1
|
Hegemann RU, Abraham WC. Postsynaptic cell firing triggers bidirectional metaplasticity depending on the LTP induction protocol. J Neurophysiol 2021; 125:1624-1635. [PMID: 33760659 DOI: 10.1152/jn.00514.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell firing has been reported to variably upregulate or downregulate subsequently induced long-term potentiation (LTP). The aim of this study was to elucidate the parameters critical to driving each direction of the metaplasticity effect. The main focus was on the commonly used θ-burst stimulation (TBS) and high-frequency stimulation (HFS) protocols that are known to trigger distinct intracellular signaling cascades. To study action potential (AP)-induced metaplasticity, we used intracellular recordings from CA1 pyramidal cells of rat hippocampal slices. Somatic current injections were used to induce θ-burst firing (TBF) or high-frequency firing (HFF) for priming purposes, whereas LTP was induced 15 min later via TBS of Schaffer collaterals in stratum radiatum. TBS-LTP was inhibited by both priming protocols. Conversely, HFS-LTP was facilitated by HFF priming but not affected by TBF priming. Interestingly, both priming protocols reduced AP firing during TBS-LTP induction, and this effect correlated with the reduction of TBS-LTP. However, LTP was not rescued by restoring AP firing with somatic current injections during the TBS. Analysis of intrinsic properties revealed few changes, apart from a priming-induced increase in the medium afterhyperpolarization (HFF priming) and a decrease in the EPSP amplitude/slope ratio (TBF priming), which could in principle contribute to the inhibition of TBS-LTP by reducing depolarization and associated Ca2+ influx following synaptic activity or AP backpropagation. Overall, these data indicate that the more physiological TBS protocol for inducing LTP is particularly susceptible to homeostatic feedback inhibition by prior bouts of postsynaptic cell firing.NEW & NOTEWORTHY The induction of LTP in the hippocampus was bidirectionally regulated by prior postsynaptic cell firing, with θ-burst stimulation-induced LTP being consistently impaired by prior spiking, whereas high-frequency stimulation-induced LTP was either not changed or facilitated. Reductions in cell firing during LTP induction did not explain the LTP impairment. Overall, different patterns of postsynaptic firing induce distinct intracellular changes that can increase or decrease LTP depending on the induction protocol.
Collapse
Affiliation(s)
- Regina U Hegemann
- Department of Psychology, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev 2017; 76:56-66. [PMID: 28434588 PMCID: PMC5407316 DOI: 10.1016/j.neubiorev.2016.12.033] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022]
Abstract
The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential 'druggable' targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 (COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders.
Collapse
Affiliation(s)
- Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, USA; Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, USA
| | - Mathew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology & Neurogenetics, Munich, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Cannabinoid CB1 and CB2 receptors differentially modulate L- and T-type Ca 2+ channels in rat retinal ganglion cells. Neuropharmacology 2017; 124:143-156. [PMID: 28431968 DOI: 10.1016/j.neuropharm.2017.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/15/2017] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
Abstract
Endocannabinoid signaling system is involved in regulating multiple neuronal functions in the central nervous system by activating G-protein coupled cannabinoid CB1 and CB2 receptors (CB1Rs and CB2Rs). Growing evidence has shown that CB1Rs and CB2Rs are extensively expressed in retinal ganglion cells (RGCs). Here, modulation of L- and T-types Ca2+ channels by activating CB1Rs and CB2Rs in RGCs was investigated. Triple immunofluorescent staining showed that L-type subunit CaV1.2 was co-localized with T-type subunits (CaV3.1, CaV3.2 and CaV3.3) in rat RGCs. In acutely isolated rat RGCs, the CB1R agonist WIN55212-2 suppressed both peak and steady-state Ca2+ currents in a dose-dependent manner, with IC50 being 9.6 μM and 8.4 μM, respectively. It was further shown that activation of CB1Rs by WIN55212-2 or ACEA, another CB1R agonist, significantly suppressed both L- and T-type Ca2+ currents, and shifted inactivation curve of T-type one toward hyperpolarization direction. While the effect on L-type Ca2+ channels was mediated by intracellular cAMP/protein kinase A (PKA), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways, only CaMKII signaling pathway was involved in the effect on T-type Ca2+ channels. Furthermore, CB65 and HU308, two specific CB2R agonists, significantly suppressed T-type Ca2+ channels, which was mediated by intracellular cAMP/PKA and CaMKII signaling pathways, but had no effect on L-type channels. These results imply that endogenous cannabinoids may modulate the excitability and the output of RGCs by differentially suppressing the activity of L- and T-type Ca2+ channels through activation of CB1Rs and CB2Rs. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
