1
|
Tardelli VS, Berro LF, Gerra G, Tadonio L, Bisaga A, Fidalgo TM. Prescription psychostimulants for cocaine use disorder: A review from molecular basis to clinical approach. Addict Biol 2023; 28:e13271. [PMID: 37016755 PMCID: PMC10499006 DOI: 10.1111/adb.13271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023]
Abstract
Cocaine use is a public health concern in many countries worldwide, particularly in the Americas and Oceania. Overdose deaths involving stimulants, such as cocaine, have been increasing markedly in North America, especially with concurrent opioid involvement. To date, no pharmacological treatment is available to treat stimulant (including cocaine) use disorders. Prescription psychostimulants (PPs) could be useful to treat cocaine use disorder (CUD) as they share the pharmacological effects with cocaine, as evidenced by a recent meta-analysis that assessed 38 randomized clinical trials (RCTs). PPs were found to promote sustained abstinence and reduce drug use in patients with CUD. The aim of this paper is to provide a narrative review of the clinical pharmacology of PPs and comment on the current stage of evidence supporting PPs to treat CUD. We also propose a model of care that integrates PPs with evidence-based psychosocial interventions (such as cognitive-behavioural therapy [CBT] and contingency management [CM]), a harm reduction approach and case management with social support.
Collapse
Affiliation(s)
- Vitor S. Tardelli
- Departamento de Psiquiatria, Universidade Federal de Sao Paulo (Unifesp), Sao Paulo, SP, Brazil
- Translational Addiction Research Laboratory, Center for Addiction and Mental Health, Toronto, ON, Canada
| | - Lais F. Berro
- Department of Psychiatry and Human Behavior, University of Mississipi Medical Center, Jackson, MS, USA
| | - Gilberto Gerra
- Mental Health Department, Azienda Unitá Sanitaria Locale, Parma, Italy
| | - Leonardo Tadonio
- Mental Health Department, Azienda Unitá Sanitaria Locale, Parma, Italy
| | - Adam Bisaga
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University and the New York State Psychiatric Institute, New York, NY, USA
| | - Thiago M. Fidalgo
- Departamento de Psiquiatria, Universidade Federal de Sao Paulo (Unifesp), Sao Paulo, SP, Brazil
- Young Leaders Program from the National Academy of Medicine, Brazil
| |
Collapse
|
2
|
Tong J, Meyer JH, Boileau I, Ang LC, Fletcher PJ, Furukawa Y, Kish SJ. Serotonin transporter protein in autopsied brain of chronic users of cocaine. Psychopharmacology (Berl) 2020; 237:2661-2671. [PMID: 32494974 PMCID: PMC7502513 DOI: 10.1007/s00213-020-05562-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
RATIONALE The long-held speculation that the brain serotonin system mediates some behavioral effects of the psychostimulant cocaine is supported in part by the high affinity of cocaine for the serotonin transporter (SERT) and by reports that the serotonin transporter (SERT), estimated by SERT binding, is increased in brain of human chronic cocaine users. Excessive SERT activity and consequent synaptic serotonin deficiency might cause a behavioral (e.g., mood) abnormality in chronic users of the drug. OBJECTIVE AND METHODS Previous studies focused on changes in SERT binding, which might not necessarily reflect changes in SERT protein. Therefore, we compared levels of SERT protein, using a quantitative Western blot procedure, in autopsied brain (striatum, cerebral cortices) of chronic human cocaine users (n = 9), who all tested positive for the drug/metabolite in brain, to those in control subjects (n = 15) and, as a separate drug of abuse group, in chronic heroin users (n = 11). RESULTS We found no significant difference in protein levels of SERT or the serotonin synthesizing enzyme tryptophan hydroxylase-2 among the control and drug abuse groups. In the cocaine users, no significant correlations were observed between SERT and brain levels of cocaine plus metabolites, or with levels of serotonin or its metabolite 5-hydroxyindoleacetic acid. CONCLUSION Our postmortem data suggest that a robust increase in striatal/cerebral cortical SERT protein is not a common characteristic of chronic, human cocaine users.
