1
|
Nakamura R, Yamazaki T, Kondo Y, Tsukada M, Miyamoto Y, Arakawa N, Sumida Y, Kiya T, Arai S, Ohmiya H. Radical Caging Strategy for Cholinergic Optopharmacology. J Am Chem Soc 2023; 145:10651-10658. [PMID: 37141169 DOI: 10.1021/jacs.3c00801] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photo-caged methodologies have been indispensable for elucidating the functional mechanisms of pharmacologically active molecules at the cellular level. A photo-triggered removable unit enables control of the photo-induced expression of pharmacologically active molecular function, resulting in a rapid increase in the concentration of the bioactive compound near the target cell. However, caging the target bioactive compound generally requires specific heteroatom-based functional groups, limiting the types of molecular structures that can be caged. We have developed an unprecedented methodology for caging/uncaging on carbon atoms using a unit with a photo-cleavable carbon-boron bond. The caging/uncaging process requires installation of the CH2-B group on the nitrogen atom that formally assembles an N-methyl group protected with a photoremovable unit. N-Methylation proceeds by photoirradiation via carbon-centered radical generation. Using this radical caging strategy to cage previously uncageable bioactive molecules, we have photocaged molecules with no general labeling sites, including acetylcholine, an endogenous neurotransmitter. Caged acetylcholine provides an unconventional tool for optopharmacology to clarify neuronal mechanisms on the basis of photo-regulating acetylcholine localization. We demonstrated the utility of this probe by monitoring uncaging in HEK cells expressing a biosensor to detect ACh on the cell surface, as well as Ca2+ imaging in Drosophila brain cells (ex vivo).
Collapse
Affiliation(s)
- Rikako Nakamura
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takeru Yamazaki
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa 920-1164, Japan
| | - Yui Kondo
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miho Tsukada
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yusuke Miyamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Nozomi Arakawa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuto Sumida
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Taketoshi Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa 920-1164, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
2
|
Le Gratiet KL, Anderson CK, Puente N, Grandes P, Copas C, Nahirney PC, Delaney KR, Nashmi R. Differential Subcellular Distribution and Release Dynamics of Cotransmitted Cholinergic and GABAergic Synaptic Inputs Modify Dopaminergic Neuronal Excitability. J Neurosci 2022; 42:8670-8693. [PMID: 36195440 PMCID: PMC9671585 DOI: 10.1523/jneurosci.2514-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
We identified three types of monosynaptic cholinergic inputs spatially arranged onto medial substantia nigra dopaminergic neurons in male and female mice: cotransmitted acetylcholine (ACh)/GABA, GABA-only, and ACh only. There was a predominant GABA-only conductance along lateral dendrites and soma-centered ACh/GABA cotransmission. In response to repeated stimulation, the GABA conductance found on lateral dendrites decremented less than the proximally located GABA conductance, and was more effective at inhibiting action potentials. While soma-localized ACh/GABA cotransmission showed depression of the GABA component with repeated stimulation, ACh-mediated nicotinic responses were largely maintained. We investigated whether this differential change in inhibitory/excitatory inputs leads to altered neuronal excitability. We found that a depolarizing current or glutamate preceded by cotransmitted ACh/GABA was more effective in eliciting an action potential compared with current, glutamate, or ACh/GABA alone. This enhanced excitability was abolished with nicotinic receptor inhibitors, and modulated by T- and L-type calcium channels, thus establishing that activity of multiple classes of ion channels integrates to shape neuronal excitability.SIGNIFICANCE STATEMENT Our laboratory has previously discovered a population of substantia nigra dopaminegic neurons (DA) that receive cotransmitted ACh and GABA. This study used subcellular optogenetic stimulation of cholinergic presynaptic terminals to map the functional ACh and GABA synaptic inputs across the somatodendritic extent of substantia nigra DA neurons. We determined spatially clustered GABA-only inputs on the lateral dendrites while cotransmitted ACh and GABA clustered close to the soma. We have shown that the action of GABA and ACh in cotransmission spatially clustered near the soma play a critical role in enhancing glutamate-mediated neuronal excitability through the activation of T- and L-type voltage-gated calcium channels.
Collapse
Affiliation(s)
| | | | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country Universidad del Pais Vasco / Euskal Herriko Unibertsitatea, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, E-48940, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country Universidad del Pais Vasco / Euskal Herriko Unibertsitatea, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, E-48940, Leioa, Spain
| | - Charlotte Copas
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Patrick C Nahirney
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Kerry R Delaney
- Department of Biology
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Raad Nashmi
- Department of Biology
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
3
|
Insulin-like growth factor 1 regulates excitatory synaptic transmission in pyramidal neurons from adult prefrontal cortex. Neuropharmacology 2022; 217:109204. [PMID: 35931212 DOI: 10.1016/j.neuropharm.2022.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
Insulin-like growth factor 1 (IGF1) influences synaptic function in addition to its role in brain development and aging. Although the expression levels of IGF1 and IGF1 receptor (IGF1R) peak during development and decline with age, the adult brain has abundant IGF1 or IGF1R expression. Studies reveal that IGF1 regulates the synaptic transmission in neurons from young animals. However, the action of IGF1 on neurons in the adult brain is still unclear. Here, we used prefrontal cortical (PFC) slices from adult mice (∼8 weeks old) to characterize the role of IGF1 on excitatory synaptic transmission in pyramidal neurons and the underlying molecular mechanisms. We first validated IGF1R expression in pyramidal neurons using translating ribosomal affinity purification assay. Then, using whole-cell patch-clamp recording, we found that IGF1 attenuated the amplitude of evoked excitatory postsynaptic current (EPSC) without affecting the frequency and amplitude of miniature EPSC. Furthermore, this decrease in excitatory neurotransmission was blocked by pharmacological inhibition of IGF1R or conditionally knockdown of IGF1R in PFC pyramidal neurons. In addition, we determined that IGF1-induced decrease of EPSC amplitude was due to postsynaptic effect (internalization of a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptors [AMPAR]) rather than presynaptic glutamate release. Finally, we found that inhibition of metabotropic glutamate receptor subtype-1 (mGluR1) abolished IGF1-induced attenuation of evoked EPSC amplitude and decrease of AMPAR expression at synaptic membrane, suggesting mGluR1-mediated endocytosis of AMPAR was involved. Taken together, these data provide the first evidence that IGF1 regulates excitatory synaptic transmission in adult PFC via the interaction between IGF1R-dependent signaling pathway and mGluR1-mediated AMPAR endocytosis.
