underwent structural MRI at 7T field strength. All participants completed the Montgomery-Asberg Depression Rating Scale (MADRS) to quantify depressive symptomology. For the MDD group, volumes of the amygdala right lateral nucleus (p = 0.05, r2 = 0.24), left cortical nucleus (p = 0.032, r2 = 0.35), left accessory basal nucleus (p = 0.04, r2 = 0.28) and bilateral corticoamygdaloid transition area (right hemisphere p = 0.032, r2 = 0.38, left hemisphere p = 0.032, r2 = 0.35) each displayed significant negative associations with MDD severity. The bilateral centrocortical (right hemisphere p = 0.032, r2 = 0.31, left hemisphere p = 0.032, r2 = 0.32) and right basolateral complexes (p = 0.05, r2 = 0.24) also displayed significant negative relationships with depressive symptoms. Using high-field strength MRI, we report the novel finding that MDD severity is consistently negatively associated with amygdala nuclei, linking volumetric reductions with worsening depressive symptoms.
Collapse
Affiliation(s)
- S S G Brown
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States.
| | - J W Rutland
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - G Verma
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - R E Feldman
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J Alper
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - M Schneider
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - B N Delman
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J M Murrough
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - P Balchandani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
16
|
Wang P, Li B, Fan J, Zhang K, Yang W, Ren B, Cui R. Additive antidepressant-like effects of fasting with β-estradiol in mice. J Cell Mol Med 2019; 23:5508-5517. [PMID: 31211521 PMCID: PMC6653417 DOI: 10.1111/jcmm.14434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/12/2019] [Accepted: 04/28/2019] [Indexed: 12/28/2022] Open
Abstract
Our recent study has shown that acute fasting produces antidepressant‐like effects in male mice. However, there is little evidence regarding the antidepressant‐like effects of acute fasting in female mice. Moreover, it is not yet clear whether estrogen produces additive effects with acute fasting. Therefore, this study aims to investigate the antidepressant‐like effects of acute fasting plus estrogen treatment. In this study, the acute fasting produced antidepressant‐like effects in female mice and the antidepressant‐like effects of 9 hours fasting with those of β‐estradiol (E2) were additive. Activity of the cyclic adenosine monophosphate (cAMP) response element‐binding protein (CREB)‐brain‐derived neurotrophic factor (BDNF) pathway in the prefrontal cortex (PFC) and hippocampus (HP) was increased, as well as neurogenesis in the subgranular zone of the hippocampus. Serum ghrelin and estrogen were also increased by fasting plus E2. Furthermore, RNA‐seq analysis indicated that fasting and E2 co‐regulate similar gene expression pathways, underlying similar neurological functions. Taken together, these data suggest that E2 produces additive antidepressant‐like effects with fasting by activating the CREB‐BDNF pathway in the PFC and HP. Genome‐wide transcriptome mapping suggests that fasting may be used as an adjunct to estrogen replacement therapy for the treatment of depression associated with reduced estrogen function.
Collapse
Affiliation(s)
- Pu Wang
- School of Life Sciences, Northeast Normal University, Changchun, P. R. China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Bingzhong Ren
- School of Life Sciences, Northeast Normal University, Changchun, P. R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
17
|
Wang XL, Yuan K, Zhang W, Li SX, Gao GF, Lu L. Regulation of Circadian Genes by the MAPK Pathway: Implications for Rapid Antidepressant Action. Neurosci Bull 2019; 36:66-76. [PMID: 30859414 DOI: 10.1007/s12264-019-00358-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that the circadian rhythm plays a critical role in mood regulation, and circadian disturbances are often found in patients with major depressive disorder (MDD). The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is involved in mediating entrainment of the circadian system. Furthermore, the MAPK/ERK signaling pathway has been shown to be involved in the pathogenesis of MDD and the rapid onset of action of antidepressant therapies, both pharmaceutical and non-pharmaceutical. This review provides an overview of the involvement of the MAPK/ERK pathway in modulating the circadian system in the rapid action of antidepressant therapies. This pathway holds much promise for the development of novel, rapid-onset-of-action therapeutics for MDD.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Kai Yuan
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100191, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China.
| | - George Fu Gao
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China. .,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Lin Lu
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China. .,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100191, China. .,National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China. .,Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, 100191, China.
| |
Collapse
|
18
|
Abstract
Depression and anxiety are the most common mood disorders affecting 300 million sufferers worldwide. Maladaptive changes in the neuroendocrine stress response is cited as the most common underlying cause, though how the circuits underlying this response are controlled at the molecular level, remains largely unknown. Approximately 40% of patients do not respond to current treatments, indicating that untapped mechanisms exist. Here we review recent evidence implicating JNK in the control of anxiety and depressive-like behavior with a particular focus on its action in immature granule cells of the hippocampal neurogenic niche and the potential for therapeutic targeting for affective disorders.
Collapse
Affiliation(s)
- Patrik Hollos
- Turku Centre for Biotechnology, Åbo Akademi and University of Turku, BioCity, Turku FIN, Finland
| | - Francesca Marchisella
- Turku Centre for Biotechnology, Åbo Akademi and University of Turku, BioCity, Turku FIN, Finland
| | - Eleanor T Coffey
- Turku Centre for Biotechnology, Åbo Akademi and University of Turku, BioCity, Turku FIN, Finland
| |
Collapse
|
19
|
Liu L, Zheng J, Huang XF, Zhu X, Ding SM, Ke HM, O'Donnell JM, Zhang HT, Song GQ, Xu Y. The neuroprotective and antidepressant-like effects of Hcyb1, a novel selective PDE2 inhibitor. CNS Neurosci Ther 2018; 24:652-660. [PMID: 29704309 DOI: 10.1111/cns.12863] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
AIMS Depression is currently the most common mood disorder. Regulation of intracellular cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP) signaling by phosphodiesterase (PDE) inhibition has been paid much attention for treatment of depression. This study aimed to investigate the neuroprotective effects of Hcyb1, a novel PDE2 inhibitor, in HT-22 cells and antidepressant-like effects in mouse models of depression. METHODS Hcyb1 was synthesized and its selectivity upon PDE2 was tested. Moreover, HT-22 hippocampal cells were used to determine the effects of Hcyb1 on cell viability, cyclic nucleotide levels, and the downstream molecules related to cAMP/cGMP signaling by neurochemical, enzyme-linked immunosorbent, and immunoblot assays in vitro. The antidepressant-like effects of Hcyb1 were also determined in the forced swimming and tail suspension tests in mice. RESULTS Hcyb1 had a highly selective inhibition of PDE2A (IC50 = 0.57 ± 0.03 μmol/L) and over 250-fold selectivity against other recombinant PDE family members. Hcyb1 at concentrations of 10-10 and 10-9 mol/L significantly increased cell viability after treatment for 24 hours. At concentrations of 10-9 ~10-7 mol/L, Hcyb1 also increased cGMP levels by 1.7~2.3 folds after 10-minute treatment. Furthermore, Hcyb1 at the concentrations of 10-9 mol/L increased both cGMP and cAMP levels 24 hours after treatment. The levels of phosphorylation of CREB and BDNF were also increased by Hcyb1 treatment in HT-22 cells for 24 hours. Finally, in the in vivo tests, Hcyb1 (0.5, 1, and 2 mg/kg, i.g.) decreased the immobility time in both forced swimming and tail suspension tests, without altering locomotor activity. CONCLUSION These results suggest that the novel PDE2 inhibitor Hcyb1 produced neuroprotective and antidepressant-like effects most likely mediated by cAMP/cGMP-CREB-BDNF signaling.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Jing Zheng
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Xian-Feng Huang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Xia Zhu
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shu-Ming Ding
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Heng-Ming Ke
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA
| | - James M O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Han-Ting Zhang
- Department of Behavioral Medicine & Psychiatry and Physiology, Pharmacology & Neuroscience, Rockefeller Neurosciences Institute, West Virginia University Health Science Center, Morgantown, WV, USA
| | - Guo-Qiang Song
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
20
|
