1
|
Cortese K, Gagliani MC, Raiteri L. Interactions between Glycine and Glutamate through Activation of Their Transporters in Hippocampal Nerve Terminals. Biomedicines 2023; 11:3152. [PMID: 38137373 PMCID: PMC10740625 DOI: 10.3390/biomedicines11123152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Evidence supports the pathophysiological relevance of crosstalk between the neurotransmitters Glycine and Glutamate and their close interactions; some reports even support the possibility of Glycine-Glutamate cotransmission in central nervous system (CNS) areas, including the hippocampus. Functional studies with isolated nerve terminals (synaptosomes) permit us to study transporter-mediated interactions between neurotransmitters that lead to the regulation of transmitter release. Our main aims here were: (i) to investigate release-regulating, transporter-mediated interactions between Glycine and Glutamate in hippocampal nerve terminals and (ii) to determine the coexistence of transporters for Glycine and Glutamate in these terminals. Purified synaptosomes, analyzed at the ultrastructural level via electron microscopy, were used as the experimental model. Mouse hippocampal synaptosomes were prelabeled with [3H]D-Aspartate or [3H]Glycine; the release of radiolabeled tracers was monitored with the superfusion technique. The main findings were that (i) exogenous Glycine stimulated [3H]D-Aspartate release, partly by activation of GlyT1 and in part, unusually, through GlyT2 transporters and that (ii) D-Aspartate stimulated [3H]glycine release by a process that was sensitive to Glutamate transporter blockers. Based on the features of the experimental model used, it is suggested that functional transporters for Glutamate and Glycine coexist in a small subset of hippocampal nerve terminals, a condition that may also be compatible with cotransmission; glycinergic and glutamatergic transporters exhibit different functions and mediate interactions between the neurotransmitters. It is hoped that increased information on Glutamate-Glycine interactions in different areas, including the hippocampus, will contribute to a better knowledge of drugs acting at "glycinergic" targets, currently under study in relation with different CNS pathologies.
Collapse
Affiliation(s)
- Katia Cortese
- Department of Experimental Medicine (DIMES), Cellular Electron Microscopy Lab, University of Genoa, 16132 Genoa, Italy; (K.C.); (M.C.G.)
| | - Maria Cristina Gagliani
- Department of Experimental Medicine (DIMES), Cellular Electron Microscopy Lab, University of Genoa, 16132 Genoa, Italy; (K.C.); (M.C.G.)
| | - Luca Raiteri
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Section, University of Genoa, 16148 Genoa, Italy
| |
Collapse
|
2
|
Williams RA, Johnson KW, Lee FS, Hemmings HC, Platholi J. A Common Human Brain-Derived Neurotrophic Factor Polymorphism Leads to Prolonged Depression of Excitatory Synaptic Transmission by Isoflurane in Hippocampal Cultures. Front Mol Neurosci 2022; 15:927149. [PMID: 35813074 PMCID: PMC9260310 DOI: 10.3389/fnmol.2022.927149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple presynaptic and postsynaptic targets have been identified for the reversible neurophysiological effects of general anesthetics on synaptic transmission and neuronal excitability. However, the synaptic mechanisms involved in persistent depression of synaptic transmission resulting in more prolonged neurological dysfunction following anesthesia are less clear. Here, we show that brain-derived neurotrophic factor (BDNF), a growth factor implicated in synaptic plasticity and dysfunction, enhances glutamate synaptic vesicle exocytosis, and that attenuation of vesicular BDNF release by isoflurane contributes to transient depression of excitatory synaptic transmission in mice. This reduction in synaptic vesicle exocytosis by isoflurane was acutely irreversible in neurons that release less endogenous BDNF due to a polymorphism (BDNF Val66Met; rs6265) compared to neurons from wild-type mice. These effects were prevented by exogenous application of BDNF. Our findings identify a role for a common human BDNF single nucleotide polymorphism in persistent changes of synaptic function following isoflurane exposure. These short-term persistent alterations in excitatory synaptic transmission indicate a role for human genetic variation in anesthetic effects on synaptic plasticity and neurocognitive function.