Collapse
|
4
|
Dromard Y, Arango-Lievano M, Borie A, Dedin M, Fontanaud P, Torrent J, Garabedian MJ, Ginsberg SD, Jeanneteau F. Loss of glucocorticoid receptor phosphorylation contributes to cognitive and neurocentric damages of the amyloid-β pathway. Acta Neuropathol Commun 2022; 10:91. [PMID: 35733193 PMCID: PMC9219215 DOI: 10.1186/s40478-022-01396-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022] Open
Abstract
Aberrant cortisol and activation of the glucocorticoid receptor (GR) play an essential role in age-related progression of Alzheimer's disease (AD). However, the GR pathways required for influencing the pathobiology of AD dementia remain unknown. To address this, we studied an early phase of AD-like progression in the well-established APP/PS1 mouse model combined with targeted mutations in the BDNF-dependent GR phosphorylation sites (serines 134/267) using molecular, behavioral and neuroimaging approaches. We found that disrupting GR phosphorylation (S134A/S267A) in mice exacerbated the deleterious effects of the APP/PS1 genotype on mortality, neuroplasticity and cognition, without affecting either amyloid-β deposition or vascular pathology. The dynamics, maturation and retention of task-induced new dendritic spines of cortical excitatory neurons required GR phosphorylation at the BDNF-dependent sites that amyloid-β compromised. Parallel studies in postmortem human prefrontal cortex revealed AD subjects had downregulated BDNF signaling and concomitant upregulated cortisol pathway activation, which correlated with cognitive decline. These results provide key evidence that the loss of neurotrophin-mediated GR phosphorylation pathway promotes the detrimental effects of the brain cortisol response that contributes to the onset and/or progression of AD dementia. These findings have important translational implications as they provide a novel approach to treating AD dementia by identifying drugs that increase GR phosphorylation selectively at the neurotrophic sites to improve memory and cognition.
Collapse
Affiliation(s)
- Yann Dromard
- Institut de Génomiqueénomique Fonctionnelle, Université de Montpellier, INSERM, CNRS, 34090, Montpellier, France
| | - Margarita Arango-Lievano
- Institut de Génomiqueénomique Fonctionnelle, Université de Montpellier, INSERM, CNRS, 34090, Montpellier, France
| | - Amelie Borie
- Institut de Génomiqueénomique Fonctionnelle, Université de Montpellier, INSERM, CNRS, 34090, Montpellier, France
| | - Maheva Dedin
- Institut de Génomiqueénomique Fonctionnelle, Université de Montpellier, INSERM, CNRS, 34090, Montpellier, France
| | - Pierre Fontanaud
- Institut de Génomiqueénomique Fonctionnelle, Université de Montpellier, INSERM, CNRS, 34090, Montpellier, France
- Imagerie du Petit Animal de Montpellier, 34090, Montpellier, France
| | - Joan Torrent
- Institut de Neuroscience de Montpellier, INSERM, 34090, Montpellier, France
| | - Michael J Garabedian
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Stephen D Ginsberg
- Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, Neuroscience & Physiology, NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Freddy Jeanneteau
- Institut de Génomiqueénomique Fonctionnelle, Université de Montpellier, INSERM, CNRS, 34090, Montpellier, France.
| |
Collapse
|
5
|
Maltan L, Najjar H, Tiffner A, Derler I. Deciphering Molecular Mechanisms and Intervening in Physiological and Pathophysiological Processes of Ca 2+ Signaling Mechanisms Using Optogenetic Tools. Cells 2021; 10:3340. [PMID: 34943850 PMCID: PMC8699489 DOI: 10.3390/cells10123340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium ion channels are involved in numerous biological functions such as lymphocyte activation, muscle contraction, neurotransmission, excitation, hormone secretion, gene expression, cell migration, memory, and aging. Therefore, their dysfunction can lead to a wide range of cellular abnormalities and, subsequently, to diseases. To date various conventional techniques have provided valuable insights into the roles of Ca2+ signaling. However, their limited spatiotemporal resolution and lack of reversibility pose significant obstacles in the detailed understanding of the structure-function relationship of ion channels. These drawbacks could be partially overcome by the use of optogenetics, which allows for the remote and well-defined manipulation of Ca2+-signaling. Here, we review the various optogenetic tools that have been used to achieve precise control over different Ca2+-permeable ion channels and receptors and associated downstream signaling cascades. We highlight the achievements of optogenetics as well as the still-open questions regarding the resolution of ion channel working mechanisms. In addition, we summarize the successes of optogenetics in manipulating many Ca2+-dependent biological processes both in vitro and in vivo. In summary, optogenetics has significantly advanced our understanding of Ca2+ signaling proteins and the used tools provide an essential basis for potential future therapeutic application.
Collapse
Affiliation(s)
| | | | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (L.M.); (H.N.); (A.T.)
| |
Collapse
|
6
|
GluN3-Containing NMDA Receptors in the Rat Nucleus Accumbens Core Contribute to Incubation of Cocaine Craving. J Neurosci 2021; 41:8262-8277. [PMID: 34413203 DOI: 10.1523/jneurosci.0406-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Cue-induced cocaine craving progressively intensifies (incubates) after withdrawal from cocaine self-administration in rats and humans. In rats, the expression of incubation ultimately depends on Ca2+-permeable AMPARs that accumulate in synapses onto medium spiny neurons (MSNs) in the NAc core. However, the delay in their accumulation (∼1 month after drug self-administration ceases) suggests earlier waves of plasticity. This prompted us to conduct the first study of NMDAR transmission in NAc core during incubation, focusing on the GluN3 subunit, which confers atypical properties when incorporated into NMDARs, including insensitivity to Mg2+ block and Ca2+ impermeability. Whole-cell patch-clamp recordings were conducted in MSNs of adult male rats 1-68 d after discontinuing extended-access saline or cocaine self-administration. NMDAR transmission was enhanced after 5 d of cocaine withdrawal, and this persisted for at least 68 d of withdrawal. The earliest functional alterations were mediated through increased contributions of GluN2B-containing NMDARs, followed by increased contributions of GluN3-containing NMDARs. As predicted by GluN3-NMDAR incorporation, fewer MSN spines exhibited NMDAR-mediated Ca2+ entry. GluN3A knockdown in NAc core was sufficient to prevent incubation of craving, consistent with biotinylation studies showing increased GluN3A surface expression, although array tomography studies suggested that adaptations involving GluN3B also occur. Collectively, our data show that a complex cascade of NMDAR and AMPAR plasticity occurs in NAc core, potentially through a homeostatic mechanism, leading to persistent increases in cocaine cue reactivity and relapse vulnerability. This is a remarkable example of experience-dependent glutamatergic plasticity evolving over a protracted window in the adult brain.SIGNIFICANCE STATEMENT "Incubation of craving" is an animal model for the persistence of vulnerability to cue-induced relapse after prolonged drug abstinence. Incubation also occurs in human drug users. AMPAR plasticity in medium spiny neurons (MSNs) of the NAc core is critical for incubation of cocaine craving but occurs only after a delay. Here we found that AMPAR plasticity is preceded by NMDAR plasticity that is essential for incubation and involves GluN3, an atypical NMDAR subunit that markedly alters NMDAR transmission. Together with AMPAR plasticity, this represents profound remodeling of excitatory synaptic transmission onto MSNs. Given the importance of MSNs for translating motivation into action, this plasticity may explain, at least in part, the profound shifts in motivated behavior that characterize addiction.