|
4
|
Gamble-George JC, Baldi R, Halladay L, Kocharian A, Hartley N, Silva CG, Roberts H, Haymer A, Marnett LJ, Holmes A, Patel S. Cyclooxygenase-2 inhibition reduces stress-induced affective pathology. eLife 2016; 5:e14137. [PMID: 27162170 PMCID: PMC4862754 DOI: 10.7554/elife.14137] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/09/2016] [Indexed: 12/31/2022] Open
Abstract
Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Joyonna Carrie Gamble-George
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States
| | - Rita Baldi
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, United States
| | - Lindsay Halladay
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, Bethesda, United States
| | - Adrina Kocharian
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, Bethesda, United States
| | - Nolan Hartley
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States
| | - Carolyn Grace Silva
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, United States
| | - Holly Roberts
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, United States
| | - Andre Haymer
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, United States
| | - Lawrence J Marnett
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, and Vanderbilt-Ingram Cancer Center, Nashville, United States
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, Bethesda, United States
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
- Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|
5
|
Báldi R, Ghose D, Grueter BA, Patel S. Electrophysiological Measurement of Cannabinoid-Mediated Synaptic Modulation in Acute Mouse Brain Slices. CURRENT PROTOCOLS IN NEUROSCIENCE 2016; 75:6.29.1-6.29.19. [PMID: 27063786 PMCID: PMC4866814 DOI: 10.1002/cpns.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Endocannabinoids (eCBs) are a class of bioactive lipids that mediate retrograde synaptic modulation at central and peripheral synapses. The highly lipophilic nature of eCBs and the pharmacological tools available to interrogate this system require unique methodological consideration, especially when applied to ex vivo systems such as electrophysiological analysis in acute brain slices. This unit provides protocols for measuring cannabinoid and eCB-mediated synaptic signaling in mouse brain slices, including analysis of short-term, long-term, and tonic eCB signaling modes, and the unique considerations for working with eCBs and TRPV1/cannabinoid ligands in acute brain slices.
Collapse
Affiliation(s)
- Rita Báldi
- Department of Psychiatry, 2213 Garland Avenue, 8415 MRBIV, Vanderbilt University Medical Center, Nashville, TN 37232-0413, Tel. 615-936-7768, Fax. 615-936-4075
| | - Dipanwita Ghose
- Department of Anesthesiology, 2213 Garland Avenue, P445 MRBIV, Vanderbilt University Medical Center, Nashville, TN 37232-0413, Tel. 615-936-1684, Fax. 615-936-0456
| | - Brad A. Grueter
- Department of Anesthesiology, 2213 Garland Avenue, P435H MRBIV, Vanderbilt University Medical Center, Nashville, TN 37232-0413, Tel. 615-936-2586, Fax. 615-936-0456
| | - Sachin Patel
- Departments of Psychiatry and Molecular Physiology & Biophysics, 2213 Garland Avenue, 8425B MRBIV, Vanderbilt University Medical Center, Nashville, TN 37232-0413, Tel. 615-936-7768, Fax. 615-936-4075
| |
Collapse
|
6
|
Yan L, Pan M, Fu M, Wang J, Huang W, Qian H. Design, synthesis and biological evaluation of novel analgesic agents targeting both cyclooxygenase and TRPV1. Bioorg Med Chem 2016; 24:849-57. [PMID: 26795113 DOI: 10.1016/j.bmc.2016.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 01/08/2023]
Abstract
Multitarget-directed ligands might offer certain advantages over traditional single-target drugs and/or drug combinations. In the present study, a series of novel analgesic agents targeting both cyclooxygenase and TRPV1 were prepared and evaluated in an effort to optimize properties of previously described lead compounds from piperazine, ethanediamine cores. These compounds were evaluated for antagonism of hTRPV1 activation by capsaicin and the ability to inhibit Ovine COX-1 and human recombinant COX-2 in vitro. The favorable potentials of these test compounds were further characterized in preliminary analgesic and side-effects tests in vivo. On the basis of comprehensive evaluations, compound 8d which showed strong TRPV1 antagonistic activity, middle COX-2 inhibition, weak ulcerogenic action and had no hyperthermia side-effect was considered as a safe candidate for the further development of analgesic drugs.