Collapse
Affiliation(s)
- Riley A. Williams
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Kenneth W. Johnson
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Francis S. Lee
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States,Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY, United States,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Hugh C. Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States,Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Jimcy Platholi
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States,*Correspondence: Jimcy Platholi,
| |
Collapse
|
3
|
Speigel IA, Hemmings HC. Selective inhibition of gamma aminobutyric acid release from mouse hippocampal interneurone subtypes by the volatile anaesthetic isoflurane. Br J Anaesth 2021; 127:587-599. [PMID: 34384592 DOI: 10.1016/j.bja.2021.06.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The cellular and molecular mechanisms by which general anaesthesia occurs is poorly understood. Hippocampal interneurone subpopulations, which are critical regulators of cognitive function, have diverse neurophysiological and synaptic properties, but their responses to anaesthetics are unclear. METHODS We used live-cell imaging of fluorescent biosensors expressed in mouse hippocampal neurones to delineate interneurone subtype-specific effects of isoflurane on synaptic vesicle exocytosis. The role of voltage-gated sodium channel (Nav) subtype expression in determining isoflurane sensitivity was probed by overexpression or knockdown of specific Nav subtypes in identified interneurones. RESULTS Clinically relevant concentrations of isoflurane differentially inhibited synaptic vesicle exocytosis: to 83.1% (11.7%) of control in parvalbumin-expressing interneurones, and to 58.6% (13.3%) and 64.5% (8.5%) of control in somatostatin-expressing interneurones and glutamatergic neurones, respectively. The relative expression of Nav1.1 (associated with lower sensitivity) and Nav1.6 (associated with higher sensitivity) determined the sensitivity of exocytosis to isoflurane. CONCLUSIONS Isoflurane inhibits synaptic vesicle exocytosis from hippocampal glutamatergic neurones and GABAergic interneurones in a cell-type-specific manner depending on their expression of voltage-gated sodium channel subtypes.
Collapse
Affiliation(s)
- Iris A Speigel
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| | - Hugh C Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Platholi J, Hemmings HC. Effects of general anesthetics on synaptic transmission and plasticity. Curr Neuropharmacol 2021; 20:27-54. [PMID: 34344292 PMCID: PMC9199550 DOI: 10.2174/1570159x19666210803105232] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
General anesthetics depress excitatory and/or enhance inhibitory synaptic transmission principally by modulating the function of glutamatergic or GABAergic synapses, respectively, with relative anesthetic agent-specific mechanisms. Synaptic signaling proteins, including ligand- and voltage-gated ion channels, are targeted by general anesthetics to modulate various synaptic mechanisms, including presynaptic neurotransmitter release, postsynaptic receptor signaling, and dendritic spine dynamics to produce their characteristic acute neurophysiological effects. As synaptic structure and plasticity mediate higher-order functions such as learning and memory, long-term synaptic dysfunction following anesthesia may lead to undesirable neurocognitive consequences depending on the specific anesthetic agent and the vulnerability of the population. Here we review the cellular and molecular mechanisms of transient and persistent general anesthetic alterations of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jimcy Platholi
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| | - Hugh C Hemmings
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| |
Collapse
|
5
|
Hao X, Ou M, Zhang D, Zhao W, Yang Y, Liu J, Yang H, Zhu T, Li Y, Zhou C. The Effects of General Anesthetics on Synaptic Transmission. Curr Neuropharmacol 2020; 18:936-965. [PMID: 32106800 PMCID: PMC7709148 DOI: 10.2174/1570159x18666200227125854] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a class of drugs that target the central nervous system and are widely used for various medical procedures. General anesthetics produce many behavioral changes required for clinical intervention, including amnesia, hypnosis, analgesia, and immobility; while they may also induce side effects like respiration and cardiovascular depressions. Understanding the mechanism of general anesthesia is essential for the development of selective general anesthetics which can preserve wanted pharmacological actions and exclude the side effects and underlying neural toxicities. However, the exact mechanism of how general anesthetics work is still elusive. Various molecular targets have been identified as specific targets for general anesthetics. Among these molecular targets, ion channels are the most principal category, including ligand-gated ionotropic receptors like γ-aminobutyric acid, glutamate and acetylcholine receptors, voltage-gated ion channels like voltage-gated sodium channel, calcium channel and potassium channels, and some second massager coupled channels. For neural functions of the central nervous system, synaptic transmission is the main procedure for which information is transmitted between neurons through brain regions, and intact synaptic function is fundamentally important for almost all the nervous functions, including consciousness, memory, and cognition. Therefore, it is important to understand the effects of general anesthetics on synaptic transmission via modulations of specific ion channels and relevant molecular targets, which can lead to the development of safer general anesthetics with selective actions. The present review will summarize the effects of various general anesthetics on synaptic transmissions and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Li
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| | - Cheng Zhou
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| |
Collapse
|
6
|
Denomme N, Hull JM, Mashour GA. Role of Voltage-Gated Sodium Channels in the Mechanism of Ether-Induced Unconsciousness. Pharmacol Rev 2019; 71:450-466. [PMID: 31471460 DOI: 10.1124/pr.118.016592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite continuous clinical use for more than 170 years, the mechanism of general anesthetics has not been completely characterized. In this review, we focus on the role of voltage-gated sodium channels in the sedative-hypnotic actions of halogenated ethers, describing the history of anesthetic mechanisms research, the basic neurobiology and pharmacology of voltage-gated sodium channels, and the evidence for a mechanistic interaction between halogenated ethers and sodium channels in the induction of unconsciousness. We conclude with a more integrative perspective of how voltage-gated sodium channels might provide a critical link between molecular actions of the halogenated ethers and the more distributed network-level effects associated with the anesthetized state across species.
