1
|
Namba MD, Phillips MN, Chen PJ, Blass BE, Olive MF, Neisewander JL. HIV gp120 impairs nucleus accumbens neuroimmune function and dopamine D3 receptor-mediated inhibition of cocaine seeking in male rats. ADDICTION NEUROSCIENCE 2023; 5:100062. [PMID: 36909738 PMCID: PMC9997483 DOI: 10.1016/j.addicn.2023.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cocaine Use Disorders (CUDs) are associated with an increased risk of human immunodeficiency virus (HIV) infection. Cocaine and the HIV envelope protein gp120 each induce distinct deficits to mesocorticolimbic circuit function and motivated behavior; however, little is known regarding how they interact to dysregulate these functions or how such interactions impact pharmacotherapeutic efficacy. We have previously shown that the selective, weak partial agonist of the dopamine D3 receptor (D3R), MC-25-41, attenuates cocaine-seeking behavior in male rats. Here, we sought to characterize changes in striatal neuroimmune function in gp120-exposed rats across abstinence from operant access to cocaine (0.75 mg/kg, i.v.) or sucrose (45 mg/pellet), and to examine the impact of gp120 exposure on MC-25-41-reduced cocaine seeking. After establishing a history of cocaine or sucrose self-administration, rats received intracerebroventricular gp120 infusions daily the first 5 days of abstinence and were sacrificed either on day 6 or after 21 days of forced abstinence and a cue-induced cocaine seeking test. We demonstrated that MC-25-41 treatment attenuated cue-induced cocaine seeking among control rats but not gp120-exposed rats. Moreover, postmortem analysis of nucleus accumbens (NAc) core neuroimmune function indicated cocaine abstinence- and gp120-induced impairments, and the expression of several immune factors within the NAc core significantly correlated with cocaine-seeking behavior. We conclude that cocaine abstinence dysregulates striatal neuroimmune function and interacts with gp120 to inhibit the effectiveness of a D3R partial agonist in reducing cocaine seeking. These findings highlight the need to consider comorbidities, such as immune status, when evaluating the efficacy of novel pharmacotherapeutics.
Collapse
Affiliation(s)
- Mark D Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Megan N Phillips
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Peng-Jen Chen
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Benjamin E Blass
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
2
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
G-protein Biased Signaling Agonists of Dopamine D3 Receptor Promote Distinct Activation Patterns of ERK1/2. Pharmacol Res 2022; 179:106223. [DOI: 10.1016/j.phrs.2022.106223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 01/11/2023]
|
4
|
Angarita GA, Hadizadeh H, Cerdena I, Potenza MN. Can pharmacotherapy improve treatment outcomes in people with co-occurring major depressive and cocaine use disorders? Expert Opin Pharmacother 2021; 22:1669-1683. [PMID: 34042556 DOI: 10.1080/14656566.2021.1931684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Major depressive disorder (MDD) and cocaine use disorder (CUD) are prevalent and frequently co-occur. When co-occurring, the presence of one disorder typically negatively impacts the prognosis for the other. Given the clinical relevance, we sought to examine pharmacotherapies for co-occurring CUD and MDD. While multiple treatment options have been examined in the treatment of each condition individually, studies exploring pharmacological options for their comorbidity are fewer and not conclusive.Areas Covered: For this review, the authors searched the literature in PubMed using clinical query options for therapies and keywords relating to each condition. Then, they described potentially promising pharmacologic therapeutic options based on shared mechanisms between the two conditions and/or results from individual clinical trials conducted to date.Expert opinion: Medications like stimulants, dopamine (D3) receptors partial agonists or antagonists, antagonists of kappa opioid receptors, topiramate, and ketamine could be promising as there is significant overlap relating to reward deficiency models, antireward pathways, and altered glutamatergic systems. However, the available clinical literature on any one of these types of agents is mixed. Additionally, for some agents there is possible concern related to abuse potential (e.g. ketamine and stimulants).