SIRT1 Mediates Depression-Like Behaviors in the Nucleus Accumbens. J Neurosci 2017; 36:8441-52. [PMID: 27511015 DOI: 10.1523/jneurosci.0212-16.2016] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/22/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Depression is a recurring and life-threatening illness that affects up to 120 million people worldwide. In the present study, we show that chronic social defeat stress, an ethologically validated model of depression in mice, increases SIRT1 levels in the nucleus accumbens (NAc), a key brain reward region. Increases in SIRT1, a well characterized class III histone deacetylase, after chronic social defeat suggest a role for this enzyme in mediating depression-like behaviors. When resveratrol, a pharmacological activator of SIRT1, was directly infused bilaterally into the NAc, we observed an increase in depression- and anxiety-like behaviors. Conversely, intra-NAc infusions of EX-527, a SIRT1 antagonist, reduced these behaviors; EX-527 also reduced acute stress responses in stress-naive mice. Next, we increased SIRT1 levels directly in NAc by use of viral-mediated gene transfer and observed an increase in depressive- and anxiety-like behaviors when mice were assessed in the open-field, elevated-plus-maze, and forced swim tests. Using a Cre-inducible viral vector system to overexpress SIRT1 selectively in dopamine D1 or D2 subpopulations of medium spiny neurons (MSNs) in the NAc, we found that SIRT1 promotes depressive-like behaviors only when overexpressed in D1 MSNs, with no effect seen in D2 MSNs. Conversely, selective ablation of SIRT1 in the NAc using viral-Cre in floxed Sirt1 mice resulted in decreased depression- and anxiety-like behaviors. Together, these results demonstrate that SIRT1 plays an essential role in the NAc in regulating mood-related behavioral abnormalities and identifies a novel signaling pathway for the development of innovative antidepressants to treat major depressive disorders. SIGNIFICANCE STATEMENT In this study, we demonstrate a pivotal role for SIRT1 in anxiety- and depression-like behaviors in the nucleus accumbens (NAc), a key brain reward region. We show that stress stably induces SIRT1 expression in this brain region and that altering SIRT1 activity using a pharmacological or genetic approach regulates anxiety- and depression-like behaviors. These results suggest that SIRT1 plays an essential role in regulating mood-related behaviors and introduces a novel signaling pathway for the development of innovative antidepressants to treat depression and other stress-related disorders. A recent groundbreaking publication by the CONVERGE Consortium (2015) identified a reproducible association of the SIRT1 locus with major depression in humans. Therefore, our results are timely and have significant translational relevance.
Collapse
|
21
|
Hu P, Ma L, Wang YG, Ye F, Wang C, Zhou WH, Zhao X. Genistein, a dietary soy isoflavone, exerts antidepressant-like effects in mice: Involvement of serotonergic system. Neurochem Int 2017; 108:426-435. [PMID: 28606822 DOI: 10.1016/j.neuint.2017.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/04/2017] [Accepted: 06/07/2017] [Indexed: 12/24/2022]
Abstract
Genistein, a principal isoflavone property of soybeans, possesses multiple pharmacological activities such as neuroprotection. Recently, it was reported that genistein exerted antidepressant-like effects in animal models, but the mechanism of action remains ambiguous. The purpose of this study was to investigate the antidepressant-like effect of genistein in mice and explore the underlying mechanism(s), using two mouse models of depression, i.e. forced swim test (FST) and tail suspension test (TST). Chronic, but not acute (single dose), genistein treatment (5, 15 or 45 mg/kg, p.o., once per day for three weeks) exerted dose-dependently antidepressant-like effect in mice, concomitant with escalated levels of brain monoamines and suppressed monoamine oxidase (MAO) activity. Chemical depletion of brain serotonin by PCPA abrogated the antidepressant-like action of genistein, but it was not the case for ablation of NA by DSP-4. Moreover, the anti-depression by genistein was preferentially counteracted by co-administration of 5-HT1A receptor antagonist WAY-100635, suggesting a pivotal role for 5-HT system coupled with 5-HT1A receptors in mediating such genistein anti-depression. This point was further validated by the fact that genistein action was potentiated by co-treatment with 8-OH-DPAT, a selective 5-HT1A receptor agonist. Collectively, these findings confirm that chronic genistein administration to mice engenders antidepressant-like efficacy evidenced by lessened behavioral despair. Serotonergic system that preferentially couples with 5-HT1A receptors may be critically responsible for the present genistein anti-depression.
Collapse
Affiliation(s)
- Pei Hu
- Department of Vasculocardiology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei Province, China
| | - Li Ma
- Department of Neurology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei Province, China
| | - Yan-Gui Wang
- Department of Geriatrics, Hunan Provincial People's Hospital, Changsha, Hunan Province, China
| | - Feng Ye
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education of China, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chuang Wang
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University, School of Medical Science, Ningbo, Zhejiang province, China
| | - Wen-Hua Zhou
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University, School of Medical Science, Ningbo, Zhejiang province, China
| | - Xin Zhao
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University, School of Medical Science, Ningbo, Zhejiang province, China.
| |
Collapse
|
22
|
Machado-Vieira R, Henter ID, Zarate CA. New targets for rapid antidepressant action. Prog Neurobiol 2017; 152:21-37. [PMID: 26724279 PMCID: PMC4919246 DOI: 10.1016/j.pneurobio.2015.12.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Current therapeutic options for major depressive disorder (MDD) and bipolar disorder (BD) are associated with a lag of onset that can prolong distress and impairment for patients, and their antidepressant efficacy is often limited. All currently approved antidepressant medications for MDD act primarily through monoaminergic mechanisms. Glutamate is the major excitatory neurotransmitter in the central nervous system, and glutamate and its cognate receptors are implicated in the pathophysiology of MDD, and in the development of novel therapeutics for this disorder. The rapid and robust antidepressant effects of the N-methyl-d-aspartate (NMDA) antagonist ketamine were first observed in 2000. Since then, other NMDA receptor antagonists have been studied in MDD. Most have demonstrated relatively modest antidepressant effects compared to ketamine, but some have shown more favorable characteristics. This article reviews the clinical evidence supporting the use of novel glutamate receptor modulators with direct affinity for cognate receptors: (1) non-competitive NMDA receptor antagonists (ketamine, memantine, dextromethorphan, AZD6765); (2) subunit (GluN2B)-specific NMDA receptor antagonists (CP-101,606/traxoprodil, MK-0657); (3) NMDA receptor glycine-site partial agonists (GLYX-13); and (4) metabotropic glutamate receptor (mGluR) modulators (AZD2066, RO4917523/basimglurant). We also briefly discuss several other theoretical glutamate receptor targets with preclinical antidepressant-like efficacy that have yet to be studied clinically; these include α-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionic acid (AMPA) agonists and mGluR2/3 negative allosteric modulators. The review also discusses other promising, non-glutamatergic targets for potential rapid antidepressant effects, including the cholinergic system (scopolamine), the opioid system (ALKS-5461), corticotropin releasing factor (CRF) receptor antagonists (CP-316,311), and others.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Francis TC, Lobo MK. Emerging Role for Nucleus Accumbens Medium Spiny Neuron Subtypes in Depression. Biol Psychiatry 2017; 81:645-653. [PMID: 27871668 PMCID: PMC5352537 DOI: 10.1016/j.biopsych.2016.09.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
The ventral striatum (nucleus accumbens) and its role in mood, reward, and motivation has been the focus of significant research. Despite this interest, little work has addressed cell type-specific distinctions in medium spiny neurons (MSNs), the main projection neurons in the nucleus accumbens and dorsal striatum, and their function in relation to stress and depression. Previous work has shown opposing roles for D1 and D2 receptor MSN subtypes in depression-like outcomes to stress, particularly in regard to repeated neuronal stimulation and excitatory transmission. Yet the mechanisms of action are still unknown. We discuss potential mechanisms by which MSN subtype function promotes dichotomous behavioral outcomes caused by differences in cellular plasticity, subcellular signaling pathways, and genetic expression. This review aims to address our current understanding about the role of nucleus accumbens MSN subtypes in stress-related depression behavior and speculates on how currently understood mechanisms contribute to factors that control the activity of MSNs.