Collapse
Affiliation(s)
- Lin Yan
- Institute of Chemistry & Biology, Henan University, Kaifeng 475004, China
| | - Miaobo Pan
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Mian Fu
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jingjie Wang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; WuXiAppTec (Wuhan) Co., Ltd, Wuhan 430000, China
| | - Wenlong Huang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Hai Qian
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
7
|
TRPV1 activation exacerbates hypoxia/reoxygenation-induced apoptosis in H9C2 cells via calcium overload and mitochondrial dysfunction. Int J Mol Sci 2014; 15:18362-80. [PMID: 25314299 PMCID: PMC4227220 DOI: 10.3390/ijms151018362] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/27/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023] Open
Abstract
Transient potential receptor vanilloid 1 (TRPV1) channels, which are expressed on sensory neurons, elicit cardioprotective effects during ischemia reperfusion injury by stimulating the release of neuropeptides, namely calcitonin gene-related peptide (CGRP) and substance P (SP). Recent studies show that TRPV1 channels are also expressed on cardiomyocytes and can exacerbate air pollutant-induced apoptosis. However, whether these channels present on cardiomyocytes directly modulate cell death and survival pathways during hypoxia/reoxygenation (H/R) injury remains unclear. In the present study, we investigated the role of TRPV1 in H/R induced apoptosis of H9C2 cardiomyocytes. We demonstrated that TRPV1 was indeed expressed in H9C2 cells, and activated by H/R injury. Although neuropeptide release caused by TRPV1 activation on sensory neurons elicits a cardioprotective effect, we found that capsaicin (CAP; a TRPV1 agonist) treatment of H9C2 cells paradoxically enhanced the level of apoptosis by increasing intracellular calcium and mitochondrial superoxide levels, attenuating mitochondrial membrane potential, and inhibiting mitochondrial biogenesis (measured by the expression of ATP synthase β). In contrast, treatment of cells with capsazepine (CPZ; a TRPV1 antagonist) or TRPV1 siRNA attenuated H/R induced-apoptosis. Furthermore, CAP and CPZ treatment revealed a similar effect on cell viability and mitochondrial superoxide production in primary cardiomyocytes. Finally, using both CGRP8–37 (a CGRP receptor antagonist) and RP67580 (a SP receptor antagonist) to exclude the confounding effects of neuropeptides, we confirmed aforementioned detrimental effects as TRPV1−/− mouse hearts exhibited improved cardiac function during ischemia/reperfusion. In summary, direct activation of TRPV1 in myocytes exacerbates H/R-induced apoptosis, likely through calcium overload and associated mitochondrial dysfunction. Our study provides a novel understanding of the role of myocyte TRPV1 channels in ischemia/reperfusion injury that sharply contrasts with its known extracardiac neuronal effects.