Collapse
Affiliation(s)
- Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Hasti Hadizadeh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ignacio Cerdena
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA.,Child Study Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University, New Haven, CT, USA.,Connecticut Council on Problem Gambling, Wethersfield, CT, USA
| |
Collapse
|
5
|
Powell GL, Namba MD, Vannan A, Bonadonna JP, Carlson A, Mendoza R, Chen PJ, Luetdke RR, Blass BE, Neisewander JL. The Long-Acting D3 Partial Agonist MC-25-41 Attenuates Motivation for Cocaine in Sprague-Dawley Rats. Biomolecules 2020; 10:biom10071076. [PMID: 32708461 PMCID: PMC7408535 DOI: 10.3390/biom10071076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
The dopamine D3 receptor is a prime target for developing treatments for cocaine use disorders (CUDs). In this study, we conducted a pre-clinical investigation of the therapeutic potential of a long-acting, D3 receptor partial agonist, MC-25-41. Male rats were pre-treated with MC-25-41 (vehicle, 1.0, 3.0, 5.6, or 10 mg/kg, intraperitoneal (IP)) five minutes prior to tests of cocaine or sucrose intake on either a progressive ratio schedule of reinforcement or a variable interval 60 s multiple schedule consisting of 4, 15-min components with sucrose or cocaine available in alternating components. A separate cohort of rats was tested on a within-session, dose-reduction procedure to determine the effects of MC-25-41 on demand for cocaine using a behavioral economics analysis. Finally, rats were tested for effects of MC-25-41 on spontaneous and cocaine-induced locomotion. MC-25-41 failed to alter locomotion, but reduced reinforcement rates for both cocaine and sucrose on the low-effort, multiple schedule. However, on the higher-effort, progressive ratio schedule of cocaine reinforcement, MC-25-41 reduced infusions, and active lever presses at doses that did not alter sucrose intake. The behavioral economics analysis showed that MC-25-41 also increased cocaine demand elasticity compared to vehicle, indicating a reduction in consumption as price increases. Together, these results suggest that similar to other D3-selective antagonists and partial agonists, MC-25-41 reduces motivation for cocaine under conditions of high cost but has the added advantage of a long half-life (>10 h). These findings suggest that MC-25-41 may be a suitable pre-clinical lead compound for development of medications to treat CUDs.
Collapse
Affiliation(s)
- Gregory L. Powell
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Mark D. Namba
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Annika Vannan
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - John Paul Bonadonna
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Andrew Carlson
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Rachel Mendoza
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
| | - Peng-Jen Chen
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (P.-J.C.); (B.E.B.)
| | - Robert R. Luetdke
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Benjamin E. Blass
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (P.-J.C.); (B.E.B.)
| | - Janet L. Neisewander
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; (G.L.P.); (M.D.N.); (A.V.); (J.P.B.); (A.C.); (R.M.)
- Correspondence:
| |
Collapse
|
6
|
Hayatshahi HS, Xu K, Griffin SA, Taylor M, Mach RH, Liu J, Luedtke RR. Analogues of Arylamide Phenylpiperazine Ligands To Investigate the Factors Influencing D3 Dopamine Receptor Bitropic Binding and Receptor Subtype Selectivity. ACS Chem Neurosci 2018; 9:2972-2983. [PMID: 30010318 DOI: 10.1021/acschemneuro.8b00142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have previously reported on the ability of arylamide phenylpiperazines to bind selectively to the D3 versus the D2 dopamine receptor subtype. For these studies, we used LS-3-134 as the prototypic arylamide phenylpiperazine ligand because it binds with high affinity at D3 dopamine receptor (0.17 nM) and exhibits >150-fold D3 vs D2 receptor binding selectivity. Our goal was to investigate how the composition and size of the nonaromatic ring structure at the piperazine position of substituted phenylpiperazine analogues might influence binding affinity at the human D2 and D3 dopamine receptors. Two factors were identified as being important for determining the binding affinity of bitropic arylamide phenylpiperazines at the dopamine D3 receptor subtype. One factor was the strength of the salt bridge between the highly conserved residue Asp3.32 with the protonated nitrogen of the nonaromatic ring at the piperazine position. The second factor was the configuration of the unbound ligand in an aqueous solution. These two factors were found to be related to the logarithm of the affinities using a simple correlation model, which could be useful when designing high affinity subtype selective bitropic ligands. While this model is based upon the interaction of arylamide phenylpiperazines with the D2 and D3 D2-like dopamine receptor subtypes, it provides insights into the complexity of the factors that define a bitropic mode of the binding at GPCRs.