Collapse
Affiliation(s)
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
24
|
Li Q, Qu FL, Gao Y, Jiang YP, Rahman K, Lee KH, Han T, Qin LP. Piper sarmentosum Roxb. produces antidepressant-like effects in rodents, associated with activation of the CREB-BDNF-ERK signaling pathway and reversal of HPA axis hyperactivity. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:9-19. [PMID: 28126450 DOI: 10.1016/j.jep.2017.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There are many plants of genus Piper which have been reported to induce antidepressant-like effects, Piper sarmentosum (PS) is one of them. PS is a Chinese herbal medicine and a traditional edible vegetable. MATERIALS AND METHODS In the present study, the antidepressant-like effects of PS extracts and the ethyl acetate fraction of PS extracts (PSY) were assessed using the open field test (OFT), forced swimming test (FST), and tail suspension test (TST) in mice. Furthermore, we applied a 4 consecutive weeks of chronic unpredictable mild stress (CUMS) as a model of depression in rats, followed by a sucrose preference test. Then we examined the possible mechanisms of this action. The activity of the hypothalamic-pituitary-adrenal (HPA) axis was evaluated by detecting the serum corticosterone (CORT) concentrations, and the protein expression levels of brain-derived neurotrophic factor (BDNF), the phosphorylated form CREB and ERK1/2 were detected by qRT-PCR or Western blot. RESULTS The results showed that PS extracts (100, 200mg/kg) and PSY (12.5, 25, 50mg/kg) treatment produced antidepressant-like effects in mice similar to fluoxetine (20mg/kg), indicated by the reduced immobility time in the FST and TST, while both had no influence on the locomotor activity in the OFT. PSY treatment significantly increased sucrose preference and reduced serum CORT levels in CUMS rats. Moreover, PSY up-regulated BDNF protein levels, and increased CREB and ERK phosphorylation levels in the hippocampus on CUMS rats. CONCLUSIONS These findings suggest that the antidepressant-like effects of PS extracts and PSY are mediated, at least in part, by modulating HPA axis, BDNF, CREB and ERK phosphorylation and expression in the hippocampus.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China; The 102nd Hospital of PLA, 55 Heping North Road, Changzhou 213003, PR China
| | - Fa-Lin Qu
- The 102nd Hospital of PLA, 55 Heping North Road, Changzhou 213003, PR China
| | - Yue Gao
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | - Yi-Ping Jiang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7568, United States
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China; Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7568, United States.
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China.
| |
Collapse
|
25
|
Xian YF, Fan D, Ip SP, Mao QQ, Lin ZX. Antidepressant-Like Effect of Isorhynchophylline in Mice. Neurochem Res 2016; 42:678-685. [PMID: 27900600 DOI: 10.1007/s11064-016-2124-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/19/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023]
Abstract
Isorhynchophylline (IRN), an oxindole alkaloid, has been identified as the main active ingredient responsible for the biological activities of Uncaria rhynchophylla (Miq) Miq ex Havil. (Rubiaceae). Previous studies in our laboratory have revealed that IRN possesses potent neuroprotective effects in different models of Alzheimer's disease. However, the antidepressant-like effects of IRN are remained unclear. The present study aims to evaluate the antidepressant-like effects of IRN. The antidepressant-like effects of IRN was determined by using animal models of depression including forced swimming and tail suspension tests. The acting mechanism was explored by determining the effect of IRN on the levels of monoamine neurotransmitters and the activities of monoamine oxidases. Intragastric administration of IRN at 10, 20 and 40 mg/kg for 7 days caused a significant reduction of immobility time in both forced swimming and tail suspension tests, while IRN did not stimulate locomotor activity in the open-field test. In addition, IRN treatment antagonized reserpine-induced ptosis and significantly enhanced the levels of monoamine neurotransmitters including norepinephrine (NE) and 5-hydroxytryptamine (5-HT), and the activity of monoamine oxidase A (MAO-A) in the hippocampus and frontal cortex of mice. These results suggest that the antidepressant-like effects of IRN are mediated, at least in part, by the inhibition of monoamine oxidases.
Collapse
Affiliation(s)
- Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Ding Fan
- Shenzhen Wellsoon Pharmaceutical Company Limited, Shenzhen, Guangdong, China
| | - Siu-Po Ip
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Qing-Qiu Mao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China.
| |
Collapse
|
26
|
Arango-Lievano M, Jeanneteau F. Timing and crosstalk of glucocorticoid signaling with cytokines, neurotransmitters and growth factors. Pharmacol Res 2016; 113:1-17. [DOI: 10.1016/j.phrs.2016.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 01/05/2023]
|
27
|
Pazini FL, Cunha MP, Azevedo D, Rosa JM, Colla A, de Oliveira J, Ramos-Hryb AB, Brocardo PS, Gil-Mohapel J, Rodrigues ALS. Creatine Prevents Corticosterone-Induced Reduction in Hippocampal Proliferation and Differentiation: Possible Implication for Its Antidepressant Effect. Mol Neurobiol 2016; 54:6245-6260. [DOI: 10.1007/s12035-016-0148-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/19/2016] [Indexed: 01/13/2023]
|
28
|
Landrigan J, Shawaf F, Dwyer Z, Abizaid A, Hayley S. Interactive effects of ghrelin and ketamine on forced swim performance: Implications for novel antidepressant strategies. Neurosci Lett 2016; 669:55-58. [PMID: 27524676 DOI: 10.1016/j.neulet.2016.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
The efficacy of ketamine to alleviate depressive symptoms has promoted a wealth of research exploring alternate therapeutic targets for depression. Given the caveats of ketamine treatment taken together with the increasingly greater emphasis on combinatorial therapeutic approaches to depression, we sought to asses whether the hypothalamic "hunger hormone", ghrelin, would augment the effects of ketamine. Indeed, ghrelin has recently been found to possess antidepressant potential and may be especially effective against the metabolic and feeding deficits observed with depression. Two studies were performed: 1. mice were given an intraperitoneal injection of ghrelin (80μg/kg) or saline, followed by a saline or a low or high dose of ketamine (5 or 10mg/kg) and 2. mice received 10mg/kg of ketamine together with saline or the ghrelin receptor antagonist JMV2959 (3 or 6mg/kg) and Forced Swim Test (FST) performance was assessed. In both studies, ketamine alone reduced FST immobility. Similarly, ghrelin alone reduced swim immobility suggesting an antidepressant-like response. However, ghrelin did not augment the impact of ketamine when co-administered and in fact, it appeared to antagonize its actions at the lower dose. As well, JMV2959 did not significantly influence FST performance. These data confirm the antidepressant-like effects of ketamine and further suggest that ghrelin might have similar properties. Yet, our results caution against combinatorial treatment with these agents, probably owing to unexpected allosteric or other antagonist actions.