Collapse
|
7
|
Deodato D, Asad N, Dore TM. Photoactivatable AMPA for the study of glutamatergic neuronal transmission using two-photon excitation. Org Biomol Chem 2021; 19:5589-5594. [PMID: 34086030 DOI: 10.1039/d1ob01006a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a photoactivatable agonist of the AMPA subtype of ionotropic glutamate receptors, TMP-CyHQ-AMPA, which was designed to study the fast excitatory transmission between neurons. Upon visible light excitation, TMP-CyHQ-AMPA quantitatively released AMPA in high quantum yield on an ultra-short timescale. Intriguingly, the photolyisis can be carried out using 2-photon excitation (2PE) with remarkable efficiency, giving a two-photon uncaging action cross section (δu) value of 1.71 GM. TMP-CyHQ-AMPA is soluble in pysiological buffer and no hydrolysis was detected in the absence of light. Molecular docking experiments indicated that the photocaging strategy abolishes the affinity of AMPA for the GluR2 receptor and no GABAergic effects (as commonly observed in caged glutamates) are expected. TMP-CyHQ-AMPA can be used to study glutamatergic neuronal transmission with exceptional spatial-temporal resolution in complex tissue preparations.
Collapse
Affiliation(s)
- Davide Deodato
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - Naeem Asad
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - Timothy M Dore
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates. and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Prager EM, Dorman DB, Hobel ZB, Malgady JM, Blackwell KT, Plotkin JL. Dopamine Oppositely Modulates State Transitions in Striosome and Matrix Direct Pathway Striatal Spiny Neurons. Neuron 2020; 108:1091-1102.e5. [PMID: 33080228 PMCID: PMC7769890 DOI: 10.1016/j.neuron.2020.09.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Corticostriatal synaptic integration is partitioned among striosome (patch) and matrix compartments of the dorsal striatum, allowing compartmentalized control of discrete aspects of behavior. Despite the significance of such organization, it's unclear how compartment-specific striatal output is dynamically achieved, particularly considering new evidence that overlap of afferents is substantial. We show that dopamine oppositely shapes responses to convergent excitatory inputs in mouse striosome and matrix striatal spiny projection neurons (SPNs). Activation of postsynaptic D1 dopamine receptors promoted the generation of long-lasting synaptically evoked "up-states" in matrix SPNs but opposed it in striosomes, which were more excitable under basal conditions. Differences in dopaminergic modulation were mediated, in part, by dendritic voltage-gated calcium channels (VGCCs): pharmacological manipulation of L-type VGCCs reversed compartment-specific responses to D1 receptor activation. These results support a novel mechanism for the selection of striatal circuit components, where fluctuating levels of dopamine shift the balance of compartment-specific striatal output.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Daniel B Dorman
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Zachary B Hobel
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Jeffrey M Malgady
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA; Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA 22030, USA
| | - Joshua L Plotkin
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA.
| |
Collapse
|
9
|
Paoletti P, Ellis-Davies GCR, Mourot A. Optical control of neuronal ion channels and receptors. Nat Rev Neurosci 2020; 20:514-532. [PMID: 31289380 DOI: 10.1038/s41583-019-0197-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Light-controllable tools provide powerful means to manipulate and interrogate brain function with relatively low invasiveness and high spatiotemporal precision. Although optogenetic approaches permit neuronal excitation or inhibition at the network level, other technologies, such as optopharmacology (also known as photopharmacology) have emerged that provide molecular-level control by endowing light sensitivity to endogenous biomolecules. In this Review, we discuss the challenges and opportunities of photocontrolling native neuronal signalling pathways, focusing on ion channels and neurotransmitter receptors. We describe existing strategies for rendering receptors and channels light sensitive and provide an overview of the neuroscientific insights gained from such approaches. At the crossroads of chemistry, protein engineering and neuroscience, optopharmacology offers great potential for understanding the molecular basis of brain function and behaviour, with promises for future therapeutics.
Collapse
Affiliation(s)
- Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| | | | - Alexandre Mourot
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS, INSERM, Sorbonne Université, Paris, France.
| |
Collapse
|
10
|
Palma-Cerda F, Papageorgiou G, Barbour B, Auger C, Ogden D. Photolysis of a Caged, Fast-Equilibrating Glutamate Receptor Antagonist, MNI-Caged γ-D-Glutamyl-Glycine, to Investigate Transmitter Dynamics and Receptor Properties at Glutamatergic Synapses. Front Cell Neurosci 2019; 12:465. [PMID: 30618624 PMCID: PMC6300705 DOI: 10.3389/fncel.2018.00465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022] Open
Abstract
Fast uncaging of low affinity competitive receptor antagonists can in principle measure the timing and concentration dependence of transmitter action at receptors during synaptic transmission. Here, we describe the development, synthesis and characterization of MNI-caged γ-D-glutamyl-glycine (γ-DGG), which combines the fast photolysis and hydrolytic stability of nitroindoline cages with the well-characterized fast-equilibrating competitive glutamate receptor antagonist γ-DGG. At climbing fiber-Purkinje cell (CF-PC) synapses MNI-caged-γ-DGG was applied at concentrations up to 5 mM without affecting CF-PC transmission, permitting release of up to 1.5 mM γ-DGG in 1 ms in wide-field flashlamp photolysis. In steady-state conditions, photoreleased γ-DGG at 0.55–1.7 mM inhibited the CF first and second paired EPSCs by on average 30% and 60%, respectively, similar to reported values for bath applied γ-DGG. Photolysis of the L-isomer MNI-caged γ-L-glutamyl-glycine was ineffective. The time-course of receptor activation by synaptically released glutamate was investigated by timed photolysis of MNI-caged-γ-DGG at defined intervals following CF stimulation in the second EPSCs. Photorelease of γ-DGG prior to the stimulus and up to 3 ms after showed strong inhibition similar to steady-state inhibition; in contrast γ-DGG applied by a flash at 3–4 ms post-stimulus produced weaker and variable block, suggesting transmitter-receptor interaction occurs mainly in this time window. The data also show a small and lasting component of inhibition when γ-DGG was released at 4–7 ms post stimulus, near the peak of the CF-PC EPSC, or at 10–11 ms. This indicates that competition for binding and activation of AMPA receptors occurs also during the late phase of the EPSC, due to either delayed transmitter release or persistence of glutamate in the synaptic region. The results presented here first show that MNI-caged-γ-DGG has properties suitable for use as a synaptic probe at high concentration and that its photolysis can resolve timing and extent of transmitter activation of receptors in glutamatergic transmission.