Collapse
Affiliation(s)
- Hamed S. Hayatshahi
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Kuiying Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Suzy A. Griffin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
7
|
Dopamine D3 receptor partial agonist LS-3-134 attenuates cocaine-motivated behaviors. Pharmacol Biochem Behav 2018; 175:123-129. [PMID: 30308214 DOI: 10.1016/j.pbb.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 01/09/2023]
Abstract
AIMS The dopamine D3 receptor (D3R) is a pharmacotherapeutic target for drug dependence. We have successfully imaged human D3Rs using radiolabeled LS-3-134, an arylamide phenylpiperazine with moderate selectivity for the D3R over D2R and low efficacy at the D2 and D3R. In this study, we screened for effects of LS-3-134 as a potential anti-cocaine therapeutic. METHODS Male rats were pretreated with LS-3-134 (0, 1.0, 3.2, or 5.6 mg/kg, IP) 15 min prior to tests for its effects on spontaneous and cocaine-induced locomotion. We next investigated the effects of LS-3-134 (0, 1.0, 3.2, 5.6, or 10.0 mg/kg, IP) on operant responding on a multiple variable-interval (VI) 60-second schedule with alternating cocaine (0.375 mg/kg, IV) and sucrose (45 mg) reinforcer components. Additionally, we tested LS-3-134 (5.6 mg/kg, IP) effects on a progressive ratio (PR) schedule of cocaine reinforcement, on extinction of cocaine-seeking behavior, and on reinstatement of extinguished cocaine-seeking behavior by cocaine-associated light/tone cues. RESULTS LS-3-134 did not alter spontaneous locomotion, but reduced cocaine-induced locomotion, break points on the high-effort progressive ratio schedule of reinforcement, and responding during extinction and cue reinstatement. In contrast, LS-3-134 did not alter cocaine or sucrose reinforcement on the low-effort multiple VI 60-second schedule. CONCLUSIONS The effects of LS-3-134 are similar to other dopamine D3 low efficacy partial agonists and antagonists in attenuating cocaine intake under high effort schedules of reinforcement and in attenuating cocaine-seeking behavior elicited by cocaine-associated cues. These findings are consistent with the anti-craving profile of other dopamine D3 drugs.
Collapse
|
8
|
Powell GL, Bonadonna JP, Vannan A, Xu K, Mach RH, Luedtke RR, Neisewander JL. Dopamine D3 receptor partial agonist LS-3-134 attenuates cocaine-motivated behaviors. Pharmacol Biochem Behav 2018; 171:46-53. [PMID: 29807065 DOI: 10.1016/j.pbb.2018.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/01/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
AIMS The dopamine D3 receptor (D3R) is a pharmacotherapeutic target for drug dependence. We have successfully imaged human D3Rs using radiolabeled LS-3-134, an arylamide phenylpiperazine with moderate selectivity for the D3R over D2R and low efficacy at the D2 and D3R. In this study, we screened for effects of LS-3-134 as a potential anti-cocaine therapeutic. METHODS Male rats were pretreated with LS-3-134 (0, 1.0, 3.2, or 5.6 mg/kg, IP) 15 min prior to tests for its effects on spontaneous and cocaine-induced locomotion. We next investigated the effects of LS-3-134 (0, 1.0, 3.2, 5.6, or 10.0 mg/kg, IP) on operant responding on a multiple variable-interval (VI) 60-second schedule with alternating cocaine (0.375 mg/kg, IV) and sucrose (45 mg) reinforcer components. Additionally, we tested LS-3-134 (5.6 mg/kg, IP) effects on a progressive ratio (PR) schedule of cocaine reinforcement, on extinction of cocaine-seeking behavior, and on reinstatement of extinguished cocaine-seeking behavior by cocaine-associated light/tone cues. RESULTS LS-3-134 did not alter spontaneous locomotion, but at 5.6 mg/kg, it reduced cocaine-induced locomotion, break points on the high-effort progressive ratio schedule of reinforcement, and responding during extinction and cue reinstatement. In contrast, LS-3-134 did not alter cocaine or sucrose reinforcement on the low-effort multiple VI 60-second schedule. CONCLUSIONS The effects of LS-3-134 are similar to other dopamine D3 low efficacy partial agonists and antagonists in attenuating cocaine intake under high effort schedules of reinforcement and in attenuating cocaine-seeking behavior elicited by cocaine-associated cues. These findings are consistent with the anti-craving profile of other dopamine D3 drugs.