Collapse
Affiliation(s)
- Junchao Tong
- Preclinical Imaging, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada. .,Human Brain Laboratory, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Jeffrey H. Meyer
- Brain Health Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Lee-Cyn Ang
- Division of Neuropathology, London Health Sciences Centre, University of Western Ontario, London, ON, Canada
| | - Paul J. Fletcher
- Section of Biopsychology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, and Faculty of Medicine, University & Post Graduate University of Juntendo, Tokyo, Japan
| | - Stephen J. Kish
- Human Brain Laboratory, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
3
|
Abstract
BACKGROUND For a number of mental health disorders, including posttraumatic stress disorders (PTSD), there are not many available treatment options. Recently, there has been renewed interest in the potential of methylenedioxymethamphetamine (MDMA) to restore function for patients with these disorders. The primary hypothesis is that MDMA, via prosocial effects, increases the ability of patients to address the underlying psychopathology of the disorder. However, the use of MDMA poses potential problems of neurotoxicity, in addition to its own potential for misuse. METHODS In this article, the proposed potential of MDMA as an adjunct to psychotherapy for PTSD is evaluated. The rationale for the use of MDMA and the positive results of studies that have administered MDMA in the treatment of PTSD are provided (pros). A description of potential adverse effects of treatment is also presented (cons). An overview of MDMA pharmacology and pharmacokinetics and a description of potential adverse effects of treatments are also presented. Methylenedioxymethamphetamine-produced oxytocin release and decreased expression of fear conditioning as well as one of the MDMA enantiomers (the n R- entaniomer) are suggested as potential mechanisms for the beneficial effects of MDMA in PTSD (suggestions). RESULTS There is some evidence that MDMA facilitates recovery of PTSD. However, the significant adverse effects of MDMA raise concern for its adoption as a pharmacotherapy. Alternative potential treatments with less adverse effects and that are based on the ubiquitous pharmacology of MDMA are presented. CONCLUSIONS We suggest that additional research investigating the basis for the putative beneficial effects of MDMA might reveal an effective treatment with fewer adverse effects. Suggestions of alternative treatments based on the behavioral pharmacology and toxicology of MDMA and its enantiomers are presented.
Collapse
|
4
|
Highgate Q, Schenk S. Comparison of the effects of abstinence on MDMA and cocaine self-administration in rats. Psychopharmacology (Berl) 2018; 235:3233-3241. [PMID: 30209532 DOI: 10.1007/s00213-018-5026-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA) preferentially increases synaptic serotonin (5HT). This response was attenuated following repeated exposure but there was recovery as a result of abstinence. Effects of abstinence on self-administration of many drugs have been documented but the impact on MDMA self-administration is unknown. OBJECTIVE This study compared the effects of abstinence on MDMA and cocaine self-administration. METHODS Six-hour daily MDMA or cocaine sessions were conducted until a total of 350 mg/kg had been self-administered. Following this, rats were randomly assigned to either a 0- or 14-day abstinence group. Self-administration testing then continued for an additional 7 days. RESULTS The latency to self-administer 350 mg/kg was shorter for rats that self-administered cocaine. The temporal distribution of responding within each test session also differed; MDMA self-administration was high during the first hour of each session, and decreased during subsequent hours, whereas cocaine self-administration was evenly distributed throughout each hour of the session. Abstinence decreased MDMA but not cocaine self-administration. CONCLUSIONS The selective reduction of MDMA self-administration following abstinence is consistent with the idea that MDMA-stimulated 5-HT release is inhibitory to MDMA self-administration.
Collapse
Affiliation(s)
- Quenten Highgate
- School of Psychology, Victoria University of Wellington, Wellington, 6011, New Zealand
| | - Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, 6011, New Zealand.
| |
Collapse
|
5
|
Zhang X, Yin Q, Berridge M, Wang C. Application of molecular imaging technology in neurotoxicology research. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:113-124. [PMID: 30199343 DOI: 10.1080/10590501.2018.1492200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular imaging has been widely applied in preclinical research. Among these new molecular imaging modalities, microPET imaging can be utilized as a very powerful tool that can obtain the measurements of multiple biological processes in various organs repeatedly in a same subject. This review discusses how this new approach provides noninvasive biomarker for neurotoxicology research and summarizes microPET findings with multiple radiotracers on the variety of neurotoxicity induced by toxic agents in both the rodent and the nonhuman primate brain.