Collapse
Affiliation(s)
| | | | - Boris Barbour
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, France
| | - Céline Auger
- Brain Physiology Lab, UMR8118 Université Paris Descartes, Paris, France
| | - David Ogden
- Brain Physiology Lab, UMR8118 Université Paris Descartes, Paris, France.,The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
11
|
Guruge C, Ouedraogo YP, Comitz RL, Ma J, Losonczy A, Nesnas N. Improved Synthesis of Caged Glutamate and Caging Each Functional Group. ACS Chem Neurosci 2018; 9:2713-2721. [PMID: 29750497 DOI: 10.1021/acschemneuro.8b00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glutamate is an excitatory neurotransmitter that controls numerous pathways in the brain. Neuroscientists make use of photoremovable protecting groups, also known as cages, to release glutamate with precise spatial and temporal control. Various cage designs have been developed and among the most effective has been the nitroindolinyl caging of glutamate. We, hereby, report an improved synthesis of one of the current leading molecules of caged glutamate, 4-carboxymethoxy-5,7-dinitroindolinyl glutamate (CDNI-Glu), which possesses efficiencies with the highest reported quantum yield of at least 0.5. We present the shortest route, to date, for the synthesis of CDNI-Glu in 4 steps, with a total reaction time of 40 h and an overall yield of 20%. We also caged glutamate at the other two functional groups, thereby, introducing two new cage designs: α-CDNI-Glu and N-CDNI-Glu. We included a study of their photocleavage properties using UV-vis, NMR, as well as a physiology experiment of a two-photon uncaging of CDNI-Glu in acute hippocampal brain slices. The newly introduced cage designs may have the potential to minimize the interference that CDNI-Glu has with the GABAA receptor. We are broadly disseminating this to enable neuroscientists to use these photoactivatable tools.
Collapse
Affiliation(s)
- Charitha Guruge
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Yannick P. Ouedraogo
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Richard L. Comitz
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Jingxuan Ma
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, New York 10032, United States
| | - Nasri Nesnas
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, United States
| |
Collapse
|
12
|
Miyahara M, Shiozaki H, Tukada H, Ishikawa Y, Oikawa M. Photoremovable NPEC group compatible with Ns protecting group in polyamine synthesis. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Shiozaki H, Miyahara M, Otsuka K, Miyako K, Honda A, Takasaki Y, Takamizawa S, Tukada H, Ishikawa Y, Sakai R, Oikawa M. Studies on Aculeines: Synthetic Strategy to the Fully Protected Protoaculeine B, the N-Terminal Amino Acid of Aculeine B. Org Lett 2018; 20:3403-3407. [DOI: 10.1021/acs.orglett.8b01331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroki Shiozaki
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Masayoshi Miyahara
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kazunori Otsuka
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kei Miyako
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Akito Honda
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Yuichi Takasaki
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Satoshi Takamizawa
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Hideyuki Tukada
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yuichi Ishikawa
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Ryuichi Sakai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Masato Oikawa
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
14
|
Hammer CA, Falahati K, Jakob A, Klimek R, Burghardt I, Heckel A, Wachtveitl J. Sensitized Two-Photon Activation of Coumarin Photocages. J Phys Chem Lett 2018; 9:1448-1453. [PMID: 29498870 DOI: 10.1021/acs.jpclett.7b03364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here we report the design of a new coumarin-based photolabile protecting group with enhanced two-photon absorption. Two-photon excited fluorescence (TPEF), color-tuned ultrafast transient absorption spectroscopy and infrared (IR) measurements are employed to photochemically characterize the newly designed ATTO 390-DEACM-cargo triad. Increased two-photon cross-section values of the novel cage in comparison to the widely used protecting group DEACM ([7-(diethylamino)coumarin-4-yl]methyl) are extracted from TPEF experiments. Femtosecond pump-probe experiments reveal a fast intramolecular charge transfer, a finding that is confirmed by quantum chemical calculations. Uncaging of glutamate is monitored in IR measurements by photodecarboxylation of the carbamate linker between the photolabile protecting group and the glutamate, showing the full functionality of the novel two-photon activatable photocage.
Collapse
|
15
|
Becker Y, Unger E, Fichte MAH, Gacek DA, Dreuw A, Wachtveitl J, Walla PJ, Heckel A. A red-shifted two-photon-only caging group for three-dimensional photorelease. Chem Sci 2018; 9:2797-2802. [PMID: 29732066 PMCID: PMC5914290 DOI: 10.1039/c7sc05182d] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/08/2018] [Indexed: 12/27/2022] Open
Abstract
Based on nitrodibenzofuran (NDBF) a new photocage with higher two-photon action cross section and red-shifted absorption was developed. Due to calculations, a dimethylamino functionality (DMA) was added at ring position 7. The uncaging of nucleobases after two-photon excitation (2PE) could be visualized via double-strand displacement in a hydrogel. With this assay we achieved three-dimensional photorelease of DMA-NDBF-protected DNA orthogonal to NDBF-protected strands. While being an excellent 2P-cage, DMA-NDBF is surprisingly stable under visible-light one-photon excitation (1PE). This case of excitation-specific photochemistry enhances the scope of orthogonal photoregulation.