Collapse
Affiliation(s)
- Nicholas Denomme
- Departments of Pharmacology (N.D.) and Anesthesiology (G.A.M.), Center for Consciousness Science (N.D., G.A.M.), and Neuroscience Graduate Program (J.M.H., G.A.M.), University of Michigan, Ann Arbor, Michigan
| | - Jacob M Hull
- Departments of Pharmacology (N.D.) and Anesthesiology (G.A.M.), Center for Consciousness Science (N.D., G.A.M.), and Neuroscience Graduate Program (J.M.H., G.A.M.), University of Michigan, Ann Arbor, Michigan
| | - George A Mashour
- Departments of Pharmacology (N.D.) and Anesthesiology (G.A.M.), Center for Consciousness Science (N.D., G.A.M.), and Neuroscience Graduate Program (J.M.H., G.A.M.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Yin L, Li L, Deng J, Wang D, Guo Y, Zhang X, Li H, Zhao S, Zhong H, Dong H. Optogenetic/Chemogenetic Activation of GABAergic Neurons in the Ventral Tegmental Area Facilitates General Anesthesia via Projections to the Lateral Hypothalamus in Mice. Front Neural Circuits 2019; 13:73. [PMID: 31798420 PMCID: PMC6878851 DOI: 10.3389/fncir.2019.00073] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/31/2019] [Indexed: 12/26/2022] Open
Abstract
The ventral tegmental area (VTA) reportedly regulates sleep and wakefulness through communication with the lateral hypothalamus (LH). It has also been suggested that adequate anesthesia produced by administration of chloral hydrate, ketamine, or halothane significantly reduces the GABAergic neuronal firing rate within the VTA. However, the exact effects on GABAergic neurons in the VTA and the mechanisms through which these neurons modulate anesthesia through associated neural circuits is still unclear. Here, we used optogenetic and chemogenetic methods to specifically activate or inhibit GABAergic neuronal perikarya in the VTA or their projections to the LH in Vgat-Cre mice. Electroencephalogram (EEG) spectral analyses and burst suppression ratio (BSR) calculations were conducted following administration of 0.8 or 1.0% isoflurane, respectively; and loss of righting reflex (LORR), recovery of righting reflex (RORR), and anesthesia sensitivity were assessed under 1.4% isoflurane anesthesia. The results showed that activation of GABAergic neurons in the VTA increased delta wave power from 40.0 to 46.4% (P = 0.006) and decreased gamma wave power from 15.2 to 11.5% (P = 0.017) during anesthesia maintenance. BSR was increased from 51.8 to 68.3% (P = 0.017). Induction time (LORR) was reduced from 333 to 290 s (P = 0.019), whereas arousal time (RORR) was prolonged from 498 to 661 s (P = 0.007). Conversely, inhibition of VTA GABAergic neurons led to opposite effects. In contrast, optical activation of VTA-LH GABAergic projection neurons increased power of slow delta waves from 44.2 to 48.8% (P = 0.014) and decreased that of gamma oscillations from 10.2 to 8.0%. BSR was increased from 39.9 to 60.2% (P = 0.0002). LORR was reduced from 330 to 232 s (P = 0.002), and RORR increased from 396 to 565 s (P = 0.007). Optical inhibition of the projection neurons caused opposite effects in terms of both the EEG spectrum and the BSR, except that inhibition of this projection did not accelerate arousal time. These results indicate that VTA GABAergic neurons could facilitate the anesthetic effects of isoflurane during induction and maintenance while postponing anesthetic recovery, at least partially, through modulation of their projections to the LH.