Collapse
Affiliation(s)
- Jeffrey Landrigan
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Farah Shawaf
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Zach Dwyer
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
29
|
Caiaffo V, Oliveira BDR, de Sá FB, Evêncio Neto J. Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine. Pharmacol Res Perspect 2016; 4:e00231. [PMID: 27433341 PMCID: PMC4876141 DOI: 10.1002/prp2.231] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 12/13/2022] Open
Abstract
Fluoxetine is a selective serotonin uptake inhibitor that has been widely used to determine the neurotransmission of serotonin in the central nervous system. This substance has emerged as the drug of choice for the treatment of depression due to is safer profile, fewer side effects, and greater tolerability. Studies have found the following important functions of fluoxetine related to the central nervous system: neuroprotection; anti-inflammatory properties similar to standard drugs for the treatment of inflammatory conditions; antioxidant properties, contributing to its therapeutic action and an important intracellular mechanism underlying the protective pharmacological effects seen in clinical practice in the treatment of different stress-related adverse health conditions; and antiapoptotic properties, with greater neuron survival and a reduction in apoptosis mediators as well as oxidative substances, such as superoxide dismutase and hydrogen peroxide. The aim of this study was to perform a review of the literature on the important role of fluoxetine in anti-inflammatory, cell survival, and neuron trophicity mechanisms (antiapoptotic properties) as well as its role regarding enzymes of the antioxidant defense system.
Collapse
Affiliation(s)
- Vitor Caiaffo
- Department of Animal Morphology and Physiology Federal Rural University of Pernambuco Brazil
| | - Belisa D R Oliveira
- Department of Physiotherapy Caruaruense Association of Higher Education Brazil
| | - Fabrício B de Sá
- Department of Animal Morphology and Physiology Federal Rural University of Pernambuco Brazil
| | - Joaquim Evêncio Neto
- Department of Animal Morphology and Physiology Federal Rural University of Pernambuco Brazil
| |
Collapse
|
30
|
Yang C, Sun N, Liu Z, Li X, Xu Y, Zhang K. The interaction of combined effects of the BDNF and PRKCG genes and negative life events in major depressive disorder. Psychiatry Res 2016; 237:72-7. [PMID: 26921055 DOI: 10.1016/j.psychres.2016.01.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/20/2015] [Accepted: 01/31/2016] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) is a mental disorder that results from complex interplay between multiple and partially overlapping sets of susceptibility genes and environmental factors. The brain derived neurotrophic factor (BDNF) and Protein kinase C gamma type (PRKCG) are logical candidate genes in MDD. Among diverse environmental factors, negative life events have been suggested to exert a crucial impact on brain development. In the present study, we hypothesized that interactions between genetic variants in BDNF and PRKCG and negative life events may play an important role in the development of MDD. We recruited a total of 406 patients with MDD and 391 age- and gender-matched control subjects. Gene-environment interactions were analyzed using generalized multifactor dimensionality reduction (GMDR). Under a dominant model, we observed a significant three-way interaction among BDNF rs6265, PRKCG rs3745406, and negative life events. The gene-environment combination of PRKCG rs3745406 C allele, BDNF rs6265 G allele and high level of negative life events (C-G-HN) was significantly associated with MDD (OR, 5.97; 95% CI, 2.71-13.15). To our knowledge, this is the first report of evidence that the BDNF-PRKCG interaction may modify the relationship between negative life events and MDD in the Chinese population.
Collapse
Affiliation(s)
- Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, People's Republic of China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, People's Republic of China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, People's Republic of China
| | - Xinrong Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, People's Republic of China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, People's Republic of China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, People's Republic of China.
| |
Collapse
|
31
|
Antidepressant action of ketamine via mTOR is mediated by inhibition of nitrergic Rheb degradation. Mol Psychiatry 2016; 21:313-9. [PMID: 26782056 PMCID: PMC4830355 DOI: 10.1038/mp.2015.211] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/11/2015] [Accepted: 11/24/2015] [Indexed: 12/14/2022]
Abstract
As traditional antidepressants act only after weeks/months, the discovery that ketamine, an antagonist of glutamate/N-methyl-D-aspartate (NMDA) receptors, elicits antidepressant actions in hours has been transformative. Its mechanism of action has been elusive, though enhanced mammalian target of rapamycin (mTOR) signaling is a major feature. We report a novel signaling pathway wherein NMDA receptor activation stimulates generation of nitric oxide (NO), which S-nitrosylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Nitrosylated GAPDH complexes with the ubiquitin-E3-ligase Siah1 and Rheb, a small G protein that activates mTOR. Siah1 degrades Rheb leading to reduced mTOR signaling, while ketamine, conversely, stabilizes Rheb that enhances mTOR signaling. Drugs selectively targeting components of this pathway may offer novel approaches to the treatment of depression.
Collapse
|
32
|
Ghosh R, Gupta R, Bhatia MS, Tripathi AK, Gupta LK. Comparison of efficacy, safety and brain derived neurotrophic factor (BDNF) levels in patients of major depressive disorder, treated with fluoxetine and desvenlafaxine. Asian J Psychiatr 2015; 18:37-41. [PMID: 26514447 DOI: 10.1016/j.ajp.2015.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/13/2015] [Accepted: 10/04/2015] [Indexed: 12/22/2022]
Abstract
This randomized, open label, prospective, observational study compared clinical efficacy, safety alongwith plasma BDNF levels in outpatients of depression treated with fluoxetine and desvenlafaxine. Patients (aged 18-60 years) with moderate to severe major depressive disorder (MDD) diagnosed by DSM-IV criteria, and Hamilton Rating Scale for Depression (HAM-D) score ≥14, who were prescribed fluoxetine or desvenlafaxine were included (n=30 in each group). Patients were followed up for 12 weeks for evaluation of clinical efficacy, safety along with BDNF levels. In the fluoxetine group, HAM-D scores at the start of treatment was 19±4.09 which significantly (p<0.05) reduced to 9.24±3.98 at 12 weeks. In the desvenlafaxine group, HAM-D scores at the start of treatment was 18±3.75 which significantly (p<0.05) reduced to 10±3.75 at 12 weeks. The BDNF levels in the fluoxetine group were 775.32±30.38pg/ml at the start of treatment which significantly (p<0.05) increased to 850.3±24.92pg/ml at 12 weeks. The BDNF levels in the desvenlafaxine group were 760.5±28.53pg/ml at the start of treatment which significantly (p<0.05) increased to 845.8±32.82pg/ml at 12 weeks. Both the antidepressants were found to be safe and well tolerated. The efficacy and the safety profile of desvenlafaxine is comparable to fluoxetine in patients of MDD. BDNF levels were significantly increased post-treatment with both the antidepressive agents. Whether BDNF may have a prognostic value in predicting treatment response to antidepressant drugs needs to be investigated in a larger patient population.