Collapse
Affiliation(s)
- Xuan Zhang
- a Division of Neurotoxicology , U.S. Food and Drug Administration, National Center for Toxicological Research , Jefferson , Arkansas , USA
| | - Qi Yin
- a Division of Neurotoxicology , U.S. Food and Drug Administration, National Center for Toxicological Research , Jefferson , Arkansas , USA
| | - Marc Berridge
- b 3D Imaging, LLC, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Che Wang
- a Division of Neurotoxicology , U.S. Food and Drug Administration, National Center for Toxicological Research , Jefferson , Arkansas , USA
| |
Collapse
|
6
|
García-Pardo MP, De la Rubia Ortí JE, Aguilar Calpe MA. Differential effects of MDMA and cocaine on inhibitory avoidance and object recognition tests in rodents. Neurobiol Learn Mem 2017; 146:1-11. [PMID: 29081371 DOI: 10.1016/j.nlm.2017.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Drug addiction continues being a major public problem faced by modern societies with different social, health and legal consequences for the consumers. Consumption of psychostimulants, like cocaine or MDMA (known as ecstasy) are highly prevalent and cognitive and memory impairments have been related with the abuse of these drugs. AIM The aim of this work was to review the most important data of the literature in the last 10 years about the effects of cocaine and MDMA on inhibitory avoidance and object recognition tests in rodents. DEVELOPMENT The object recognition and the inhibitory avoidance tests are popular procedures used to assess different types of memory. We compare the effects of cocaine and MDMA administration in these tests, taking in consideration different factors such as the period of life development of the animals (prenatal, adolescence and adult age), the presence of polydrug consumption or the role of environmental variables. Brain structures involved in the effects of cocaine and MDMA on memory are also described. CONCLUSIONS Cocaine and MDMA induced similar impairing effects on the object recognition test during critical periods of lifetime or after abstinence of prolonged consumption in adulthood. Deficits of inhibitory avoidance memory are observed only in adult rodents exposed to MDMA. Psychostimulant abuse is a potential factor to induce memory impairments and could facilitate the development of future neurodegenerative disorders.
Collapse
|
7
|
Neurochemical substrates of the rewarding effects of MDMA: implications for the development of pharmacotherapies to MDMA dependence. Behav Pharmacol 2016; 27:116-32. [PMID: 26650254 DOI: 10.1097/fbp.0000000000000210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent years, studies with animal models of reward, such as the intracranial self-stimulation, self-administration, and conditioned place preference paradigms, have increased our knowledge on the neurochemical substrates of the rewarding effects of 3,4-methylenedioxymetamphetamine (MDMA) in rodents. However, pharmacological and neuroimaging studies with human participants are scarce. Serotonin [5-hydroxytryptamine (5-HT)], dopamine (DA), endocannabinoids, and endogenous opiates are the main neurotransmitter systems involved in the rewarding effects of MDMA in rodents, but other neurotransmitters such as glutamate, acetylcholine, adenosine, and neurotensin are also involved. The most important finding of recent research is the demonstration of differential involvement of specific neurotransmitter receptor subtypes (5-HT2, 5-HT3, DA D1, DA D2, CB1, μ and δ opioid, etc.) and extracellular proteins (DA and 5-HT transporters) in the acquisition, expression, extinction, and reinstatement of MDMA self-administration and conditioned place preference. It is important to extend the research on the effects of different compounds acting on these receptors/transporters in animal models of reward, especially in priming-induced, cue-induced, and stress-induced reinstatement. Increase in knowledge of the neurochemical substrates of the rewarding effects of MDMA may contribute to the design of new pharmacological treatments for individuals who develop MDMA dependence.