Collapse
|
8
|
Zhang Y, Xie H, Lei G, Li F, Pan J, Liu C, Liu Z, Liu L, Cao X. Regulatory effects of anandamide on intracellular Ca(2+) concentration increase in trigeminal ganglion neurons. Neural Regen Res 2014; 9:878-87. [PMID: 25206906 PMCID: PMC4146256 DOI: 10.4103/1673-5374.131607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2014] [Indexed: 12/20/2022] Open
Abstract
Activation of cannabinoid receptor type 1 on presynaptic neurons is postulated to suppress neurotransmission by decreasing Ca2+ influx through high voltage-gated Ca2+ channels. However, recent studies suggest that cannabinoids which activate cannabinoid receptor type 1 can increase neurotransmitter release by enhancing Ca2+ influx in vitro. The aim of the present study was to investigate the modulation of intracellular Ca2+ concentration by the cannabinoid receptor type 1 agonist anandamide, and its underlying mechanisms. Using whole cell voltage-clamp and calcium imaging in cultured trigeminal ganglion neurons, we found that anandamide directly caused Ca2+ influx in a dose-dependent manner, which then triggered an increase of intracellular Ca2+ concentration. The cyclic adenosine and guanosine monophosphate-dependent protein kinase systems, but not the protein kinase C system, were involved in the increased intracellular Ca2+ concentration by anandamide. This result showed that anandamide increased intracellular Ca2+ concentration and inhibited high voltage-gated Ca2+ channels through different signal transduction pathways.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Xie
- Jingzhou Central Hospital, Jingzhou, Hubei Province, China
| | - Gang Lei
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fen Li
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianping Pan
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Changjin Liu
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhiguo Liu
- Department of Bioengineering, Wuhan Institute of Engineering, Wuhan, Hubei Province, China
| | - Lieju Liu
- Department of Bioengineering, Wuhan Institute of Engineering, Wuhan, Hubei Province, China
| | - Xuehong Cao
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China ; Department of Bioengineering, Wuhan Institute of Engineering, Wuhan, Hubei Province, China
| |
Collapse
|
9
|
Liu K, Gui B, Sun Y, Shi N, Gu Z, Zhang T, Sun X. Inhibition of L-type Ca(2+) channels by curcumin requires a novel protein kinase-theta isoform in rat hippocampal neurons. Cell Calcium 2012; 53:195-203. [PMID: 23261315 DOI: 10.1016/j.ceca.2012.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/18/2012] [Accepted: 11/19/2012] [Indexed: 11/26/2022]
Abstract
Curcumin, a major active compound of Curcuma longa, has been reported to have potent neuroprotective activities. However to date, the relevant mechanisms still remain unclear. In this study, we report that curcumin selectively inhibits L-type Ca(2+) channel currents in cultured rat hippocampal neurons. Whole-cell currents were recorded using 10mM barium as a charge carrier. Curcumin reversibly inhibited high-voltage-gated Ca(2+) channel (HVGCC) currents (IBa) in a concentration-dependent manner but had no apparent effects on the cells treated with nifedipine, a specific L-type Ca(2+) channel blocker. Curcumin did not markedly affect the activation of L-type Ca(2+) channels while significantly shifted the inactivation curve in the hyperpolarizing direction. Pretreatment of cells with the classical and novel PKC antagonists GF109203X and calphostin C completely abolished curcumin-induced IBa inhibition, whereas the classical PKC antagonist Gö6976 or inhibition of PKA activity elicited no such effects. Moreover, the curcumin-induced IBa response was abolished by intracellular application of the PKC-θ inhibitory peptide PKC-θ-IP or by siRNA knockdown of PKC-θ in cultured rat hippocampal neurons. In these neurons, novel isoforms of PKC including delta (PKC-δ), epsilon (PKC-ɛ) and theta (PKC-θ), but not eta (PKC-η), were endogenously expressed. Taken together, these results suggest that curcumin selectively inhibits IBavia a novel PKC-θ-dependent pathway, which could contribute to its neuroprotective effects in rat hippocampal neurons.