Collapse
Affiliation(s)
- Lu Yin
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Long Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - YongXin Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - XinXin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - HuiMing Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - ShiYi Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - HaiXing Zhong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - HaiLong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Koyanagi Y, Torturo CL, Cook DC, Zhou Z, Hemmings HC. Role of specific presynaptic calcium channel subtypes in isoflurane inhibition of synaptic vesicle exocytosis in rat hippocampal neurones. Br J Anaesth 2019; 123:219-227. [PMID: 31056238 PMCID: PMC6676046 DOI: 10.1016/j.bja.2019.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/24/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND P/Q- and N-type voltage-gated calcium channels (VGCC) are the principal subtypes mediating synaptic vesicle (SV) exocytosis. Both the degree of isoflurane inhibition of SV exocytosis and VGCC subtype expression vary between brain regions and neurotransmitter phenotype. We hypothesised that differences in VGCC subtype expression contribute to synapse-selective presynaptic effects of isoflurane. METHODS We used quantitative live-cell imaging to measure exocytosis in cultured rat hippocampal neurones after transfection of the fluorescent biosensor vGlut1-pHluorin. Selective inhibitors of P/Q- and N-type VGCCs were used to isolate subtype-specific effects of isoflurane. RESULTS Inhibition of N-type channels by 1 μM ω-conotoxin GVIA reduced SV exocytosis to 81±5% of control (n=10). Residual exocytosis mediated by P/Q-type channels was further inhibited by isoflurane to 42±4% of control (n=10). The P/Q-type channel inhibitor ω-agatoxin IVA at 0.4 μM inhibited SV exocytosis to 29±3% of control (n=10). Residual exocytosis mediated by N-type channels was further inhibited by isoflurane to 17±3% of control (n=10). Analysis of isoflurane effects at the level of individual boutons revealed no difference in sensitivity to isoflurane between P/Q- or N-type channel-mediated SV exocytosis (P=0.35). There was no correlation between the effect of agatoxin (P=0.91) or conotoxin (P=0.15) and the effect of isoflurane on exocytosis. CONCLUSIONS Sensitivity of SV exocytosis to isoflurane in rat hippocampal neurones is independent of the specific VGCC subtype coupled to exocytosis. The differential sensitivity of VGCC subtypes to isoflurane does not explain the observed neurotransmitter-selective effects of isoflurane in hippocampus.
Collapse
Affiliation(s)
- Yuko Koyanagi
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA; Department of Anesthesiology, Nihon University School of Dentistry, Tokyo, Japan
| | | | - Daniel C Cook
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Zhenyu Zhou
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Hugh C Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Zhou C, Johnson KW, Herold KF, Hemmings HC. Differential Inhibition of Neuronal Sodium Channel Subtypes by the General Anesthetic Isoflurane. J Pharmacol Exp Ther 2019; 369:200-211. [PMID: 30792243 DOI: 10.1124/jpet.118.254938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/19/2019] [Indexed: 02/05/2023] Open
Abstract
Volatile anesthetics depress neurotransmitter release in a brain region- and neurotransmitter-selective manner by unclear mechanisms. Voltage-gated sodium channels (Navs), which are coupled to synaptic vesicle exocytosis, are inhibited by volatile anesthetics through reduction of peak current and modulation of gating. Subtype-selective effects of anesthetics on Nav might contribute to observed neurotransmitter-selective anesthetic effects on release. We analyzed anesthetic effects on Na+ currents mediated by the principal neuronal Nav subtypes Nav1.1, Nav1.2, and Nav1.6 heterologously expressed in ND7/23 neuroblastoma cells using whole-cell patch-clamp electrophysiology. Isoflurane at clinically relevant concentrations induced a hyperpolarizing shift in the voltage dependence of steady-state inactivation and slowed recovery from fast inactivation in all three Nav subtypes, with the voltage of half-maximal steady-state inactivation significantly more positive for Nav1.1 (-49.7 ± 3.9 mV) than for Nav1.2 (-57.5 ± 1.2 mV) or Nav1.6 (-58.0 ± 3.8 mV). Isoflurane significantly inhibited peak Na+ current (I Na) in a voltage-dependent manner: at a physiologically relevant holding potential of -70 mV, isoflurane inhibited peak I Na of Nav1.2 (16.5% ± 5.5%) and Nav1.6 (18.0% ± 7.8%), but not of Nav1.1 (1.2% ± 0.8%). Since Nav subtypes are differentially expressed both between neuronal types and within neurons, greater inhibition of Nav1.2 and Nav1.6 compared with Nav1.1 could contribute to neurotransmitter-selective effects of isoflurane on synaptic transmission.