Collapse
|
8
|
Vegting Y, Reneman L, Booij J. The effects of ecstasy on neurotransmitter systems: a review on the findings of molecular imaging studies. Psychopharmacology (Berl) 2016; 233:3473-501. [PMID: 27568200 PMCID: PMC5021729 DOI: 10.1007/s00213-016-4396-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/20/2016] [Indexed: 12/20/2022]
Abstract
RATIONALE Ecstasy is a commonly used psychoactive drug with 3,4-methylenedioxymethamphetamine (MDMA) as the main content. Importantly, it has been suggested that use of MDMA may be neurotoxic particularly for serotonergic (5-hydroxytryptamine (5-HT)) neurons. In the past decades, several molecular imaging studies examined directly in vivo the effects of ecstasy/MDMA on neurotransmitter systems. OBJECTIVES The objective of the present study is to review the effects of ecstasy/MDMA on neurotransmitter systems as assessed by molecular imaging studies in small animals, non-human primates and humans. METHODS A search in PubMed was performed. Eighty-eight articles were found on which inclusion and exclusion criteria were applied. RESULTS Thirty-three studies met the inclusion criteria; all were focused on the 5-HT or dopamine (DA) system. Importantly, 9 out of 11 of the animal studies that examined the effects of MDMA on 5-HT transporter (SERT) availability showed a significant loss of binding potential. In human studies, this was the case for 14 out of 16 studies, particularly in heavy users. In abstinent users, significant recovery of SERT binding was found over time. Most imaging studies in humans that focused on the DA system did not find any significant effect of ecstasy/MDMA use. CONCLUSIONS Preclinical and clinical molecular imaging studies on the effects of ecstasy/MDMA use/administration on neurotransmitter systems show quite consistent alterations of the 5-HT system. Particularly, in human studies, loss of SERT binding was observed in heavy ecstasy users, which might reflect 5-HT neurotoxicity, although alternative explanations (e.g. down-regulation of the SERT) cannot be excluded.
Collapse
Affiliation(s)
- Yosta Vegting
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, 1105, AZ, Amsterdam, The Netherlands.
| | - Liesbeth Reneman
- Department of Radiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands ,Brain Imaging Center, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands ,Brain Imaging Center, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Havranek MM, Vonmoos M, Müller CP, Büetiger JR, Tasiudi E, Hulka LM, Preller KH, Mössner R, Grünblatt E, Seifritz E, Quednow BB. Serotonin Transporter and Tryptophan Hydroxylase Gene Variations Mediate Working Memory Deficits of Cocaine Users. Neuropsychopharmacology 2015; 40:2929-37. [PMID: 26013962 PMCID: PMC4864628 DOI: 10.1038/npp.2015.146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/31/2022]
Abstract
Cocaine users consistently develop working memory (WM) impairments but the mediating molecular mechanisms are unknown so far. Recent evidence suggests that the serotonin (5-HT) system is altered by chronic cocaine use, while also being involved in WM processing. Thus, we investigated the effects of genetic variations impacting 5-HT activity and of peripheral 5-HT transporter (5-HTT) mRNA expression on WM performance in cocaine users and stimulant naive controls. Two hundred twenty participants (126 cocaine users, 94 controls) were assessed with visuospatial, spatial, and verbal WM tasks, genotyped for the length polymorphism in the promoter region of the 5-HTT (5-HTTLPR), the variable number of tandem repeats in the second intron of the 5-HTT (VNTR In2), two single-nucleotide polymorphisms (rs4570625 and rs1386497) in the tryptophan hydroxylase-2 (TPH2) gene and quantified for peripheral 5-HTT mRNA expression in whole-blood samples. Several significant gene × environment interactions between 5-HT genotypes and cocaine use on WM emerged: in cocaine users, the long/long (5-HTTLPR), 9+10/9+10 (VNTR In2) and C/C (TPH2 rs1386497) genotypes were risk alleles for WM impairments, whereas in healthy controls these polymorphisms were associated with improved WM performance. Analogously, high 5-HTT mRNA levels were associated with worse executive WM performance in cocaine users but with increased performance in controls. These gene × environment interactions suggest that the 5-HT system has an important role in the development of cognitive deficits in chronic cocaine users. Hence, pharmacological compounds targeting 5-HT neurotransmission might be promising for the treatment of cognitive deficits in cocaine dependence.