Collapse
Affiliation(s)
- R Ghosh
- Department of Pharmacology, University College of Medical Sciences & Guru Teg Bahadur Hospital, New Delhi 110095, India
| | - R Gupta
- Department of Pharmacology, University College of Medical Sciences & Guru Teg Bahadur Hospital, New Delhi 110095, India.
| | - M S Bhatia
- Department of Psychiatry, University College of Medical Sciences & Guru Teg Bahadur Hospital, New Delhi 110095, India
| | - A K Tripathi
- Department of Biochemistry, University College of Medical Sciences & Guru Teg Bahadur Hospital, New Delhi 110095, India
| | - L K Gupta
- Department of Pharmacology, Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, India
| |
Collapse
|
33
|
Jayaweera HK, Lagopoulos J, Duffy SL, Lewis SJG, Hermens DF, Norrie L, Hickie IB, Naismith SL. Spectroscopic markers of memory impairment, symptom severity and age of onset in older people with lifetime depression: Discrete roles of N-acetyl aspartate and glutamate. J Affect Disord 2015; 183:31-8. [PMID: 26000754 DOI: 10.1016/j.jad.2015.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/10/2015] [Accepted: 04/10/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Glutamate (Glu) and N-acetyl aspartate (NAA) are markers of excitatory processes and neuronal compromise respectively. Increased Glu and decreased NAA concentrations have been implicated in the pathophysiology of depression and cognitive impairment respectively. OBJECTIVE To determine the relationship between NAA, Glu, memory and key clinical features in older people with lifetime depression compared to comparison subjects. METHOD Thirty-five health-seeking older adults (mean age=63.57 years), with a lifetime depression diagnosis, and 21 age-matched healthy comparison subjects (mean age=65.48 years) underwent neuropsychological testing, psychiatric assessment and proton magnetic resonance spectroscopy from which Glu and NAA were measured (reported as a ratio to creatine). RESULTS Compared to comparison subjects, the depressed subjects showed poorer verbal learning and memory retention. Hippocampal NAA and Glu did not differ significantly between groups. However, in comparison subjects, lower levels of hippocampal Glu were associated with poorer memory retention (r=0.55, p=0.018). In the depressed subjects, lower levels of hippocampal NAA were related to poorer verbal learning (r=0.44, p=0.008) and memory retention (r=0.41, p=0.018). Greater hippocampal Glu was associated with more severe depressive symptoms (r=0.35, p=0.039) and an earlier age of illness onset (r=-0.37, p=0.031). LIMITATIONS This is a cross sectional study with a heterogeneous group of depressed subjects. CONCLUSION Our findings highlight that hippocampal neurometabolites are entwined with both clinical and cognitive features associated with depression in older adults and further suggest that differential mechanisms may underpin these features.
Collapse
Affiliation(s)
- Hirosha K Jayaweera
- Healthy Brain Ageing Program, Brain & Mind Research Institute, University of Sydney NSW Australia; Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia
| | - Jim Lagopoulos
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia
| | - Shantel L Duffy
- Healthy Brain Ageing Program, Brain & Mind Research Institute, University of Sydney NSW Australia; Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia; School of Psychology, University of Sydney NSW Australia
| | - Simon J G Lewis
- Healthy Brain Ageing Program, Brain & Mind Research Institute, University of Sydney NSW Australia; Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia
| | - Daniel F Hermens
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia
| | - Louisa Norrie
- Healthy Brain Ageing Program, Brain & Mind Research Institute, University of Sydney NSW Australia; Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia
| | - Ian B Hickie
- Healthy Brain Ageing Program, Brain & Mind Research Institute, University of Sydney NSW Australia; Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain & Mind Research Institute, University of Sydney NSW Australia; Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia; School of Psychology, University of Sydney NSW Australia.
| |
Collapse
|
34
|
Dale E, Bang-Andersen B, Sánchez C. Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem Pharmacol 2015; 95:81-97. [DOI: 10.1016/j.bcp.2015.03.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/13/2015] [Indexed: 12/28/2022]
|
35
|
Freudenberg F, Celikel T, Reif A. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: central mediators of pathophysiology and antidepressant activity? Neurosci Biobehav Rev 2015; 52:193-206. [PMID: 25783220 DOI: 10.1016/j.neubiorev.2015.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/23/2015] [Accepted: 03/06/2015] [Indexed: 12/27/2022]
Abstract
Depression is a major psychiatric disorder affecting more than 120 million people worldwide every year. Changes in monoaminergic transmitter release are suggested to take part in the pathophysiology of depression. However, more recent experimental evidence suggests that glutamatergic mechanisms might play a more central role in the development of this disorder. The importance of the glutamatergic system in depression was particularly highlighted by the discovery that N-methyl-D-aspartate (NMDA) receptor antagonists (particularly ketamine) exert relatively long-lasting antidepressant like effects with rapid onset. Importantly, the antidepressant-like effects of NMDA receptor antagonists, but also other antidepressants (both classical and novel), require activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Additionally, expression of AMPA receptors is altered in patients with depression. Moreover, preclinical evidence supports an important involvement of AMPA receptor-dependent signaling and plasticity in the pathophysiology and treatment of depression. Here we summarize work published on the involvement of AMPA receptors in depression and discuss a possible central role for AMPA receptors in the pathophysiology, course and treatment of depression.
Collapse
Affiliation(s)
- Florian Freudenberg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - Tansu Celikel
- Department of Neurophysiology, Donders Center for Neuroscience, Radboud University Nijmegen, 6500 AA Nijmegen, The Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany
| |
Collapse
|
36
|
Lindemann L, Porter RH, Scharf SH, Kuennecke B, Bruns A, von Kienlin M, Harrison AC, Paehler A, Funk C, Gloge A, Schneider M, Parrott NJ, Polonchuk L, Niederhauser U, Morairty SR, Kilduff TS, Vieira E, Kolczewski S, Wichmann J, Hartung T, Honer M, Borroni E, Moreau JL, Prinssen E, Spooren W, Wettstein JG, Jaeschke G. Pharmacology of Basimglurant (RO4917523, RG7090), a Unique Metabotropic Glutamate Receptor 5 Negative Allosteric Modulator in Clinical Development for Depression. J Pharmacol Exp Ther 2015; 353:213-33. [DOI: 10.1124/jpet.114.222463] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
37
|
Sierakowiak A, Mattsson A, Gómez-Galán M, Feminía T, Graae L, Aski SN, Damberg P, Lindskog M, Brené S, Åberg E. Hippocampal morphology in a rat model of depression: the effects of physical activity. Open Neuroimag J 2015; 9:1-6. [PMID: 25674191 PMCID: PMC4319211 DOI: 10.2174/1874440001509010001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/01/2014] [Accepted: 12/11/2014] [Indexed: 11/22/2022] Open
Abstract
Accumulating in vivo and ex vivo evidences show that humans suffering from depression have decreased hippocampal volume and altered spine density. Moreover, physical activity has an antidepressant effect in humans and in animal models, but to what extent physical activity can affect hippocampal volume and spine numbers in a model for depression is not known. In this study we analyzed whether physical activity affects hippocampal volume and spine density by analyzing a rodent genetic model of depression, Flinders Sensitive Line Rats (FSL), with Magnetic Resonance Imaging (MRI) and ex vivo Golgi staining. We found that physical activity in the form of voluntary wheel running during 5 weeks increased hippocampal volume. Moreover, runners also had larger numbers of thin spines in the dentate gyrus. Our findings support that voluntary wheel running, which is antidepressive in FSL rats, is associated with increased hippocampal volume and spine numbers.
Collapse
Affiliation(s)
- Adam Sierakowiak
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Sweden
| | - Anna Mattsson
- Department of Neuroscience, Karolinska Institutet, Sweden
| | | | - Teresa Feminía
- Department of Neuroscience, Karolinska Institutet, Sweden
| | - Lisette Graae
- Department of Neuroscience, Karolinska Institutet, Sweden
| | - Sahar Nikkhou Aski
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Sweden
| | - Peter Damberg
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Sweden
| | - Mia Lindskog
- Department of Neuroscience, Karolinska Institutet, Sweden
| | - Stefan Brené
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Sweden
| | - Elin Åberg
- AstraZeneca Translational Science Centre, Personalised Healthcare & Biomarkers, AstraZeneca R&D Innovative Medicines, Solna, Sweden and Department of Clinical Neuroscience, Science for Life Laboratory, Karolinska Institutet, Sweden
| |
Collapse
|
38
|
Wang P, Liu C, Liu L, Zhang X, Ren B, Li B. The Antidepressant-like Effects of Estrogen-mediated Ghrelin. Curr Neuropharmacol 2015; 13:524-35. [PMID: 26412072 PMCID: PMC4790402 DOI: 10.2174/1570159x1304150831120650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/13/2015] [Accepted: 01/24/2015] [Indexed: 12/19/2022] Open
Abstract
Ghrelin, one of the brain-gut peptides, stimulates food-intake. Recently, ghrelin has also shown to play an important role in depression treatment. However, the mechanism of ghrelin's antidepressant-like actions is unknown. On the other hand, sex differences in depression, and the fluctuation of estrogens secretion have been proved to play a key role in depression. It has been reported that women have higher level of ghrelin expression, and ghrelin can stimulate estrogen secretion while estrogen acts as a positive feedback mechanism to up-regulate ghrelin level. Ghrelin may be a potential regulator of reproductive function, and estrogen may have additional effect in ghrelin's antidepressantlike actions. In this review, we summarize antidepressant-like effects of ghrelin and estrogen in basic and clinical studies, and provide new insight on ghrelin's effect in depression.