Collapse
Affiliation(s)
- Cheng Zhou
- Departments of Anesthesiology (C.Z., K.W.J., K.F.H., H.C.H.) and Pharmacology (H.C.H.), Weill Cornell Medicine, New York, New York; and Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China (C.Z.)
| | - Kenneth W Johnson
- Departments of Anesthesiology (C.Z., K.W.J., K.F.H., H.C.H.) and Pharmacology (H.C.H.), Weill Cornell Medicine, New York, New York; and Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China (C.Z.)
| | - Karl F Herold
- Departments of Anesthesiology (C.Z., K.W.J., K.F.H., H.C.H.) and Pharmacology (H.C.H.), Weill Cornell Medicine, New York, New York; and Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China (C.Z.)
| | - Hugh C Hemmings
- Departments of Anesthesiology (C.Z., K.W.J., K.F.H., H.C.H.) and Pharmacology (H.C.H.), Weill Cornell Medicine, New York, New York; and Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China (C.Z.)
| |
Collapse
|
10
|
Sensitivity to isoflurane anesthesia increases in autism spectrum disorder Shank3 +/∆c mutant mouse model. Neurotoxicol Teratol 2016; 60:69-74. [PMID: 27856360 DOI: 10.1016/j.ntt.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/14/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022]
Abstract
Autism is a heterogeneous developmental disorder characterized by impaired social interaction, impaired communication skills, and restricted and repetitive behavior. The abnormal behaviors of these patients can make their anesthetic and perioperative management difficult. Evidence in the literature suggests that some patients with autism or specific autism spectrum disorders (ASD) exhibit altered responses to pain and to anesthesia or sedation. A genetic mouse model of one particular ASD, Phelan McDermid Syndrome, has been developed that has a Shank3 haplotype truncation (Shank3+/Δc). These mice exhibit important characteristics of autism that mimic human autistic behavior. Our study demonstrates that a Shank3+/ΔC mutation in mice is associated with a reduction in both the MAC and RREC50 of isoflurane and down regulation of NR1 in vestibular nuclei and PSD95 in spinal cord. Decreased expression of NR1 and PSD95 in the central nervous system of Shank3+/ΔC mice could help reduce the MAC and RREC50 of isoflurane, which would warrant confirmation in a clinical study. If Shank3 mutations are found to affect anesthetic sensitivity in patients with ASD, better communication and stricter monitoring of anesthetic depth may be necessary.
Collapse
|
11
|
Lustig B, Wang Y, Pastalkova E. Oscillatory patterns in hippocampus under light and deep isoflurane anesthesia closely mirror prominent brain states in awake animals. Hippocampus 2015; 26:102-9. [DOI: 10.1002/hipo.22494] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Brian Lustig
- Department of Neurobiology, Neuroscience Graduate Program; University of Chicago; Illinois
- Janelia Research Campus; Ashburn Virginia
| | | | | |
Collapse
|
12
|
Raiteri L, Raiteri M. Multiple functions of neuronal plasma membrane neurotransmitter transporters. Prog Neurobiol 2015; 134:1-16. [PMID: 26300320 DOI: 10.1016/j.pneurobio.2015.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/09/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022]
Abstract
Removal from receptors of neurotransmitters just released into synapses is one of the major steps in neurotransmission. Transporters situated on the plasma membrane of nerve endings and glial cells perform the process of neurotransmitter (re)uptake. Because the density of transporters in the membranes can fluctuate, transporters can determine the transmitter concentrations at receptors, thus modulating indirectly the excitability of neighboring neurons. Evidence is accumulating that neurotransmitter transporters can exhibit multiple functions. Being bidirectional, neurotransmitter transporters can mediate transmitter release by working in reverse, most often under pathological conditions that cause ionic gradient dysregulations. Some transporters reverse to release transmitters, like dopamine or serotonin, when activated by 'indirectly acting' substrates, like the amphetamines. Some transporters exhibit as one major function the ability to capture transmitters into nerve terminals that perform insufficient synthesis. Transporter activation can generate conductances that regulate directly neuronal excitability. Synaptic and non-synaptic transporters play different roles. Cytosolic Na(+) elevations accompanying transport can interact with plasmalemmal or/and mitochondrial Na(+)/Ca(2+) exchangers thus generating calcium signals. Finally, neurotransmitter transporters can behave as receptors mediating releasing stimuli able to cause transmitter efflux through multiple mechanisms. Neurotransmitter transporters are therefore likely to play hitherto unknown roles in multiple therapeutic treatments.