Collapse
Affiliation(s)
- Yvonne Becker
- Goethe University Frankfurt , Institute for Organic Chemistry and Chemical Biology , Max-von-Laue-Str. 7 , 60438 Frankfurt , Germany .
| | - Erik Unger
- Goethe University Frankfurt , Institute for Organic Chemistry and Chemical Biology , Max-von-Laue-Str. 7 , 60438 Frankfurt , Germany .
| | - Manuela A H Fichte
- Goethe University Frankfurt , Institute for Organic Chemistry and Chemical Biology , Max-von-Laue-Str. 7 , 60438 Frankfurt , Germany .
| | - Daniel A Gacek
- Technical University Braunschweig , Institute for Physical and Theoretical Chemistry , Gaußstr. 17 , 38106 Braunschweig , Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing (IWR) , Theoretical and Computational Chemistry , Im Neuenheimer Feld 205A , 69120 Heidelberg , Germany
| | - Josef Wachtveitl
- Goethe University Frankfurt , Institute for Physical and Theoretical Chemistry , Max-von-Laue-Str. 7 , 60438 Frankfurt , Germany
| | - Peter J Walla
- Technical University Braunschweig , Institute for Physical and Theoretical Chemistry , Gaußstr. 17 , 38106 Braunschweig , Germany
| | - Alexander Heckel
- Goethe University Frankfurt , Institute for Organic Chemistry and Chemical Biology , Max-von-Laue-Str. 7 , 60438 Frankfurt , Germany .
| |
Collapse
|
16
|
Passlick S, Ellis-Davies GCR. Comparative one- and two-photon uncaging of MNI-glutamate and MNI-kainate on hippocampal CA1 neurons. J Neurosci Methods 2017; 293:321-328. [PMID: 29051090 DOI: 10.1016/j.jneumeth.2017.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND The light-induced release of neurotransmitters from caging chromophores provides a powerful means to study the underlying receptors in a physiologically relevant context. Surprisingly, most caged neurotransmitters, including the widely used 4-methoxy-7-nitroindolinyl (MNI)-glutamate, show strong antagonism against GABA-A receptors. Kainate has been shown to exhibit a higher efficacy at glutamate receptors compared to glutamate itself. Thus, uncaging of kainate might allow the application of the caged compound at lower, less antagonistic concentrations. NEW METHODS This study provides a detailed comparison of MNI-glutamate and MNI-kainate uncaging by different modes of one- and two-photon irradiation on hippocampal CA1 pyramidal neurons in acute brain slices. RESULTS/COMPARISON WITH EXISTING METHODS Unexpectedly, the data revealed that currents in response to MNI-glutamate uncaging were larger compared to MNI-kainate with local one-photon laser uncaging at the soma and two-photon uncaging at the same spines. Furthermore, the direct comparison demonstrates the influence of type of caged agonist and light delivery conditions used for uncaging on the amplitude and kinetic properties of the current response. CONCLUSION These findings highlight the importance of experimental design for uncaging experiments and provide a basis for future studies employing one- and two-photon uncaging to understand glutamate-dependent processes. It further provides the first example of two-photon uncaging of kainate at single spines in acute brain slices.
Collapse
Affiliation(s)
- Stefan Passlick
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
17
|
Hartrampf FW, Barber DM, Gottschling K, Leippe P, Hollmann M, Trauner D. Development of a photoswitchable antagonist of NMDA receptors. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Cabrera R, Filevich O, García-Acosta B, Athilingam J, Bender KJ, Poskanzer KE, Etchenique R. A Visible-Light-Sensitive Caged Serotonin. ACS Chem Neurosci 2017; 8:1036-1042. [PMID: 28460173 DOI: 10.1021/acschemneuro.7b00083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Serotonin, or 5-hydroxytryptamine (5HT), is an important neurotransmitter in the nervous system of both vertebrates and invertebrates. Deficits in 5HT signaling are responsible for many disabling psychiatric conditions, and its molecular machinery is the target of many pharmaceuticals. We present a new 5HT phototrigger, the compound [Ru(bpy)2(PMe3)(5HT)]2+, where PMe3 is trimethylphosphine. As with other ruthenium-bipyridyl based caged compounds, [Ru(bpy)2(PMe3)(5HT)]2+ presents activity in the visible region of the spectrum. We characterize and discuss the photochemical properties of the caged compound, and demonstrate its use by modulating the excitability of mouse prefrontal principal neurons.
Collapse
Affiliation(s)
- Ricardo Cabrera
- Departamento de
Química Inorgánica,
Analítica y Química Física, INQUIMAE, Facultad
de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Ciudad Universitaria Pabellón 2, AR1428EHA Buenos Aires, Argentina
- Ciclo
Básico Común, Universidad de Buenos Aires, 1053 Buenos Aires, Argentina
| | - Oscar Filevich
- Laboratorio de Neurobiología
Molecular, BIOMED, Pontificia Universidad Católica Argentina,
CONICET, C1107AFB Buenos Aires, Argentina
| | - Beatriz García-Acosta
- Departamento de
Química Inorgánica,
Analítica y Química Física, INQUIMAE, Facultad
de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Ciudad Universitaria Pabellón 2, AR1428EHA Buenos Aires, Argentina
| | - Jegath Athilingam
- Kavli
Institute for Fundamental Neuroscience, UCSF Weill Institute for Neuroscience, San Francisco, California, United States
- Department
of Neurology, University of California, San Francisco, San Francisco, California 94143, United States
| | - Kevin J. Bender
- Kavli
Institute for Fundamental Neuroscience, UCSF Weill Institute for Neuroscience, San Francisco, California, United States
- Department
of Neurology, University of California, San Francisco, San Francisco, California 94143, United States
| | - Kira E. Poskanzer
- Kavli
Institute for Fundamental Neuroscience, UCSF Weill Institute for Neuroscience, San Francisco, California, United States
- Department
of Biochemistry and Biophysics, University of California, San Francisco, San
Francisco, California 94143, United States
| | - Roberto Etchenique
- Departamento de
Química Inorgánica,
Analítica y Química Física, INQUIMAE, Facultad
de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Ciudad Universitaria Pabellón 2, AR1428EHA Buenos Aires, Argentina
| |
Collapse
|
19
|
Zhang R, Yang YS, Liu XC, Yang JL, Li YH, Shi PZ, Yang C, Qu B. Correlation study of basic Chinese medicine syndromes and neurotransmitter levels in patients with primary insomnia. Chin J Integr Med 2016:10.1007/s11655-016-2752-2. [PMID: 28028724 DOI: 10.1007/s11655-016-2752-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the correlation between basic Chinese medicine (CM) syndromes (deficiency and excess syndromes) and intracranial neurotransmitter levels in primary insomnia (PI), to provide objective indicators and syndrome-based medical evidence for the differentiation of PI. METHODS A total of 158 patients with PI were recruited for CM syndrome differentiation. Another 30 healthy people without sleep disorders were selected as control group. An encephalofluctuograph analyzer was used to test the levels of intracranial neurotransmitters, including γ- aminobutyric acid (GABA), glutamate (Glu), 5-hydroxytryptamine (5-HT), dopamine (DA), etc., and their relevance were analyzed. RESULTS The neurotransmitter levels in the basic-deficiency group were lower than those in the healthy-control group, while the basic-excess group had higher levels than the healthy-control and basic-deficiency groups. Among the neurotransmitters, the 5-HT level was higher in the basic-excess group than in the basic-deficiency group (24.20±4.07 vs. 21.13±3.23; P<0.05); for the intermingled deficiency-excess group, the level of GABA was higher than that in the basic-deficiency group (9.48±3.07 vs. 7.23±3.67; P<0.05), Glu level was higher than that in the healthy-control group (7.53±4.10 vs. 5.83±0.99, P<0.05), and 5-HT and DA levels were lower than those in the healthy-control group (19.80±5.68 vs. 22.63±3.31, 5.27±3.79 vs. 6.83±1.58, respectively; P<0.05). CONCLUSIONS There was a correlation between the basic syndromes and intracranial neurotransmitter levels in patients with PI, which could objectively reflect the CM differentiation in PI. This information could be important for improving CM diagnosis and treatment in PI.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Medical Administration, General Hospital of the PLA Rocket Force, Beijing, 100088, China.