Collapse
Affiliation(s)
- Gregory L Powell
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Kuiying Xu
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Robert R Luedtke
- University of North Texas Health Science Center, the Department of Pharmacology and Neuroscience, Fort Worth, TX, United States
| | | |
Collapse
|
9
|
Antinori S, Fattore L, Saba P, Fratta W, Gessa GL, Devoto P. Levodopa prevents the reinstatement of cocaine self-administration in rats via potentiation of dopamine release in the medial prefrontal cortex. Addict Biol 2018; 23:556-568. [PMID: 28429835 DOI: 10.1111/adb.12509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/04/2023]
Abstract
Dopamine agonists have been proposed as therapeutic tools for cocaine addiction. We have recently demonstrated that indirect dopamine agonists, including levodopa (L-DOPA), markedly increase cocaine-induced dopamine release in the medial prefrontal cortex (mPFC) of rats leading to the suppression of cocaine-seeking behavior. This study was aimed to understand the behavioral and neurochemical effects of L-DOPA on cocaine-taking and cocaine-seeking in rats. After reaching a stable pattern of intravenous cocaine self-administration under a continuous fixed ratio (FR-1) schedule of reinforcement, male rats were treated with L-DOPA at different steps of the self-administration protocol. We found that L-DOPA reduced cocaine self-administration under FR-1 schedule of reinforcement and decreased the breaking points and the amount of cocaine self-administered under the progressive ratio schedule of reinforcement. Levodopa also decreased cocaine-seeking behavior both in a saline substitution test and in the cue priming-induced reinstatement test, without affecting general motor activity. Importantly, L-DOPA greatly potentiated cocaine-induced dopamine release in the mPFC of self-administering rats while reducing their cocaine intake. In the same brain area, L-DOPA also increased dopamine levels during cue priming-induced reinstatement of cocaine-seeking behavior. The potentiating effect was also evident in the mPFC but not nucleus accumbens core of drug-naïve rats passively administered with cocaine. Altogether, these findings demonstrate that L-DOPA efficaciously reduces the reinforcing and motivational effects of cocaine likely potentiating dopamine transmission in the mPFC. Its ability to prevent cue priming-induced reinstatement of cocaine-seeking suggests that it might be effective in reducing the risk to relapse to cocaine in abstinent patients.
Collapse
Affiliation(s)
- Silvia Antinori
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari; National Research Council (CNR); Italy
- Center of Excellence ‘Neurobiology of Addiction’; University of Cagliari; Italy
| | - Pierluigi Saba
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
| | - Walter Fratta
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
- Center of Excellence ‘Neurobiology of Addiction’; University of Cagliari; Italy
| | - Gian Luigi Gessa
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
- Institute of Neuroscience-Cagliari; National Research Council (CNR); Italy
- ‘Guy Everett Laboratory’; University of Cagliari; Italy
| | - Paola Devoto
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
- Center of Excellence ‘Neurobiology of Addiction’; University of Cagliari; Italy
- ‘Guy Everett Laboratory’; University of Cagliari; Italy
| |
Collapse
|
10
|
Late Reduction of Cocaine Cravings in a Randomized, Double-Blind Trial of Aripiprazole vs Perphenazine in Schizophrenia and Comorbid Cocaine Dependence. J Clin Psychopharmacol 2017; 37:657-663. [PMID: 28984746 DOI: 10.1097/jcp.0000000000000789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Co-occurring schizophrenia spectrum disorder and International Statistical Classification of Diseases, 10th Revision cocaine dependence present a particularly destructive constellation that is often difficult to treat. Both conditions raise dopamine transmission effects in the brain. Traditional neuroleptics block dopamine receptors, whereas aripiprazole modulates dopamine activity as an agonist/antagonist. We tested whether dopamine modulation is superior to dopamine blocking in dual-diagnosis patients. METHODS In a randomized, double-blind, comparison design, cocaine-dependent schizophrenic subjects actively using cocaine received either aripiprazole or perphenazine in an 8-week trial. Primary outcome targeted cocaine-free urine sample proportions, whereas cocaine craving scores were a secondary variable. RESULTS Subjects (N = 44) randomized (n = 22 per group) did not differ at baseline. The proportion of cocaine-free urine samples did not differ by medication group. Contrasting weeks 3 to 5 vs 6 to 8 revealed significant late reductions in craving with aripiprazole. On the respective 5-point subscales, craving intensity decreased by 1.53 ± 0.43 (P < 0.0005) points, craving frequency by 1.4 ± 0.40 (P > 0.0004) points, and craving duration by 1.76 ± 0.44 (P > 0.0001) points. CONCLUSIONS A drug effect of aripiprazole on craving items appeared at week 6 of treatment, on average, and was not seen before that length of drug exposure. The data suggest that dopamine modulation reduces cocaine cravings but requires an acclimation period. To understand the mechanism of action better, a trial of depot aripiprazole may be useful. Clinically, a reduction in craving potentially offers a clearer focus for ongoing behavioral treatment. It may also offer a longer-term treatment effect with respect to the severity of relapse.