Collapse
Affiliation(s)
- Luca Raiteri
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; National Institute of Neuroscience, Genoa, Italy
| | - Maurizio Raiteri
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; National Institute of Neuroscience, Genoa, Italy.
| |
Collapse
|
13
|
Kufahl PR, Peartree NA, Heintzelman KL, Chung M, Neisewander JL. Region-specific effects of isoflurane anesthesia on Fos immunoreactivity in response to intravenous cocaine challenge in rats with a history of repeated cocaine administration. Brain Res 2015; 1594:256-66. [PMID: 25451087 PMCID: PMC4805112 DOI: 10.1016/j.brainres.2014.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022]
Abstract
We have previously shown that acute intravenous (i.v.) administration of cocaine increases Fos immunoreactivity in rats under isoflurane anesthesia. Given that Fos expression is a marker of neural activation, the results suggested that isoflurane is appropriate for imaging cocaine effects under anesthesia. However, most imaging research in this area utilizes subjects with a history of repeated cocaine exposure and this drug history may interact with anesthetic use differently from acute cocaine exposure. Thus, this study further examined Fos expression under isoflurane in rats with a history of repeated i.v. cocaine administration. Rats received daily injections of either saline or cocaine (2mg/kg, i.v.) across 7 consecutive days, followed by 5 days of no drug exposure. On the test day, rats were either nonanesthetized or anesthetized under isoflurane and were given an acute challenge of cocaine (2mg/kg, i.v.). Additional saline-exposed controls received a saline challenge. Ninety min after the drug challenge, the rats were perfused under isoflurane anesthesia and their brains were processed for Fos protein immunohistochemistry. We found that challenge injections of cocaine following a regimen of repeated cocaine exposure resulted in Fos expression in the prefrontal cortex and striatum roughly equivalent to that found in rats who had received the cocaine challenge after a history of vehicle injections. Additionally, isoflurane anesthesia resulted in a heterogeneous attenuation of cocaine-induced Fos expression, with the most robust effect in the orbital cortex but no effect in the nucleus accumbens core (NAcC). These results indicate that cocaine-induced Fos is preserved in the NAcC under isoflurane, suggesting that isoflurane can be used in imaging studies involving cocaine effects in this region.
Collapse
Affiliation(s)
- Peter R Kufahl
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104, United States.
| | - Natalie A Peartree
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104, United States
| | - Krista L Heintzelman
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104, United States
| | - Maggie Chung
- Department of Psychology, Arizona State University, Tempe, AZ 85287-1104, United States
| | - Janet L Neisewander
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, United States
| |
Collapse
|
14
|
GABA release provoked by disturbed Na+, K+ and Ca2+ homeostasis in cerebellar nerve endings: Roles of Ca2+ channels, Na+/Ca2+ exchangers and GAT1 transporter reversal. Neurochem Int 2014; 72:1-9. [DOI: 10.1016/j.neuint.2014.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/25/2014] [Accepted: 04/03/2014] [Indexed: 11/15/2022]
|
15
|
Modulation of a voltage-gated Na+ channel by sevoflurane involves multiple sites and distinct mechanisms. Proc Natl Acad Sci U S A 2014; 111:6726-31. [PMID: 24753583 DOI: 10.1073/pnas.1405768111] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Halogenated inhaled general anesthetic agents modulate voltage-gated ion channels, but the underlying molecular mechanisms are not understood. Many general anesthetic agents regulate voltage-gated Na(+) (NaV) channels, including the commonly used drug sevoflurane. Here, we investigated the putative binding sites and molecular mechanisms of sevoflurane action on the bacterial NaV channel NaChBac by using a combination of molecular dynamics simulation, electrophysiology, and kinetic analysis. Structural modeling revealed multiple sevoflurane interaction sites possibly associated with NaChBac modulation. Electrophysiologically, sevoflurane favors activation and inactivation at low concentrations (0.2 mM), and additionally accelerates current decay at high concentrations (2 mM). Explaining these observations, kinetic modeling suggests concurrent destabilization of closed states and low-affinity open channel block. We propose that the multiple effects of sevoflurane on NaChBac result from simultaneous interactions at multiple sites with distinct affinities. This multiple-site, multiple-mode hypothesis offers a framework to study the structural basis of general anesthetic action.