| | - Yun-Shuang Yang
- Department of Traditional Chinese Medicine, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Xiao-Chen Liu
- Department of Traditional Chinese Medicine, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Jin-Liang Yang
- Department of Traditional Chinese Medicine, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Yan-Hui Li
- Department of Traditional Chinese Medicine, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Peng-Zhan Shi
- Department of Traditional Chinese Medicine, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Chao Yang
- Department of Blood Transfusion, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Bin Qu
- Department of Traditional Chinese Medicine, General Hospital of the PLA Rocket Force, Beijing, 100088, China
| |
Collapse
|
20
|
Kantevari S, Passlick S, Kwon HB, Richers MT, Sabatini BL, Ellis-Davies GC. Development of Anionically Decorated Caged Neurotransmitters: In Vitro Comparison of 7-Nitroindolinyl- and 2-(p-Phenyl-o-nitrophenyl)propyl-Based Photochemical Probes. Chembiochem 2016; 17:953-61. [PMID: 26929152 PMCID: PMC4870097 DOI: 10.1002/cbic.201600019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 01/26/2023]
Abstract
Neurotransmitter uncaging, especially that of glutamate, has been used to study synaptic function for over 30 years. One limitation of caged glutamate probes is the blockade of γ-aminobutyric acid (GABA)-A receptor function. This problem comes to the fore when the probes are applied at the high concentrations required for effective two-photon photolysis. To mitigate such problems one could improve the photochemical properties of caging chromophores and/or remove receptor blockade. We show that addition of a dicarboxylate unit to the widely used 4-methoxy-7-nitroindolinyl-Glu (MNI-Glu) system reduced the off-target effects by about 50-70 %. When the same strategy was applied to an electron-rich 2-(p-Phenyl-o-nitrophenyl)propyl (PNPP) caging group, the pharmacological improvements were not as significant as in the MNI case. Finally, we used very extensive biological testing of the PNPP-caged Glu (more than 250 uncaging currents at single dendritic spines) to show that nitro-biphenyl caging chromophores have two-photon uncaging efficacies similar to that of MNI-Glu.
Collapse
Affiliation(s)
- Srinivas Kantevari
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Stefan Passlick
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Hyung-Bae Kwon
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Cambridge, MA 02115, USA
| | - Matthew T. Richers
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Bernardo L. Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Cambridge, MA 02115, USA
| | | |
Collapse
|
21
|
Berlin S, Szobota S, Reiner A, Carroll EC, Kienzler MA, Guyon A, Xiao T, Trauner D, Isacoff EY. A family of photoswitchable NMDA receptors. eLife 2016; 5. [PMID: 26929991 PMCID: PMC4786437 DOI: 10.7554/elife.12040] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/31/2016] [Indexed: 02/07/2023] Open
Abstract
NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity.
Collapse
Affiliation(s)
- Shai Berlin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Stephanie Szobota
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Andreas Reiner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Elizabeth C Carroll
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Michael A Kienzler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Alice Guyon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis, Nice, France
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Dirk Trauner
- Department of Chemistry, Center of Integrated Protein Science, University of Munich, Munich, Germany
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
22
|
Lalanne T, Oyrer J, Mancino A, Gregor E, Chung A, Huynh L, Burwell S, Maheux J, Farrant M, Sjöström PJ. Synapse-specific expression of calcium-permeable AMPA receptors in neocortical layer 5. J Physiol 2015; 594:837-61. [PMID: 26537662 PMCID: PMC4753277 DOI: 10.1113/jp271394] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/01/2015] [Indexed: 01/26/2023] Open
Abstract
Key points In the hippocampus, calcium‐permeable AMPA receptors have been found in a restricted subset of neuronal types that inhibit other neurons, although their localization in the neocortex is less well understood. In the present study, we looked for calcium‐permeable AMPA receptors in two distinct populations of neocortical inhibitory neurons: basket cells and Martinotti cells. We found them in the former but not in the latter. Furthermore, in basket cells, these receptors were associated with particularly fast responses. Computer modelling predicted (and experiments verified) that fast calcium‐permeable AMPA receptors enable basket cells to respond rapidly, such that they promptly inhibit neighbouring cells and shut down activity. The results obtained in the present study help our understanding of pathologies such as stroke and epilepsy that have been associated with disordered regulation of calcium‐permeable AMPA receptors.
Abstract AMPA‐type glutamate receptors (AMPARs) lacking an edited GluA2 subunit are calcium‐permeable (CP) and contribute to synaptic plasticity in several hippocampal interneuron types, although their precise role in the neocortex is not well described. We explored the presence of CP‐AMPARs at pyramidal cell (PC) inputs to Martinotti cells (MCs) and basket cells (BCs) in layer 5 of the developing mouse visual cortex (postnatal days 12–21). GluA2 immunolabelling was stronger in MCs than in BCs. A differential presence of CP‐AMPARs at PC‐BC and PC‐MC synapses was confirmed electrophysiologically, based on measures of spermine‐dependent rectification and CP‐AMPAR blockade by 1‐naphtyl acetyl spermine using recordings from synaptically connected cell pairs, NPEC‐AMPA uncaging and miniature current recordings. In addition, CP‐AMPAR expression in BCs was correlated with rapidly decaying synaptic currents. Computer modelling predicted that this reduces spike latencies and sharpens suprathreshold responses in BCs, which we verified experimentally using the dynamic clamp technique. Thus, the synapse‐specific expression of CP‐AMPARs may critically influence both plasticity and information processing in neocortical microcircuits. In the hippocampus, calcium‐permeable AMPA receptors have been found in a restricted subset of neuronal types that inhibit other neurons, although their localization in the neocortex is less well understood. In the present study, we looked for calcium‐permeable AMPA receptors in two distinct populations of neocortical inhibitory neurons: basket cells and Martinotti cells. We found them in the former but not in the latter. Furthermore, in basket cells, these receptors were associated with particularly fast responses. Computer modelling predicted (and experiments verified) that fast calcium‐permeable AMPA receptors enable basket cells to respond rapidly, such that they promptly inhibit neighbouring cells and shut down activity. The results obtained in the present study help our understanding of pathologies such as stroke and epilepsy that have been associated with disordered regulation of calcium‐permeable AMPA receptors.