Collapse
|
11
|
Cortés A, Moreno E, Rodríguez-Ruiz M, Canela EI, Casadó V. Targeting the dopamine D3 receptor: an overview of drug design strategies. Expert Opin Drug Discov 2016; 11:641-64. [PMID: 27135354 DOI: 10.1080/17460441.2016.1185413] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) have the highest density in the limbic areas of the brain, which are associated with cognitive and emotional functions. These receptors are therefore attractive targets for therapeutic management. AREAS COVERED This review summarizes the functional and pharmacological characteristics of D3Rs, including the design and clinical relevance of full agonists, partial agonists and antagonists, as well as the capacity of these receptors to form active homodimers, heterodimers or higher order receptor complexes as pharmacological targets in several neurological and neurodegenerative disorders. EXPERT OPINION The high sequence homology between D3R and the D2-type challenges the development of D3R-selective compounds. The design of new D3R-preferential ligands with improved physicochemical properties should provide a better pharmacokinetic/bioavailability profile and lesser toxicity than is found with existing D3R ligands. It is also essential to optimize D3R affinity and, especially, D3R vs. D2-type binding and functional selectivity ratios. Developing allosteric and bitopic ligands should help to improve the D3R selectivity of these drugs. As most evidence points to the ability of GPCRs to form homomers and heteromers, the most promising therapeutic strategy in the future is likely to involve the application of heteromer-selective drugs. These selective ligands would display different affinities for a given receptor depending on the receptor partners within the heteromer. Therefore, designing novel compounds that specifically target and modulate D1R-D3R heteromers would be an interesting approach for the treatment of levodopa (L-DOPA)-induced dyskinesias.
Collapse
Affiliation(s)
- Antoni Cortés
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Estefanía Moreno
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Mar Rodríguez-Ruiz
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Enric I Canela
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Vicent Casadó
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| |
Collapse
|
12
|
Rangel-Barajas C, Malik M, Mach RH, Luedtke RR. Pharmacological modulation of abnormal involuntary DOI-induced head twitch response movements in male DBA/2J mice: II. Effects of D3 dopamine receptor selective compounds. Neuropharmacology 2015; 93:179-90. [PMID: 25698528 DOI: 10.1016/j.neuropharm.2014.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/27/2022]
Abstract
We recently reported on the characterization of the hallucinogen 2,5-dimethoxy-4-methylamphetamine's (DOI) ability to elicit a head twitch response (HTR) in DBA/2J mice and the ability of D2 vs. D3 dopamine receptor selective compounds to modulate that response. For these studies, the ability of D3 vs. D2 dopamine receptor selective compounds to attenuate the DOI-dependent HTR was examined. WC 10, a D3 dopamine receptor weak partial agonist with 40-fold binding selectivity for D3 vs. D2 dopamine receptors, produced a dose-dependent decrease in the DOI-induced HTR (IC50 = 3.7 mg/kg). WC 44, a D3 receptor selective full agonist, also inhibited the DOI-induced HTR (IC50 = 5.1 mg/kg). The effect of two D3 receptor selective partial agonists, LAX-4-136 and WW-III-55, were also evaluated. These analogs exhibit 150-fold and 800-fold D3 vs. D2 binding selectivity, respectively. Both compounds inhibited the HTR with similar potency but with different maximum efficacies. At 10 mg/kg WW-III-55 inhibited the HTR by 95%, while LAX-4-136 administration resulted in a 50% reduction. In addition, DOI (5 mg/kg) was administered at various times after LAX-4-136 or WW-III-55 administration to compare the duration of action. The homopiperazine analog LAX-4-136 exhibited greater stability. An assessment of our test compounds on motor performance and coordination was performed using a rotarod test. None of the D3 dopamine receptor selective compounds significantly altered latency to fall, suggesting that these compounds a) did not attenuate the DOI-dependent HTR due to sedative or adverse motor effects and b) may have antipsychotic/antihallucinogenic activity.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Maninder Malik
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Robert H Mach
- Radiochemistry Laboratory, Neurology Department, University of Pennsylvania School of Medicine, Chemistry Building, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Robert R Luedtke
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| |
Collapse
|
13
|
Keck TM, John WS, Czoty PW, Nader MA, Newman AH. Identifying Medication Targets for Psychostimulant Addiction: Unraveling the Dopamine D3 Receptor Hypothesis. J Med Chem 2015; 58:5361-80. [PMID: 25826710 PMCID: PMC4516313 DOI: 10.1021/jm501512b] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dopamine D3 receptor (D3R) is a target for developing medications to treat substance use disorders. D3R-selective compounds with high affinity and varying efficacies have been discovered, providing critical research tools for cell-based studies that have been translated to in vivo models of drug abuse. D3R antagonists and partial agonists have shown especially promising results in rodent models of relapse-like behavior, including stress-, drug-, and cue-induced reinstatement of drug seeking. However, to date, translation to human studies has been limited. Herein, we present an overview and illustrate some of the pitfalls and challenges of developing novel D3R-selective compounds toward clinical utility, especially for treatment of cocaine abuse. Future research and development of D3R-selective antagonists and partial agonists for substance abuse remains critically important but will also require further evaluation and development of translational animal models to determine the best time in the addiction cycle to target D3Rs for optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Thomas M Keck