Collapse
|
16
|
Transient inactivation of the ventral hippocampus in neonatal rats impairs the mesolimbic regulation of prefrontal glutamate release in adulthood. Neuropharmacology 2014; 84:19-30. [PMID: 24747179 DOI: 10.1016/j.neuropharm.2014.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/24/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
Cognitive deficits in schizophrenia (SZ) reflect maturational disruptions within a neural system that includes the ventral hippocampus (VH), nucleus accumbens (NAc), basal forebrain, and prefrontal cortex (PFC). A better understanding of these changes may reveal drug targets for more efficacious cognition enhancers. We have utilized an animal model in which the above distributed system is altered, during a sensitive period of development, by transiently inactivating the VH and its efferent projections. We determined the ability of NAc shell activation to evoke prefrontal glutamate release in adult male Wistar rats that had received saline (Sal) or tetrodotoxin (TTX) as neonates (PD7) or as adolescents (PD32). The nucleus accumbens shell (NAcSh) was activated by NMDA infusions (0.05-0.30 μg/0.5 μL). Basal and evoked glutamate levels were measured amperometrically using a glutamate-sensitive microelectrode. There were no differences in basal glutamate levels among the groups tested (overall 1.41 ± 0.26 uM). However, the dose-related stimulation of prefrontal glutamate levels seen in control rats treated with saline on PD7 (4.31 ± 0.22 μM after 0.15 μg) was markedly attenuated in rats treated with TTX on PD7 (0.45 ± 0.12 μM after 0.15 μg). This effect was age-dependent as infusions of TTX on PD32 did not alter the NMDA-induced increases in glutamate release (4.10 ± 0.37 μM after 0.15 μg). Collectively, these findings reveal that transient inactivation of VH transmission, during a sensitive period of development, leads to a functional mesolimbic-cortical disconnection that produces neurochemical and ultimately cognitive impairments resembling those seen in SZ.
Collapse
|
17
|
van Swinderen B, Kottler B. Explaining general anesthesia: a two-step hypothesis linking sleep circuits and the synaptic release machinery. Bioessays 2014; 36:372-81. [PMID: 24449137 DOI: 10.1002/bies.201300154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several general anesthetics produce their sedative effect by activating endogenous sleep pathways. We propose that general anesthesia is a two-step process targeting sleep circuits at low doses, and synaptic release mechanisms across the entire brain at the higher doses required for surgery. Our hypothesis synthesizes data from a variety of model systems, some which require sleep (e.g. rodents and adult flies) and others that probably do not sleep (e.g. adult nematodes and cultured cell lines). Non-sleeping systems can be made insensitive (or hypersensitive) to some anesthetics by modifying a single pre-synaptic protein, syntaxin1A. This suggests that the synaptic release machinery, centered on the highly conserved SNARE complex, is an important target of general anesthetics in all animals. A careful consideration of SNARE architecture uncovers a potential mechanism for general anesthesia, which may be the primary target in animals that do not sleep, but a secondary target in animals that sleep.
Collapse
Affiliation(s)
- Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
18
|
Westphalen RI, Desai KM, Hemmings HC. Presynaptic inhibition of the release of multiple major central nervous system neurotransmitter types by the inhaled anaesthetic isoflurane. Br J Anaesth 2012; 110:592-9. [PMID: 23213036 DOI: 10.1093/bja/aes448] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Presynaptic effects of general anaesthetics are not well characterized. We tested the hypothesis that isoflurane exhibits transmitter-specific effects on neurotransmitter release from neurochemically and functionally distinct isolated mammalian nerve terminals. METHODS Nerve terminals from adult male rat brain were prelabelled with [(3)H]glutamate and [(14)C]GABA (cerebral cortex), [(3)H]norepinephrine (hippocampus), [(14)C]dopamine (striatum), or [(3)H]choline (precursor of [(3)H]acetylcholine; striatum). Release evoked by depolarizing pulses of 4-aminopyridine (4AP) or elevated KCl was quantified using a closed superfusion system. RESULTS Isoflurane at clinical concentrations (<0.7 mM; ~2 times median anaesthetic concentration) inhibited Na(+) channel-dependent 4AP-evoked release of the five neurotransmitters tested in a concentration-dependent manner. Isoflurane was a more potent inhibitor [expressed as IC(50) (SEM)] of glutamate release [0.37 (0.03) mM; P<0.05] compared with the release of GABA [0.52 (0.03) mM], norepinephrine [0.48 (0.03) mM], dopamine [0.48 (0.03) mM], or acetylcholine [0.49 (0.02) mM]. Inhibition of Na(+) channel-independent release evoked by elevated K(+) was not significant at clinical concentrations of isoflurane, with the exception of dopamine release [IC(50)=0.59 (0.03) mM]. CONCLUSIONS Isoflurane inhibited the release of the major central nervous system neurotransmitters with selectivity for glutamate release, consistent with both widespread inhibition and nerve terminal-specific presynaptic effects. Glutamate release was most sensitive to inhibition compared with GABA, acetylcholine, dopamine, and norepinephrine release due to presynaptic specializations in ion channel expression, regulation, and/or coupling to exocytosis. Reductions in neurotransmitter release by volatile anaesthetics could contribute to altered synaptic transmission, leading to therapeutic and toxic effects involving all major neurotransmitter systems.