Collapse
Affiliation(s)
- Michael M Havranek
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Matthias Vonmoos
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jessica R Büetiger
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Eve Tasiudi
- University Clinic for Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Lea M Hulka
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Katrin H Preller
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Rainald Mössner
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Edna Grünblatt
- University Clinic for Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland,Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland,Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Lenggstrasse 31, CH-8032 Zurich, Switzerland, Tel: +41 44 384 2777, Fax: +41 44 384 3396, E-mail:
| |
Collapse
|
10
|
Howell LL, Cunningham KA. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev 2015; 67:176-97. [PMID: 25505168 DOI: 10.1124/pr.114.009514] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Leonard L Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (L.L.H.); and Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (K.A.C.)
| | - Kathryn A Cunningham
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (L.L.H.); and Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (K.A.C.)
| |
Collapse
|
11
|
Price JS, Shear P, Lisdahl KM. Ecstasy exposure & gender: examining components of verbal memory functioning. PLoS One 2014; 9:e115645. [PMID: 25545890 PMCID: PMC4278706 DOI: 10.1371/journal.pone.0115645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/25/2014] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Studies have demonstrated verbal memory deficits associated with past year ecstasy use, although specific underlying components of these deficits are less understood. Further, prior research suggests potential gender differences in ecstasy-induced serotonergic changes. Therefore, the current study investigated whether gender moderated the relationship between ecstasy exposure and components of verbal memory after controlling for polydrug use and confounding variables. METHOD Data were collected from 65 polydrug users with a wide range of ecstasy exposure (ages 18-35; 48 ecstasy and 17 marijuana users; 0-2310 ecstasy tablets). Participants completed a verbal learning and memory task, psychological questionnaires, and a drug use interview. RESULTS Increased past year ecstasy exposure predicted poorer short and long delayed free and cued recalls, retention, and recall discrimination. Male ecstasy users were more susceptible to dose-dependent deficits in retention than female users. CONCLUSION Past year ecstasy consumption was associated with verbal memory retrieval, retention, and discrimination deficits in a dose-dependent manner in a sample of healthy young adult polydrug users. Male ecstasy users were at particular risk for deficits in retention following a long delay. Gender difference may be reflective of different patterns of polydrug use as well as increased hippocampal sensitivity. Future research examining neuronal correlates of verbal memory deficits in ecstasy users are needed.
Collapse
Affiliation(s)
- Jenessa S. Price
- McLean Hospital – Harvard Medical School, Belmont, Massachusetts, United States of America
| | - Paula Shear
- Department of Psychology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Krista M. Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
12
|
Gould RW, Duke AN, Nader MA. PET studies in nonhuman primate models of cocaine abuse: translational research related to vulnerability and neuroadaptations. Neuropharmacology 2014; 84:138-51. [PMID: 23458573 PMCID: PMC3692588 DOI: 10.1016/j.neuropharm.2013.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/07/2013] [Accepted: 02/07/2013] [Indexed: 01/11/2023]
Abstract
The current review highlights the utility of positron emission tomography (PET) imaging to study the neurobiological substrates underlying vulnerability to cocaine addiction and subsequent adaptations following chronic cocaine self-administration in nonhuman primate models of cocaine abuse. Environmental (e.g., social rank) and sex-specific influences on dopaminergic function and sensitivity to the reinforcing effects of cocaine are discussed. Cocaine-related cognitive deficits have been hypothesized to contribute to high rates of relapse and are described in nonhuman primate models. Lastly, the long-term consequences of cocaine on neurobiology are discussed. PET imaging and longitudinal, within-subject behavioral studies in nonhuman primates have provided a strong framework for designing pharmacological and behavioral treatment strategies to aid drug-dependent treatment seekers. Non-invasive PET imaging will allow for individualized treatment strategies. Recent advances in radiochemistry of novel PET ligands and other imaging modalities can further advance our understanding of stimulant use on the brain. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- Robert W Gould