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - William S John
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Paul W Czoty
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Michael A Nader
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Amy Hauck Newman
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
14
|
Rangel-Barajas C, Malik M, Taylor M, Neve KA, Mach RH, Luedtke RR. Characterization of [(3) H]LS-3-134, a novel arylamide phenylpiperazine D3 dopamine receptor selective radioligand. J Neurochem 2014; 131:418-31. [PMID: 25041389 DOI: 10.1111/jnc.12825] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/23/2022]
Abstract
LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit: (i) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, (ii) > 100-fold D3 versus D2 dopamine receptor subtype binding selectivity, and (iii) low-affinity binding (Ki > 5000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [(3) H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [(3) H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies, we propose that [(3) H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | | | | | | | | |
Collapse
|
15
|
Inhibitory modulation of CART peptides in accumbal neuron through decreasing interaction of CaMKIIα with dopamine D3 receptors. Brain Res 2014; 1557:101-10. [PMID: 24560901 DOI: 10.1016/j.brainres.2014.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/20/2014] [Accepted: 02/12/2014] [Indexed: 11/20/2022]
Abstract
Previous studies in rats have shown that microinjections of cocaine- and amphetamine-regulated transcript (CART) peptide into the nucleus accumbens (NAc; the area of the brain that mediates drug reward and reinforcement) attenuate the locomotor effects of psychostimulants. CART peptide has also been shown to induce decreased intracellular concentrations of calcium (Ca(2+)) in primary cultures of hippocampus neurons. The purpose of this study was to characterize the interaction of Ca(2+)/calmodulin-dependent kinases (CaMKIIα) with dopamine D3 (D3) receptors (R) in primary cultures of accumbal neurons. This interaction is involved in inhibitory modulation of CART peptides. In vitro, CART (55-102) peptide (0.1, 0.5 or 1μM) was found to dose-dependently inhibit K(+) depolarization-elicited Ca(2+) influx and CaMKIIα phosphorylation in accumbal neurons. Moreover, CART peptides were also found to block cocaine (1μM)-induced Ca(2+) influx, CaMKIIα phosphorylation, CaMKIIα-D3R interaction, and CREB phosphorylation. In vivo, repeated microinjections of CART (55-102) peptide (2μg/1μl/side) into the NAc over a 5-day period had no effect on behavioral activity but blocked cocaine-induced locomotor activity. These results indicate that D3R function in accumbal neurons is a target of CART (55-102) peptide and suggest that CART peptide by dephosphorylating limbic D3Rs may have potential as a treatment for cocaine abuse.
Collapse
|
16
|
Cheung THC, Loriaux AL, Weber SM, Chandler KN, Lenz JD, Schaan RF, Mach RH, Luedtke RR, Neisewander JL. Reduction of cocaine self-administration and D3 receptor-mediated behavior by two novel dopamine D3 receptor-selective partial agonists, OS-3-106 and WW-III-55. J Pharmacol Exp Ther 2013; 347:410-23. [PMID: 24018640 DOI: 10.1124/jpet.112.202911] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dopamine D3 receptor (D3R)-selective compounds may be useful medications for cocaine dependence. In this study, we identified two novel arylamide phenylpiperazines, OS-3-106 and WW-III-55, as partial agonists at the D3R in the adenylyl cyclase inhibition assay. OS-3-106 and WW-III-55 have 115- and 862-fold D3R:D2 receptor (D2R) binding selectivity, respectively. We investigated their effects (0, 3, 5.6, or 10 mg/kg) on operant responding by using a multiple variable-interval (VI) 60-second schedule that alternated components with sucrose reinforcement and components with intravenous cocaine reinforcement (0.375 mg/kg). Additionally, we evaluated the effect of OS-3-106 (10 mg/kg) on the dose-response function of cocaine self-administration and the effect of WW-III-55 (0-5.6 mg/kg) on a progressive ratio schedule with either cocaine or sucrose reinforcement. Both compounds were also examined for effects on locomotion and yawning induced by a D3R agonist. OS-3-106 decreased cocaine and sucrose reinforcement rates, increased latency to first response for cocaine but not sucrose, and downshifted the cocaine self-administration dose-response function. WW-III-55 did not affect cocaine self-administration on the multiple-variable interval schedule, but it reduced cocaine and sucrose intake on the progressive ratio schedule. Both compounds reduced locomotion at doses that reduced responding, and both compounds attenuated yawning induced by low doses of 7-OH-DPAT (a D3R-mediated behavior), but neither affected yawning on the descending limb of the 7-OH-DPAT dose-response function (a D2R-mediated behavior). Therefore, both compounds blocked a D3R-mediated behavior. However, OS-3-106 was more effective in reducing cocaine self-administration. These findings support D3Rs, and possibly D2Rs, as targets for medications aimed at reducing the motivation to seek cocaine.