Collapse
Affiliation(s)
- Txomin Lalanne
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Julia Oyrer
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Adamo Mancino
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Erica Gregor
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Andrew Chung
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Louis Huynh
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Sasha Burwell
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Jérôme Maheux
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
23
|
Remote modulation of neural activities via near-infrared triggered release of biomolecules. Biomaterials 2015; 65:76-85. [DOI: 10.1016/j.biomaterials.2015.06.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/23/2022]
|
24
|
Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential. Curr Opin Pharmacol 2015; 20:135-43. [PMID: 25573450 DOI: 10.1016/j.coph.2014.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 01/24/2023]
Abstract
Light offers unique advantages for studying and manipulating biomolecules and the cellular processes that they control. Optical control of ionotropic and metabotropic glutamate receptors has garnered significant interest, since these receptors are central to signaling at neuronal synapses and only optical approaches provide the spatial and temporal resolution required to directly probe receptor function in cells and tissue. Following the classical method of glutamate photo-uncaging, recently developed methods have added other forms of remote control, including those with high molecular specificity and genetic targeting. These tools open the door to the direct optical control of synaptic transmission and plasticity, as well as the probing of native receptor function in intact neural circuits.
Collapse
|
25
|
VGluT1+ neuronal glutamatergic signaling regulates postnatal developmental maturation of cortical protoplasmic astroglia. J Neurosci 2014; 34:10950-62. [PMID: 25122895 DOI: 10.1523/jneurosci.1167-14.2014] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional maturation of astroglia is characterized by the development of a unique, ramified morphology and the induction of important functional proteins, such as glutamate transporter GLT1. Although pathways regulating the early fate specification of astroglia have been characterized, mechanisms regulating postnatal maturation of astroglia remain essentially unknown. Here we used a new in vivo approach to illustrate and quantitatively analyze developmental arborization of astroglial processes. Our analysis found a particularly high increase in the number of VGluT1(+) neuronal glutamatergic synapses that are ensheathed by processes from individual developing astroglia from postnatal day (P) 14 to P26, when astroglia undergo dramatic postnatal maturation. Subsequent silencing of VGluT1(+) synaptic activity in VGluT1 KO mice significantly reduces astroglial domain growth and the induction of GLT1 in the cortex, but has no effect on astroglia in the hypothalamus, where non-VGluT1(+) synaptic signaling predominates. In particular, electron microscopy analysis showed that the loss of VGluT1(+) synaptic signaling significantly decreases perisynaptic enshealthing of astroglial processes on synapses. To further determine whether synaptically released glutamate mediates VGluT1(+) synaptic signaling, we pharmacologically inhibited and genetically ablated metabotropic glutamate receptors (mGluRs, especially mGluR5) in developing cortical astroglia and found that developmental arborization of astroglial processes and expression of functional proteins, such as GLT1, is significantly decreased. In summary, our genetic analysis provides new in vivo evidence that VGluT1(+) glutamatergic signaling, mediated by the astroglial mGluR5 receptor, regulates the functional maturation of cortical astroglia during development. These results elucidate a new mechanism for regulating the developmental formation of functional neuron-glia synaptic units.
Collapse
|
26
|
Kleinhans C, Kafitz KW, Rose CR. Multi-photon intracellular sodium imaging combined with UV-mediated focal uncaging of glutamate in CA1 pyramidal neurons. J Vis Exp 2014:e52038. [PMID: 25350367 PMCID: PMC4841302 DOI: 10.3791/52038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Multi-photon fluorescence microscopy has enabled the analysis of morphological and physiological parameters of brain cells in the intact tissue with high spatial and temporal resolution. Combined with electrophysiology, it is widely used to study activity-related calcium signals in small subcellular compartments such as dendrites and dendritic spines. In addition to calcium transients, synaptic activity also induces postsynaptic sodium signals, the properties of which are only marginally understood. Here, we describe a method for combined whole-cell patch-clamp and multi-photon sodium imaging in cellular micro domains of central neurons. Furthermore, we introduce a modified procedure for ultra-violet (UV)-light-induced uncaging of glutamate, which allows reliable and focal activation of glutamate receptors in the tissue. To this end, whole-cell recordings were performed on Cornu Ammonis subdivision 1 (CA1) pyramidal neurons in acute tissue slices of the mouse hippocampus. Neurons were filled with the sodium-sensitive fluorescent dye SBFI through the patch-pipette, and multi-photon excitation of SBFI enabled the visualization of dendrites and adjacent spines. To establish UV-induced focal uncaging, several parameters including light intensity, volume affected by the UV uncaging beam, positioning of the beam as well as concentration of the caged compound were tested and optimized. Our results show that local perfusion with caged glutamate (MNI-Glutamate) and its focal UV-uncaging result in inward currents and sodium transients in dendrites and spines. Time course and amplitude of both inward currents and sodium signals correlate with the duration of the uncaging pulse. Furthermore, our results show that intracellular sodium signals are blocked in the presence of blockers for ionotropic glutamate receptors, demonstrating that they are mediated by sodium influx though this pathway. In summary, our method provides a reliable tool for the investigation of intracellular sodium signals induced by focal receptor activation in intact brain tissue.
Collapse
Affiliation(s)
| | - Karl W Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf;
| |
Collapse
|
27
|
Canepari M, Zecevic D, Vogt KE, Ogden D, De Waard M. Combining calcium imaging with other optical techniques. Cold Spring Harb Protoc 2013; 2013:1125-31. [PMID: 24298025 DOI: 10.1101/pdb.top066167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ca(2+) imaging is a commonly used approach for measuring Ca(2+) signals at high spatial resolution. The method is often combined with electrode recordings to correlate electrical and chemical signals or to investigate Ca(2+) signals following an electrical stimulation. To obtain information on electrical activity at the same spatial resolution, Ca(2+) imaging must be combined with membrane potential imaging. Similarly, stimulation of subcellular compartments requires photostimulation. Thus, combining Ca(2+) imaging with an additional optical technique facilitates the study of a number of physiological questions. The aim of this article is to introduce some basic principles regarding the combination of Ca(2+) imaging with other optical techniques. We discuss the design of the optics, the design of experimental protocols, the optical characteristics of Ca(2+) indicators used in combination with an optical probe, and the affinity of the Ca(2+) indicator in relation to the type of measurement. This information will enable the reader to devise an optimal strategy for combined optical experiments.