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Angela N Duke
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| |
Collapse
|
13
|
The role of serotonin in drug use and addiction. Behav Brain Res 2014; 277:146-92. [PMID: 24769172 DOI: 10.1016/j.bbr.2014.04.007] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/26/2022]
Abstract
The use of psychoactive drugs is a wide spread behaviour in human societies. The systematic use of a drug requires the establishment of different drug use-associated behaviours which need to be learned and controlled. However, controlled drug use may develop into compulsive drug use and addiction, a major psychiatric disorder with severe consequences for the individual and society. Here we review the role of the serotonergic (5-HT) system in the establishment of drug use-associated behaviours on the one hand and the transition and maintenance of addiction on the other hand for the drugs: cocaine, amphetamine, methamphetamine, MDMA (ecstasy), morphine/heroin, cannabis, alcohol, and nicotine. Results show a crucial, but distinct involvement of the 5-HT system in both processes with considerable overlap between psychostimulant and opioidergic drugs and alcohol. A new functional model suggests specific adaptations in the 5-HT system, which coincide with the establishment of controlled drug use-associated behaviours. These serotonergic adaptations render the nervous system susceptible to the transition to compulsive drug use behaviours and often overlap with genetic risk factors for addiction. Altogether we suggest a new trajectory by which serotonergic neuroadaptations induced by first drug exposure pave the way for the establishment of addiction.
Collapse
|
14
|
Gonçalves J, Baptista S, Silva AP. Psychostimulants and brain dysfunction: a review of the relevant neurotoxic effects. Neuropharmacology 2014; 87:135-49. [PMID: 24440369 DOI: 10.1016/j.neuropharm.2014.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 12/21/2022]
Abstract
Psychostimulants abuse is a major public concern because is associated with serious health complications, including devastating consequences on the central nervous system (CNS). The neurotoxic effects of these drugs have been extensively studied. Nevertheless, numerous questions and uncertainties remain in our understanding of these toxic events. Thus, the purpose of the present manuscript is to review cellular and molecular mechanisms that might be responsible for brain dysfunction induced by psychostimulants. Topics reviewed include some classical aspects of neurotoxicity, such as monoaminergic system and mitochondrial dysfunction, oxidative stress, excitotoxicity and hyperthermia. Moreover, recent literature has suggested new phenomena regarding the toxic effects of psychostimulants. Thus, we also reviewed the impact of these drugs on neuroinflammatory response, blood-brain barrier (BBB) function and neurogenesis. Assessing the relative importance of these mechanisms on psychostimulants-induced brain dysfunction presents an exciting challenge for future research efforts. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- Joana Gonçalves
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal
| | - Sofia Baptista
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal
| | - Ana Paula Silva
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal.
| |
Collapse
|
15
|
Monoamine transporter inhibitors and substrates as treatments for stimulant abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:129-76. [PMID: 24484977 DOI: 10.1016/b978-0-12-420118-7.00004-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The acute and chronic effects of abused psychostimulants on monoamine transporters and associated neurobiology have encouraged development of candidate medications that target these transporters. Monoamine transporters, in general, and dopamine transporters, in particular, are critical molecular targets that mediate abuse-related effects of psychostimulants such as cocaine and amphetamine. Moreover, chronic administration of psychostimulants can cause enduring changes in neurobiology reflected in dysregulation of monoamine neurochemistry and behavior. The current review will evaluate evidence for the efficacy of monoamine transporter inhibitors and substrates to reduce abuse-related effects of stimulants in preclinical assays of stimulant self-administration, drug discrimination, and reinstatement. In considering deployment of monoamine transport inhibitors and substrates as agonist-type medications to treat stimulant abuse, the safety and abuse liability of the medications are an obvious concern, and this will also be addressed. Future directions in drug discovery should identify novel medications that retain efficacy to decrease stimulant use but possess lower abuse liability and evaluate the degree to which efficacious medications can attenuate or reverse neurobiological effects of chronic stimulant use.