Collapse
Affiliation(s)
- Kangyong Liu
- Department of Neurology, Shanghai Pudong New Area Zhoupu Hospital, Shanghai 201138, PR China
| | | | | | | | | | | | | |
Collapse
|
10
|
Kuiper EFE, Nelemans A, Luiten P, Nijholt I, Dolga A, Eisel U. K(Ca)2 and k(ca)3 channels in learning and memory processes, and neurodegeneration. Front Pharmacol 2012; 3:107. [PMID: 22701424 PMCID: PMC3372087 DOI: 10.3389/fphar.2012.00107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/19/2012] [Indexed: 11/13/2022] Open
Abstract
Calcium-activated potassium (KCa) channels are present throughout the central nervous system as well as many peripheral tissues. Activation of KCa channels contribute to maintenance of the neuronal membrane potential and was shown to underlie the afterhyperpolarization (AHP) that regulates action potential firing and limits the firing frequency of repetitive action potentials. Different subtypes of KCa channels were anticipated on the basis of their physiological and pharmacological profiles, and cloning revealed two well defined but phylogenetic distantly related groups of channels. The group subject of this review includes both the small conductance KCa2 channels (KCa2.1, KCa2.2, and KCa2.3) and the intermediate-conductance (KCa3.1) channel. These channels are activated by submicromolar intracellular Ca2+ concentrations and are voltage independent. Of all KCa channels only the KCa2 channels can be potently but differentially blocked by the bee-venom apamin. In the past few years modulation of KCa channel activation revealed new roles for KCa2 channels in controlling dendritic excitability, synaptic functioning, and synaptic plasticity. Furthermore, KCa2 channels appeared to be involved in neurodegeneration, and learning and memory processes. In this review, we focus on the role of KCa2 and KCa3 channels in these latter mechanisms with emphasis on learning and memory, Alzheimer’s disease and on the interplay between neuroinflammation and different neurotransmitters/neuromodulators, their signaling components and KCa channel activation.
Collapse
Affiliation(s)
- Els F E Kuiper
- Molecular Neurobiology, University of Groningen Groningen, Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Marty VN, Spigelman I. Long-lasting alterations in membrane properties, k(+) currents, and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence. Front Neurosci 2012; 6:86. [PMID: 22701402 PMCID: PMC3370662 DOI: 10.3389/fnins.2012.00086] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/22/2012] [Indexed: 01/19/2023] Open
Abstract
Chronic alcohol exposure causes marked changes in reinforcement mechanisms and motivational state that are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system. Although the NAcc plays an important role in mediating alcohol-seeking behaviors, little is known about the molecular mechanisms underlying alcohol-induced neuroadaptive changes in NAcc function. The aim of this study was to investigate the effects of chronic intermittent ethanol (CIE) treatment, a rat model of alcohol withdrawal and dependence, on intrinsic electrical membrane properties and glutamatergic synaptic transmission of medium spiny neurons (MSNs) in the NAcc core during protracted withdrawal. We show that CIE treatment followed by prolonged withdrawal increased the inward rectification of MSNs observed at hyperpolarized potentials. In addition, MSNs from CIE-treated animals displayed a lower input resistance, faster action potentials (APs), and larger fast afterhyperpolarizations (fAHPs) than MSNs from vehicle-treated animals, all suggestive of increases in K(+)-channel conductances. Significant increases in the Cs(+)-sensitive inwardly rectifying K(+)-current accounted for the increased input resistance, while increases in the A-type K(+)-current accounted for the faster APs and increased fAHPs in MSNs from CIE rats. We also show that the amplitude and the conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated mEPSCs were enhanced in CIE-treated animals due to an increase in a small fraction of functional postsynaptic GluA2-lacking AMPARs. These long-lasting modifications of excitability and excitatory synaptic receptor function of MSNs in the NAcc core could play a critical role in the neuroadaptive changes underlying alcohol withdrawal and dependence.
Collapse
Affiliation(s)
- Vincent N Marty
- Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, CA, USA
| | | |
Collapse
|