Collapse
Affiliation(s)
- Timothy H C Cheung
- School of Life Sciences (T.H.C.C., A.L.L., S.M.W., K.N.C., R.F.S., J.L.N.) and Department of Psychology (T.H.C.C., S.M.W., K.N.C., J.D.L., J.L.N.), Arizona State University, Tempe, Arizona; Washington University School of Medicine, St. Louis, Missouri (R.H.M.); and Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas (R.R.L.)
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Neisewander JL, Cheung THC, Pentkowski NS. Dopamine D3 and 5-HT1B receptor dysregulation as a result of psychostimulant intake and forced abstinence: Implications for medications development. Neuropharmacology 2013; 76 Pt B:301-19. [PMID: 23973315 DOI: 10.1016/j.neuropharm.2013.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Addiction to psychostimulants, including cocaine and amphetamine, is associated with dysregulation of dopamine and serotonin (5-HT) neurotransmitter systems. Neuroadaptations in these systems vary depending on the stage of the drug taking-abstinence-relapse cycle. Consequently, the effects of potential treatments that target these systems may vary depending on whether they are given during abstinence or relapse. In this review, we discuss evidence that dopamine D3 receptors (D3Rs) and 5-HT1B receptors (5-HT1BRs) are dysregulated in response to both chronic psychostimulant use and subsequent abstinence. We then review findings from preclinical self-administration models which support targeting D3Rs and 5-HT1BRs as potential medications for psychostimulant dependence. Potential side effects of the treatments are discussed and attention is given to studies reporting positive treatment outcomes that depend on: 1) whether testing occurs during self-administration versus abstinence, 2) whether escalation of drug self-administration has occurred, 3) whether the treatments are given repeatedly, and 4) whether social factors influence treatment outcomes. We conclude that D3/D2 agonists may decrease psychostimulant intake; however, side effects of D3/D2R full agonists may limit their therapeutic potential, whereas D3/D2R partial agonists have fewer undesirable side effects. D3-selective antagonists may not reduce psychostimulant intake during relapse, but nonetheless, may decrease motivation for seeking psychostimulants with relatively few side-effects. 5-HT1BR agonists provide a striking example of treatment outcomes that are dependent on the stage of the addiction cycle. Specifically, these agonists initially increase cocaine's reinforcing effects during maintenance of self-administration, but after a period of abstinence they reduce psychostimulant seeking and the resumption of self-administration. In conclusion, we suggest that factors contributing to dysregulation of monoamine systems, including drug history, abstinence, and social context, should be considered when evaluating potential treatments to better model treatment effects in humans. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Janet L Neisewander
- School of Life Sciences, P.O. Box 874501, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | |
Collapse
|
18
|
Nolan BC, Liu S, Hammerslag LR, Cheung THC, Lenz J, Mach RH, Luedtke RR, Neisewander JL. Fos expression in response to dopamine D3-preferring phenylpiperazine drugs given with and without cocaine. Synapse 2013; 67:847-55. [PMID: 23766142 DOI: 10.1002/syn.21691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/06/2013] [Indexed: 11/07/2022]
Abstract
WC 44 and WC 10 are phenylpiperazines with low (23 fold) to moderate (42 fold) selectivity for dopamine D3 receptors (D3Rs) over D2Rs, respectively. WC 44 is a full D3R agonist in the forskolin-stimulated adenylyl cyclase (AC) assay, whereas WC 10 has little efficacy. In contrast to their opposite effects in the AC assay, these drugs often produce similar behavioral effects, suggesting that the AC assay does not predict the efficacy of these drugs in vivo. Here, we examined whether Fos protein expression induced by these drugs would be more consistent with their behavioral effects in vivo. Rats received either vehicle, WC 10 (5.6 mg/kg, i.p.), WC 44 (10.0 mg/kg, i.p), cocaine (10.0 mg/kg, i.p.), or cocaine with WC 10 (5.6 mg/kg, i.p.) or with WC 44 (10.0 mg/kg, i.p). Locomotion was monitored for 90 min and the brains were harvested for immunohistochemistry. Both WC 10 and WC 44 decreased spontaneous and cocaine-induced locomotion. Both compounds also increased Fos expression relative to saline in the dorsal striatum and nucleus accumbens core and shell, and relative to cocaine alone in the nucleus accumbens shell. The findings suggest that even though these compounds have different efficacy in the AC bioassy, they produce similar brain activation and attenuation of cocaine hyperlocomotion. Together with our previous research demonstrating that these compounds down-shift the cocaine self-administration dose-effect function, the findings support the idea that D3R-selective compounds may be useful for cocaine dependence medications development.