Collapse
|
16
|
Nader MA, Banks ML. Environmental modulation of drug taking: Nonhuman primate models of cocaine abuse and PET neuroimaging. Neuropharmacology 2014; 76 Pt B:510-7. [PMID: 23748095 PMCID: PMC3812308 DOI: 10.1016/j.neuropharm.2013.05.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/15/2013] [Indexed: 11/27/2022]
Abstract
The current review highlights the importance of environmental variables on cocaine self-administration in nonhuman primate models of drug abuse. In addition to describing the behavioral consequences, potential mechanisms of action are discussed, based on imaging results using the non-invasive and translational technique of positron emission tomography (PET). In this review, the role of three environmental variables - both positive and negative - are described: alternative non-drug reinforcers; social rank (as an independent variable) and punishment of cocaine self-administration. These environmental stimuli can profoundly influence brain function and drug self-administration. We focus on environmental manipulations involving non-drug alternatives (e.g., food reinforcement) using choice paradigms. Manipulations such as response cost and social variables (e.g., social rank, social stress) also influence the behavioral effects of drugs. Importantly, these manipulations are amenable to brain imaging studies. Taken together, these studies emphasize the profound impact environmental variables can have on drug taking, which should provide important information related to individual-subject variability in treatment responsiveness, and the imaging work may highlight pharmacological targets for medications related to treating drug abuse. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., 546 NRC, Winston-Salem, NC 27157-1083, USA.
| | | |
Collapse
|
17
|
Tristán-Noguero A, Fernàndez-Castillo N, Roncero C, Sánchez-Mora C, Ramos-Quiroga JA, Daigre C, Egido A, Alvarós J, Prat G, Casas M, Cormand B, Ribasés M. Lack of association between the LPR and VNTR polymorphisms of the serotonin transporter gene and cocaine dependence in a Spanish sample. Psychiatry Res 2013; 210:1287-9. [PMID: 24120036 DOI: 10.1016/j.psychres.2013.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/23/2013] [Accepted: 09/05/2013] [Indexed: 01/25/2023]
Abstract
We genotyped the LPR and VNTR polymorphisms of the serotonin transporter gene in 504 cocaine-dependent patients and 508 controls. No association was detected with either polymorphism or with any haplotype combination. This study provided no evidence that these polymorphisms confer susceptibility to cocaine dependence in our sample.
Collapse
|
18
|
Zhu L, Li G, Choi SR, Plössl K, Chan P, Qiao H, Zha Z, Kung HF. An improved preparation of [18F]FPBM: A potential serotonin transporter (SERT) imaging agent. Nucl Med Biol 2013; 40:974-9. [DOI: 10.1016/j.nucmedbio.2013.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
|
19
|
Groman SM, Jentsch JD. Identifying the molecular basis of inhibitory control deficits in addictions: neuroimaging in non-human primates. Curr Opin Neurobiol 2013; 23:625-31. [PMID: 23528268 DOI: 10.1016/j.conb.2013.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 01/14/2023]
Abstract
Deep insights into the structural, molecular and functional phenotypes underlying addiction have been made possible through in vivo neuroimaging techniques implemented in non-human and human primates. In addition to providing evidence that many of the neural alterations detected in stimulant-dependent individuals can emerge solely through experience with drugs, these studies have identified potential biological phenotypes that influence addiction liability. Here, we review recent advances that have been made in understanding the pathophysiology of stimulant addiction using neuroimaging techniques in non-human primates. Evidence indicates that dysfunction of the dopamine system can be both a cause and consequence of stimulant use and that this bi-directional relationship may be mediated by the ability of individuals to exert inhibitory control over behaviors. Further, recent data has demonstrated an involvement of the serotonin system in addiction-related behaviors and neurobiology, suggesting that the relationship between dopamine and serotonin systems may be altered in addiction. This approach aids in the development of novel targets that can be used in the treatment of addiction.