Collapse
Affiliation(s)
- Pu Wang
- Life Sciences institute, Northeast Normal University, Changchun, China 130024
| | - Changhong Liu
- Life Sciences institute, Northeast Normal University, Changchun, China 130024
| | - Lei Liu
- Life Sciences institute, Northeast Normal University, Changchun, China 130024
| | - Xingyi Zhang
- Jilin provincial key
laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun
130024, China
| | - Bingzhong Ren
- Life Sciences institute, Northeast Normal University, Changchun, China 130024
| | - Bingjin Li
- Life Sciences institute, Northeast Normal University, Changchun, China 130024
- Jilin provincial key
laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun
130024, China
| |
Collapse
|
39
|
Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress. Pharmacol Biochem Behav 2014; 127:7-14. [PMID: 25316306 DOI: 10.1016/j.pbb.2014.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/19/2014] [Accepted: 10/05/2014] [Indexed: 11/23/2022]
Abstract
Guanosine is a guanine-based purine that modulates glutamate uptake and exerts neurotrophic and neuroprotective effects. In a previous study, our group demonstrated that this endogenous nucleoside displays antidepressant-like properties in a predictive animal model. Based on the role of oxidative stress in modulating depressive disorders as well as on the association between the neuroprotective and antioxidant properties of guanosine, here we investigated if its antidepressant-like effect is accompanied by a modulation of hippocampal oxidant/antioxidant parameters. Adult Swiss mice were submitted to an acute restraint stress protocol, which is known to cause behavioral changes that are associated with neuronal oxidative damage. Animals submitted to ARS exhibited an increased immobility time in the forced swimming test (FST) and the administration of guanosine (5mg/kg, p.o.) or fluoxetine (10mg/kg, p.o., positive control) before the exposure to stressor prevented this alteration. Moreover, the significantly increased levels of hippocampal malondialdehyde (MDA; an indicator of lipid peroxidation), induced by ARS were not observed in stressed mice treated with guanosine. Although no changes were found in the hippocampal levels of reduced glutathione (GSH), the group submitted to ARS procedure presented enhanced glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) activities and reduced catalase (CAT) activity in the hippocampus. Guanosine was able to prevent the alterations in GPx, GR, CAT activities, and in SOD/CAT activity ratio, but potentiated the increase in SOD activity elicited by ARS. Altogether, the present findings indicate that the observed antidepressant-like effects of guanosine might be related, at least in part, to its capability of modulating antioxidant defenses and mitigating hippocampal oxidative damage induced by ARS.
Collapse
|
40
|
Whittle AJ, Walsh J, de Lecea L. Light and chemical control of neuronal circuits: possible applications in neurotherapy. Expert Rev Neurother 2014; 14:1007-17. [PMID: 25115180 DOI: 10.1586/14737175.2014.948850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Millions of people worldwide suffer from diseases that result from a failure of central pathways to regulate behavioral and physiological processes. Advances in genetics and pharmacology have already allowed us to appreciate that rather than this dysregulation being systemic throughout the brain, it is usually rooted in specific subsets of dysfunctional cells within discrete neurological circuits. This article discusses the advent of opto- and chemogenetic tools and how they are providing the means to dissect these circuits with a degree of temporal and spatial sensitivity not previously possible. We also highlight the potential applications for treating disease and the key developments likely to have the greatest impact over the next 5 years.
Collapse
Affiliation(s)
- Andrew J Whittle
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
41
|
Mehta D, Newport DJ, Frishman G, Kraus L, Rex-Haffner M, Ritchie JC, Lori A, Knight BT, Stagnaro E, Ruepp A, Stowe ZN, Binder EB. Early predictive biomarkers for postpartum depression point to a role for estrogen receptor signaling. Psychol Med 2014; 44:2309-2322. [PMID: 24495551 DOI: 10.1017/s0033291713003231] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Postpartum depression (PPD) affects approximately 13% of women and has a negative impact on mother and infant, hence reliable biological tests for early detection of PPD are essential. We aimed to identify robust predictive biomarkers for PPD using peripheral blood gene expression profiles in a hypothesis-free genome-wide study in a high-risk, longitudinal cohort. METHOD We performed a genome-wide association study in a longitudinal discovery cohort comprising 62 women with psychopathology. Gene expression and hormones were measured in the first and third pregnancy trimesters and early postpartum (201 samples). The replication cohort comprised 24 women with third pregnancy trimester gene expression measures. Gene expression was measured on Illumina-Human HT12 v4 microarrays. Plasma estradiol and estriol were measured. Statistical analysis was performed in R. RESULTS We identified 116 transcripts differentially expressed between the PPD and euthymic women during the third trimester that allowed prediction of PPD with an accuracy of 88% in both discovery and replication cohorts. Within these transcripts, significant enrichment of transcripts implicated that estrogen signaling was observed and such enrichment was also evident when analysing published gene expression data predicting PPD from a non-risk cohort. While plasma estrogen levels were not different across groups, women with PPD displayed an increased sensitivity to estrogen signaling, confirming the previously proposed hypothesis of increased sex-steroid sensitivity as a susceptibility factor for PPD. CONCLUSIONS These results suggest that PPD can be robustly predicted in currently euthymic women as early as the third trimester and these findings have implications for predictive testing of high-risk women and prevention and treatment for PPD.
Collapse
Affiliation(s)
- D Mehta
- Max Planck Institute of Psychiatry, Munich,Germany
| | - D J Newport
- Emory University School of Medicine,Department of Psychiatry and Behavioral Sciences, Atlanta, GA,USA
| | - G Frishman
- Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg,Germany
| | - L Kraus
- Max Planck Institute of Psychiatry, Munich,Germany
| | | | - J C Ritchie
- Department of Pathology and Laboratory Medicine,Emory University,Atlanta, GA,USA
| | - A Lori
- Department of Human Genetics,Emory University,Atlanta, GA,USA
| | - B T Knight
- Psychiatry Research Institute,University of Arkansas for Medical Sciences,Little Rock, AR,USA
| | - E Stagnaro
- Emory University School of Medicine,Department of Psychiatry and Behavioral Sciences, Atlanta, GA,USA
| | - A Ruepp
- Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg,Germany
| | - Z N Stowe
- Psychiatry Research Institute,University of Arkansas for Medical Sciences,Little Rock, AR,USA
| | - E B Binder
- Max Planck Institute of Psychiatry, Munich,Germany
| |
Collapse
|
42
|
On 'polypharmacy' and multi-target agents, complementary strategies for improving the treatment of depression: a comparative appraisal. Int J Neuropsychopharmacol 2014; 17:1009-37. [PMID: 23719026 DOI: 10.1017/s1461145712001496] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Major depression is a heterogeneous disorder, both in terms of symptoms, ranging from anhedonia to cognitive impairment, and in terms of pathogenesis, with many interacting genetic, epigenetic, developmental and environmental causes. Accordingly, it seems unlikely that depressive states could be fully controlled by a drug possessing one discrete mechanism of action and, in the wake of disappointing results with several classes of highly selective agent, multi-modal treatment concepts are attracting attention. As concerns pharmacotherapy, there are essentially two core strategies. First, multi-target antidepressants that act via two or more complementary mechanisms and, second, polypharmacy, which refers to co-administration of two distinct drugs, usually in separate pills. Both multi-target agents and polypharmacy ideally couple a therapeutically unexploited action to a clinically established mechanism in order to enhance efficacy, moderate side-effects, accelerate onset of action and treat a broader range of symptoms. The melatonin MT1/MT2 agonist and 5-HT(2C) antagonist, agomelatine, which is effective in the short- and long-term treatment of depression, exemplifies the former approach, while evidence-based polypharmacy is illustrated by the adjunctive use of second-generation antipsychotics with serotonin reuptake inhibitors for treatment of resistant depression. Histone acetylation and methylation, ghrelin signalling, inflammatory modulators, metabotropic glutamate-7 receptors and trace amine-associated-1 receptors comprise attractive substrates for new multi-target and polypharmaceutical strategies. The present article outlines the rationale underpinning multi-modal approaches for treating depression, and critically compares and contrasts the pros and cons of established and potentially novel multi-target vs. polypharmaceutical treatments. On balance, the former appear the most promising for the elaboration, development and clinical implementation of innovative concepts for the more effective management of depression.