Collapse
Affiliation(s)
- Brian C Nolan
- Department of Psychology, Arizona State University, Tempe, Arizona, 85287; School of Life Sciences, Arizona State University, Tempe, Arizona, 85287
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Luedtke RR, Mishra Y, Wang Q, Griffin SA, Bell-Horner C, Taylor M, Vangveravong S, Dillon GH, Huang RQ, Reichert DE, Mach RH. Comparison of the binding and functional properties of two structurally different D2 dopamine receptor subtype selective compounds. ACS Chem Neurosci 2012; 3:1050-62. [PMID: 23259040 DOI: 10.1021/cn300142q] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/12/2012] [Indexed: 11/28/2022] Open
Abstract
We previously reported on the synthesis of substituted phenyl-4-hydroxy-1-piperidyl indole analogues with nanomolar affinity at D2 dopamine receptors, ranging from 10- to 100-fold selective for D2 compared to the D3 dopamine receptor subtype. More recently, we evaluated a panel of aripiprazole analogues, identifying several analogues that also exhibit D2 vs D3 dopamine receptor binding selectivity. These studies further characterize the intrinsic efficacy of the compound with the greatest binding selectivity from each chemical class, 1-((5-methoxy-1H-indol-3-yl)methyl)-4-(4-(methylthio)phenyl)piperidin-4-ol (SV 293) and 7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one (SV-III-130s), using an adenylyl cyclase inhibition assay, a G-protein-coupled inward-rectifying potassium (GIRK) channel activation assay, and a cell based phospho-MAPK (pERK1/2) assay. SV 293 was found to be a neutral antagonist at D2 dopamine receptors using all three assays. SV-III-130s is a partial agonist using an adenylyl cyclase inhibition assay but an antagonist in the GIRK and phospho ERK1/2 assays. To define the molecular basis for the binding selectivity, the affinity of these two compounds was evaluated using (a) wild type human D2 and D3 receptors and (b) a panel of chimeric D2/D3 dopamine receptors. Computer-assisted modeling techniques were used to dock these compounds to the human D2 and D3 dopamine receptor subtypes. It is hoped that these studies on D2 receptor selective ligands will be useful in the future design of (a) receptor selective ligands used to define the function of D2-like receptor subtypes, (b) novel pharmacotherapeutic agents, and/or (c) in vitro and in vivo imaging agents.
Collapse
Affiliation(s)
- Robert R. Luedtke
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - Yogesh Mishra
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - Qi Wang
- Division
of Radiological Sciences, Washington University School of Medicine, Mallinckrodt
Institute of Radiology, 510 S. Kingshighway, St. Louis, Missouri 63110,
United States
| | - Suzy A. Griffin
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - Cathy Bell-Horner
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - Michelle Taylor
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - Suwanna Vangveravong
- Division
of Radiological Sciences, Washington University School of Medicine, Mallinckrodt
Institute of Radiology, 510 S. Kingshighway, St. Louis, Missouri 63110,
United States
| | - Glenn H. Dillon
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - Ren-Qi Huang
- The Department of Pharmacology
and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas
76107, United States
| | - David E. Reichert
- Division
of Radiological Sciences, Washington University School of Medicine, Mallinckrodt
Institute of Radiology, 510 S. Kingshighway, St. Louis, Missouri 63110,
United States
| | - Robert H. Mach
- Division
of Radiological Sciences, Washington University School of Medicine, Mallinckrodt
Institute of Radiology, 510 S. Kingshighway, St. Louis, Missouri 63110,
United States
| |
Collapse
|