Collapse
Affiliation(s)
- Stephanie M Groman
- Department of Psychology, University of California, Los Angeles, United States
| | | |
Collapse
|
20
|
Mackey S, Paulus M. Are there volumetric brain differences associated with the use of cocaine and amphetamine-type stimulants? Neurosci Biobehav Rev 2012; 37:300-16. [PMID: 23253945 DOI: 10.1016/j.neubiorev.2012.12.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/06/2012] [Accepted: 12/05/2012] [Indexed: 12/21/2022]
Abstract
While a large number of studies have examined brain volume differences associated with cocaine use, much less is known about structural differences related to amphetamine-type stimulant (ATS) use. What is known about cocaine may help to interpret emerging information on the interaction of brain volume with ATS consumption. To date, volumetric studies on the two types of stimulant have focused almost exclusively on brain differences associated with chronic use. There is considerable variability in the findings between studies which may be explained in part by the wide variety of methodologies employed. Despite this variability, seven recurrent themes are worth noting: (1) loci of lower cortical volume (approximately 10% on average) are consistently reported, (2) almost all studies indicate less volume in all or parts of the frontal cortex, (3) more specifically, a core group of studies implicate the ventromedial prefrontal cortex (including the medial portion of the orbital frontal cortex) and (4) the insula, (5) an enlarged striatal volume has been repeatedly observed, (6) reports on volume differences in the hippocampus and amygdala have been equivocal, (7) evidence supporting differential interaction of brain structure with cocaine vs. ATS is scant but the volume of all or parts of the temporal cortex appear lower in a majority of studies on cocaine but not ATS. Future research should include longitudinal designs on larger sample sizes and examine other stages of exposure to psychostimulants.
Collapse
Affiliation(s)
- Scott Mackey
- Dept. Psychiatry, University of California, San Diego, La Jolla, CA 92037, United States.
| | | |
Collapse
|
21
|
Klomp A, den Hollander B, de Bruin K, Booij J, Reneman L. The effects of ecstasy (MDMA) on brain serotonin transporters are dependent on age-of-first exposure in recreational users and animals. PLoS One 2012; 7:e47524. [PMID: 23115651 PMCID: PMC3480359 DOI: 10.1371/journal.pone.0047524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 09/10/2012] [Indexed: 11/30/2022] Open
Abstract
Rationale and Objective Little is known on the effects of ecstasy (MDMA, a potent 5-HT-releaser and neurotoxin) exposure on brain development in teenagers. The objective of this study was to investigate whether in humans, like previous observations made in animals, the effects of MDMA on the 5-HT system are dependent on age-of-first exposure. Methods 5-HT transporter (SERT) densities in the frontal cortex and midbrain were assessed with [123I]β-CIT single photon emission computed tomography in 33 users of ecstasy. Subjects were stratified for early-exposed users (age-at-first exposure 14–18 years; developing brain), and late-exposed users (age-at-first exposure 18–36 years; mature brain). In parallel, we investigated the effects of age experimentally with MDMA in early-exposed (adolescent) rats and late-exposed (adult) rats using the same radioligand. Results On average, five years after first exposure, we found a strong inverse relationship, wherein age-at-first exposure predicted 79% of the midbrain SERT variability in early (developing brain) exposed ecstasy users, whereas this was only 0.3% in late (mature brain) exposed users (p = 0.007). No such effect was observed in the frontal cortex. In rats, a significant age-BY-treatment effect (p<0.01) was observed as well, however only in the frontal cortex. Conclusions These age-related effects most likely reflect differences in the maturational stage of the 5-HT projection fields at age-at-first exposure and enhanced outgrowth of the 5-HT system due to 5-HT’s neurotrophic effects. Ultimately, our findings stress the need for more knowledge on the effects of pharmacotherapies that alter brain 5-HT levels in the pediatric population.
Collapse
Affiliation(s)
- Anne Klomp
- Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Kora de Bruin
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Booij
- Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Brain Imaging Center, Academic Medical Center, Amsterdam, The Netherlands
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|