Collapse
|
43
|
Fass DM, Schroeder FA, Perlis RH, Haggarty SJ. Epigenetic mechanisms in mood disorders: targeting neuroplasticity. Neuroscience 2014; 264:112-30. [PMID: 23376737 PMCID: PMC3830721 DOI: 10.1016/j.neuroscience.2013.01.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/19/2013] [Indexed: 12/22/2022]
Abstract
Developing novel therapeutics and diagnostic tools based upon an understanding of neuroplasticity is critical in order to improve the treatment and ultimately the prevention of a broad range of nervous system disorders. In the case of mood disorders, such as major depressive disorder (MDD) and bipolar disorder (BPD), where diagnoses are based solely on nosology rather than pathophysiology, there exists a clear unmet medical need to advance our understanding of the underlying molecular mechanisms and to develop fundamentally new mechanism experimental medicines with improved efficacy. In this context, recent preclinical molecular, cellular, and behavioral findings have begun to reveal the importance of epigenetic mechanisms that alter chromatin structure and dynamically regulate patterns of gene expression that may play a critical role in the pathophysiology of mood disorders. Here, we will review recent advances involving the use of animal models in combination with genetic and pharmacological probes to dissect the underlying molecular mechanisms and neurobiological consequence of targeting this chromatin-mediated neuroplasticity. We discuss evidence for the direct and indirect effects of mood stabilizers, antidepressants, and antipsychotics, among their many other effects, on chromatin-modifying enzymes and on the epigenetic state of defined genomic loci, in defined cell types and in specific regions of the brain. These data, as well as findings from patient-derived tissue, have also begun to reveal alterations of epigenetic mechanisms in the pathophysiology and treatment of mood disorders. We summarize growing evidence supporting the notion that selectively targeting chromatin-modifying complexes, including those containing histone deacetylases (HDACs), provides a means to reversibly alter the acetylation state of neuronal chromatin and beneficially impact neuronal activity-regulated gene transcription and mood-related behaviors. Looking beyond current knowledge, we discuss how high-resolution, whole-genome methodologies, such as RNA-sequencing (RNA-Seq) for transcriptome analysis and chromatin immunoprecipitation-sequencing (ChIP-Seq) for analyzing genome-wide occupancy of chromatin-associated factors, are beginning to provide an unprecedented view of both specific genomic loci as well as global properties of chromatin in the nervous system. These methodologies when applied to the characterization of model systems, including those of patient-derived induced pluripotent cell (iPSC) and induced neurons (iNs), will greatly shape our understanding of epigenetic mechanisms and the impact of genetic variation on the regulatory regions of the human genome that can affect neuroplasticity. Finally, we point out critical unanswered questions and areas where additional data are needed in order to better understand the potential to target mechanisms of chromatin-mediated neuroplasticity for novel treatments of mood and other psychiatric disorders.
Collapse
Affiliation(s)
- D M Fass
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Reseach, 185 Cambridge Street, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - F A Schroeder
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Reseach, 185 Cambridge Street, Boston, MA 02114, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, 149, 13th Street, Charlestown, MA 02129, USA
| | - R H Perlis
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Research, 185 Cambridge Street, Boston, MA 02114, USA
| | - S J Haggarty
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Reseach, 185 Cambridge Street, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Research, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
44
|
Luoni A, Rocha FF, Riva MA. Anatomical specificity in the modulation of activity-regulated genes after acute or chronic lurasidone treatment. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:94-101. [PMID: 24361635 DOI: 10.1016/j.pnpbp.2013.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/04/2013] [Accepted: 12/13/2013] [Indexed: 01/04/2023]
Abstract
Lurasidone is a novel second generation antipsychotic drug characterized by a multi-receptor profile. Besides the high affinity for 5-HT2A and D2 receptors, it is also characterized by potent 5-HT7 receptor antagonism, which may be beneficial for mood and cognition. Considering that dose-dependent changes in receptor occupancy may differentially impact gene transcription, we aimed at investigating the effects of acute and chronic treatments with different doses of lurasidone (1, 3 and 10mg/kg) in rats on the expression of the activity-regulated genes Arc, Zif268 and Npas4, which are markers of neuronal activation and are also associated with neuroadaptive mechanisms. Our results show dose-dependent and anatomically-selective differences after acute and chronic lurasidone treatment. Indeed, the effects produced by acute treatment seem to reflect the modulatory activity of lurasidone at selected neurotransmitter receptors. In fact, low doses of the drug acted in the hippocampus, while high doses acted in the striatum, reflecting the high predominance of D2 receptor expression in this brain region. On the contrary, chronic treatment with lurasidone revealed a different profile of IEGs modulation, possibly reflecting neuroadaptive changes set in motion in response to repetitive drug exposure. In summary, the multi-receptor profile of lurasidone leads to the recruitment of different brain structures in a dose-related manner and this may be important for its therapeutic properties, particularly with respect to antidepressant activity and cognition.
Collapse
Affiliation(s)
- Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, I-20133 Milan, Italy
| | - Fabio F Rocha
- Department of Pharmacological and Biomolecular Sciences, University of Milan, I-20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, I-20133 Milan, Italy; Center of Excellence on Neurodegenerative Diseases, University of Milan, I-20133 Milan, Italy.
| |
Collapse
|
45
|
Garcia-Garcia A, Tancredi AN, Leonardo ED. 5-HT(1A) [corrected] receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology (Berl) 2014; 231:623-36. [PMID: 24337875 PMCID: PMC3927969 DOI: 10.1007/s00213-013-3389-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
RATIONALE Serotonin (5-HT) neurotransmission is intimately linked to anxiety and depression and a diverse body of evidence supports the involvement of the main inhibitory serotonergic receptor, the serotonin-1A (5-HT(1A)) subtype, in both disorders. OBJECTIVES In this review, we examine the function of 5-HT(1A) receptor subpopulations and re-interpret our understanding of their role in mental illness in light of new data, separating both spatial (autoreceptor versus heteroreceptor) and the temporal (developmental versus adult) roles of the endogenous 5-HT(1A) receptors, emphasizing their distinct actions in mediating anxiety and depression-like behaviors. RESULTS It is difficult to unambiguously distinguish the effects of different populations of the 5-HT(1A) receptors with traditional genetic animal models and pharmacological approaches. However, with the advent of novel genetic systems and subpopulation-selective pharmacological agents, direct evidence for the distinct roles of these populations in governing emotion-related behavior is emerging. CONCLUSIONS There is strong and growing evidence for a functional dissociation between auto- and heteroreceptor populations in mediating anxiety and depressive-like behaviors, respectively. Furthermore, while it is well established that 5-HT(1A) receptors act developmentally to establish normal anxiety-like behaviors, the developmental role of 5-HT(1A) heteroreceptors is less clear, and the specific mechanisms underlying the developmental role of each subpopulation are likely to be key elements determining mood control in adult subjects.