Collapse
Affiliation(s)
- Marco Canepari
- Inserm U836, Team 3, BP 170, Grenoble cedex 09, F-38042, France
| | | | | | | | | |
Collapse
|
28
|
Kramer RH, Mourot A, Adesnik H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 2013; 16:816-23. [PMID: 23799474 DOI: 10.1038/nn.3424] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/07/2013] [Indexed: 12/31/2022]
Abstract
The optical neuroscience revolution is transforming how we study neural circuits. By providing a precise way to manipulate endogenous neuronal signaling proteins, it also has the potential to transform our understanding of molecular neuroscience. Recent advances in chemical biology have produced light-sensitive compounds that photoregulate a wide variety of proteins underlying signaling between and within neurons. Chemical tools for optopharmacology include caged agonists and antagonists and reversibly photoswitchable ligands. These reagents act on voltage-gated ion channels and neurotransmitter receptors, enabling control of neuronal signaling with a high degree of spatial and temporal precision. By covalently attaching photoswitch molecules to genetically tagged proteins, the newly emerging methodology of optogenetic pharmacology allows biochemically precise control in targeted subsets of neurons. Now that the tools for manipulating endogenous neuronal signaling proteins are available, they can be implemented in vivo to enhance our understanding of the molecular bases of brain function and dysfunctions.
Collapse
|
29
|
Higashimori H, Morel L, Huth J, Lindemann L, Dulla C, Taylor A, Freeman M, Yang Y. Astroglial FMRP-dependent translational down-regulation of mGluR5 underlies glutamate transporter GLT1 dysregulation in the fragile X mouse. Hum Mol Genet 2013; 22:2041-54. [PMID: 23396537 PMCID: PMC3633372 DOI: 10.1093/hmg/ddt055] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 11/12/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the loss-of-function of fragile X mental retardation protein (FMRP). The loss of FMRP function in neurons abolishes its suppression on mGluR1/5-dependent dendritic protein translation, enhancing mGluR1/5-dependent synaptic plasticity and other disease phenotypes in FXS. In this study, we describe a new activation function of FMRP in regulating protein expression in astroglial cells. We found that astroglial glutamate transporter subtype glutamate transporter 1 (GLT1) and glutamate uptake is significantly reduced in the cortex of fmr1(-/-) mice. Correspondingly, neuronal excitability is also enhanced in acute fmr1(-/-) (but not in fmr1(+/+) control) cortical slices treated with low doses (10 μm) of the GLT1-specific inhibitor dihydrokainate (DHK). Using mismatched astrocyte and neuron co-cultures, we demonstrate that the loss of astroglial (but not neuronal) FMRP particularly reduces neuron-dependent GLT1 expression and glutamate uptake in co-cultures. Interestingly, protein (but not mRNA) expression and the (S)-3,5-dihydroxyphenylglycine-dependent Ca(2+) responses of astroglial mGluR5 receptor are also selectively reduced in fmr1(-/-) astrocytes and brain slices, attenuating neuron-dependent GLT1 expression. Subsequent FMRP immunoprecipitation and QRT-PCR analysis showed that astroglial mGluR5 (but not GLT1) mRNA is associated with FMRP. In summary, our results provide evidence that FMRP positively regulates translational expression of mGluR5 in astroglial cells, and FMRP-dependent down-regulation of mGluR5 underlies GLT1 dysregulation in fmr1(-/-) astrocytes. The dysregulation of GLT1 and reduced glutamate uptake may potentially contribute to enhanced neuronal excitability observed in the mouse model of FXS.
Collapse
Affiliation(s)
- Haruki Higashimori
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
| | - Lydie Morel
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
| | - James Huth
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
| | - Lothar Lindemann
- Pharmaceuticals Division, Department of PCDF, Preclinical CNS Research, Roche Ltd, Bldg. 69/452, CH-4070Basel, Switzerland
| | - Chris Dulla
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
- Neuroscience Program, Tufts Sackler School of Graduate Biomedical Sciences, 136 Harrison Ave, Boston, MA02111, USA and
| | - Amaro Taylor
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
| | - Mike Freeman
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA02111, USA,
- Neuroscience Program, Tufts Sackler School of Graduate Biomedical Sciences, 136 Harrison Ave, Boston, MA02111, USA and
| |
Collapse
|
30
|
Picard S, Cueto-Diaz EJ, Genin E, Clermont G, Acher F, Ogden D, Blanchard-Desce M. Tandem triad systems based on FRET for two-photon induced release of glutamate. Chem Commun (Camb) 2013; 49:10805-7. [DOI: 10.1039/c3cc45812a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Duguid IC. Presynaptic NMDA receptors: are they dendritic receptors in disguise? Brain Res Bull 2012; 93:4-9. [PMID: 23279913 DOI: 10.1016/j.brainresbull.2012.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 02/07/2023]
Abstract
The N-methyl-D-aspartate (NMDA) receptor plays an essential role in excitatory transmission, synaptic integration, and learning and memory. In the classical view, postsynaptic NMDA receptors act as canonical coincidence detectors providing a 'molecular switch' for the induction of various forms of short- and long-term synaptic plasticity. Over the past twenty years there has been accumulating evidence to suggest that NMDA receptors are also expressed presynaptically and are involved in the regulation of synaptic transmission and specific forms of activity-dependent plasticity in developing neural circuits. However, the existence of presynaptic NMDA receptors remains a contentious issue. In this review, I will discuss the criteria required for identifying functional presynaptic receptors, novel methods for probing NMDA receptor function, and recent evidence to suggest that NMDA receptors are expressed at presynaptic sites in a target-specific manner.
Collapse
Affiliation(s)
- Ian C Duguid
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK.
| |
Collapse
|
32
|
Petit M, Tran C, Roger T, Gallavardin T, Dhimane H, Palma-Cerda F, Blanchard-Desce M, Acher FC, Ogden D, Dalko PI. Substitution effect on the one- and two-photon sensitivity of DMAQ "caging" groups. Org Lett 2012; 14:6366-9. [PMID: 23214948 DOI: 10.1021/ol3031704] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The systematic SAR study of a "caging" group showed a strong influence of the position of the donor dimethylamino group on the efficiency of photolysis of the DMAQ (2-hydroxymethylene-(N,N-dimethylamino)quinoline) caged acetate under one-photon near-UV or two-photon near-IR excitation. Photorelease of l-glutamate by the most efficient 8-DMAQ derivative strongly and efficiently activated glutamate receptors, generating large, fast rising responses similar to those elicited by glutamate photoreleased from the widely used MNI-caged glutamate.
Collapse
Affiliation(s)
- Morgane Petit
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|