Collapse
Affiliation(s)
- R I Westphalen
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
19
|
Cederholm JME, Froud KE, Wong ACY, Ko M, Ryan AF, Housley GD. Differential actions of isoflurane and ketamine-based anaesthetics on cochlear function in the mouse. Hear Res 2012; 292:71-9. [PMID: 22960466 DOI: 10.1016/j.heares.2012.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/13/2012] [Accepted: 08/21/2012] [Indexed: 10/28/2022]
Abstract
Isoflurane is a volatile inhaled anaesthetic widely used in animal research, with particular utility for hearing research. Isoflurane has been shown to blunt hearing sensitivity compared with the awake state, but little is known about how isoflurane compares with other anaesthetics with regard to hair cell transduction and auditory neurotransmission. The current study was undertaken in C57Bl/6J and C129/SvEv strains of mice to determine whether isoflurane anaesthesia affects hearing function relative to ketamine-based anaesthesia. Cochlear function and central auditory transmission were assessed using auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE), comparing thresholds and input/output functions over time, for isoflurane vs. ketamine/xylazine/acepromazine anaesthesia. ABR thresholds at the most sensitive region of hearing (16 kHz) were initially higher under isoflurane anaesthesia. This reduced hearing sensitivity worsened over the 1 h study period, and also became evident with broadband click stimulus. Ketamine anaesthesia provided stable ABR thresholds. Although the growth functions were unchanged over time for both anaesthetics, the slopes under isoflurane anaesthesia were significantly less. Cubic (2f(1)-f(2)) DPOAE thresholds and growth functions were initially similar for both anaesthetics. After 60 min, DPOAE thresholds increased for both groups, but this effect was significantly greater with ketamine anaesthesia. The isoflurane-mediated increase in ABR thresholds over time is attributable to action on cochlear nerve activation, evident as a right-shift in the P1-N1 input/output function compared to K/X/A. The ketamine-based anaesthetic produced stable ABR thresholds and gain over time, despite a right-shift in the outer hair cell - mediated DPOAE input/output function.
Collapse
Affiliation(s)
- Jennie M E Cederholm
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, UNSW Kensington Campus, Sydney, NSW Australia
| | | | | | | | | | | |
Collapse
|
20
|
Herold KF, Hemmings HC. Sodium channels as targets for volatile anesthetics. Front Pharmacol 2012; 3:50. [PMID: 22479247 PMCID: PMC3316150 DOI: 10.3389/fphar.2012.00050] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/07/2012] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanisms of modern inhaled anesthetics are still poorly understood although they are widely used in clinical settings. Considerable evidence supports effects on membrane proteins including ligand- and voltage-gated ion channels of excitable cells. Na+ channels are crucial to action potential initiation and propagation, and represent potential targets for volatile anesthetic effects on central nervous system depression. Inhibition of presynaptic Na+ channels leads to reduced neurotransmitter release at the synapse and could therefore contribute to the mechanisms by which volatile anesthetics produce their characteristic end points: amnesia, unconsciousness, and immobility. Early studies on crayfish and squid giant axon showed inhibition of Na+ currents by volatile anesthetics at high concentrations. Subsequent studies using native neuronal preparations and heterologous expression systems with various mammalian Na+ channel isoforms implicated inhibition of presynaptic Na+ channels in anesthetic actions at clinical concentrations. Volatile anesthetics reduce peak Na+ current (INa) and shift the voltage of half-maximal steady-state inactivation (h∞) toward more negative potentials, thus stabilizing the fast-inactivated state. Furthermore recovery from fast-inactivation is slowed, together with enhanced use-dependent block during pulse train protocols. These effects can depress presynaptic excitability, depolarization and Ca2+ entry, and ultimately reduce transmitter release. This reduction in transmitter release is more potent for glutamatergic compared to GABAergic terminals. Involvement of Na+ channel inhibition in mediating the immobility caused by volatile anesthetics has been demonstrated in animal studies, in which intrathecal infusion of the Na+ channel blocker tetrodotoxin increases volatile anesthetic potency, whereas infusion of the Na+ channels agonist veratridine reduces anesthetic potency. These studies indicate that inhibition of presynaptic Na+ channels by volatile anesthetics is involved in mediating some of their effects.
Collapse
Affiliation(s)
- Karl F Herold
- Department of Anesthesiology, Weill Cornell Medical College New York, NY, USA
| | | |
Collapse
|