Collapse
Affiliation(s)
- Alvaro Garcia-Garcia
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032
- Correspondence should be addressed to either AGG at or EDL at , Telephone: (001) 212-543-5266, Fax: (001) 212-543-5129
| | | | - E. David Leonardo
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032
- Correspondence should be addressed to either AGG at or EDL at , Telephone: (001) 212-543-5266, Fax: (001) 212-543-5129
| |
Collapse
|
46
|
Schneider TM, Beynon C, Sartorius A, Unterberg AW, Kiening KL. Deep brain stimulation of the lateral habenular complex in treatment-resistant depression: traps and pitfalls of trajectory choice. Neurosurgery 2013; 72:ons184-93; discussion ons193. [PMID: 23147781 DOI: 10.1227/neu.0b013e318277a5aa] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) has recently been discussed as a promising treatment option for severe cases of major depression. Experimental data have suggested that the lateral habenular complex (LHb-c) is a central region of depression-related neuronal circuits. Because of its location close to the midline, stereotactic targeting of the LHb-c presents surgeons with distinct challenges. OBJECTIVE To define the obstacles of DBS surgery for stimulation of the LHb-c and thus to establish safe trajectories. METHODS Stereotactic magnetic resonance imaging data sets of 54 hemispheres originating from 27 DBS patients were taken for analysis on a stereotactic planning workstation. After alignment of images according to the anterior commissure--posterior commissure definition, analyses focused on vessels and enlarged ventricles interfering with trajectories. RESULTS As major trajectory obstacles, enlarged ventricles and an interfering superior thalamic vein were found. A standard frontal trajectory (angle > 40° relative to the anterior commissure--posterior commissure in sagittal images) for bilateral stimulation was safely applicable in 48% of patients, whereas a steeper frontal trajectory (angle <40 relative to the anterior commissure--posterior commissure in sagittal images) for bilateral stimulation was possible in 96%. Taken together, safe bilateral targeting of the LHb-c was possible in 98% of all patients. CONCLUSION Targeting LHb-c is a feasible and safe technique in the majority of patients undergoing surgery for DBS. However, meticulous individual planning to avoid interference with ventricles and thalamus-related veins is mandatory because an alternative steep frontal entry point has to be considered in about half of the patients.
Collapse
Affiliation(s)
- Till M Schneider
- Division of Stereotactic Neurosurgery, Department of Neurosurgery, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
47
|
Henningsen K, Woldbye DPD, Wiborg O. Electroconvulsive stimulation reverses anhedonia and cognitive impairments in rats exposed to chronic mild stress. Eur Neuropsychopharmacol 2013; 23:1789-94. [PMID: 23597878 DOI: 10.1016/j.euroneuro.2013.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 03/14/2013] [Accepted: 03/20/2013] [Indexed: 01/13/2023]
Abstract
Electroconvulsive therapy remains the most effective treatment for depression including a fast onset of action. However, this therapeutic approach suffers from some potential drawbacks. In the acute phase this includes amnesia. Electroconvulsive stimulation (ECS) has previously been shown to reverse a depression-like state in the chronic mild stress model of depression (CMS), but the effect of ECS on cognition has not previously been investigated. In this study the CMS model was used to induce a depressive-like condition in rats. The study was designed to investigate the acute effect of ECS treatment on working memory and the chronic effect of repeated ECS treatments on depression-like behavior and working memory. The results indicated that, in the acute phase, ECS treatment induced a working memory deficit in healthy controls unexposed to stress, while repeated treatments reversed stress-induced decline in working memory, as well as recovering rats submitted to the CMS paradigm from the anhedonic-like state. Like in the clinical setting, a single ECS exposure was ineffective in inducing remission from a depression-like state.
Collapse
Affiliation(s)
- K Henningsen
- Centre for Psychiatric Research, Aarhus University Hospital, Denmark
| | | | | |
Collapse
|
48
|
Lewis AS, Picciotto MR. High-affinity nicotinic acetylcholine receptor expression and trafficking abnormalities in psychiatric illness. Psychopharmacology (Berl) 2013; 229:477-85. [PMID: 23624811 PMCID: PMC3766461 DOI: 10.1007/s00213-013-3126-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/15/2013] [Indexed: 12/22/2022]
Abstract
RATIONALE Nicotinic acetylcholine receptors (nAChRs) are a critical component of the cholinergic system of neurotransmission in the brain that modulates important physiological processes such as reward, cognition, and mood. Abnormalities in this system are accordingly implicated in multiple psychiatric illnesses, including addiction, schizophrenia, and mood disorders. There is significantly increased tobacco use, and therefore nicotine intake, in patient populations, and pharmacological agents that act on various nicotinic receptor subtypes ameliorate clinical features of these disorders. Better understanding of the molecular mechanisms underlying cholinergic dysfunction in psychiatric disease will permit more targeted design of novel therapeutic agents. RESULTS The objective of this review is to describe the multiple cellular pathways through which chronic nicotine exposure regulates nAChR expression, and to juxtapose these mechanisms with evidence for altered expression of high-affinity nAChRs in human psychiatric illness. Here, we summarize multiple studies from pre-clinical animal models to human in vivo imaging and post-mortem experiments demonstrating changes in nAChR regulation and expression in psychiatric illness. CONCLUSIONS We conclude that a mechanistic explanation of nAChR abnormalities in psychiatric illness will arise from a fuller understanding of normal nAChR trafficking, along with the detailed study of human tissue, perhaps using novel biotechnological advances, such as induced pluripotent stem cells.
Collapse
Affiliation(s)
| | - Marina R. Picciotto
- Correspondence Dr. Marina R. Picciotto, Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA, , Phone: (203) 737-2041
| |
Collapse
|
49
|
microRNAs as novel antidepressant targets: converging effects of ketamine and electroconvulsive shock therapy in the rat hippocampus. Int J Neuropsychopharmacol 2013; 16:1885-92. [PMID: 23684180 DOI: 10.1017/s1461145713000448] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Early-life stress is a main contributory factor to the onset of depression. Treatments remain inadequate and as such, a large unmet medical need for novel therapeutics remains. Impeding advancement is the poor understanding of the molecular pathology. microRNAs (miRNAs) are novel regulators of gene expression. A paucity of information regarding their role in depressive pathology and antidepressant action remains. This study investigated changes to hippocampal miRNA levels induced via early-life stress in Sprague-Dawley rats and whether antidepressant treatments could reverse these changes. Investigated were the selective serotonin reuptake inhibitor fluoxetine, the rapid acting N-methyl-d-aspartate receptor antagonist ketamine and electroconvulsive shock therapy (ECT). Microarray analysis revealed early-life stress affected the expression of multiple hippocampal miRNAs. Antidepressant treatments reversed some of these effects including a stress-induced change to miR-451. Ketamine and ECT possessed the highest number of common targets suggesting convergence on common pathways. Interestingly all three treatments possessed miR-598-5p as a common target. This demonstrates that changes to hippocampal miRNA expression may represent an important component of stress-induced pathology and antidepressant action may reverse these.
Collapse
|
50
|
|