1
|
Sharma SD, Reddy BK, Pal R, Ritakari TE, Cooper JD, Selvaraj BT, Kind PC, Chandran S, Wyllie DJA, Chattarji S. Astrocytes mediate cell non-autonomous correction of aberrant firing in human FXS neurons. Cell Rep 2023; 42:112344. [PMID: 37018073 PMCID: PMC10157295 DOI: 10.1016/j.celrep.2023.112344] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/2022] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Pre-clinical studies of fragile X syndrome (FXS) have focused on neurons, with the role of glia remaining largely underexplored. We examined the astrocytic regulation of aberrant firing of FXS neurons derived from human pluripotent stem cells. Human FXS cortical neurons, co-cultured with human FXS astrocytes, fired frequent short-duration spontaneous bursts of action potentials compared with less frequent, longer-duration bursts of control neurons co-cultured with control astrocytes. Intriguingly, bursts fired by FXS neurons co-cultured with control astrocytes are indistinguishable from control neurons. Conversely, control neurons exhibit aberrant firing in the presence of FXS astrocytes. Thus, the astrocyte genotype determines the neuronal firing phenotype. Strikingly, astrocytic-conditioned medium, and not the physical presence of astrocytes, is capable of determining the firing phenotype. The mechanistic basis of this effect indicates that the astroglial-derived protein, S100β, restores normal firing by reversing the suppression of a persistent sodium current in FXS neurons.
Collapse
Affiliation(s)
- Shreya Das Sharma
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India; University of Trans-Disciplinary Health Science and Technology, Bangalore 560064, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK
| | - Bharath Kumar Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Rakhi Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Tuula E Ritakari
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK
| | - James D Cooper
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK
| | - Bhuvaneish T Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK
| | - Peter C Kind
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Siddharthan Chandran
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - David J A Wyllie
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK.
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK.
| |
Collapse
|
2
|
Licznerski P, Park HA, Rolyan H, Chen R, Mnatsakanyan N, Miranda P, Graham M, Wu J, Cruz-Reyes N, Mehta N, Sohail S, Salcedo J, Song E, Effman C, Effman S, Brandao L, Xu GN, Braker A, Gribkoff VK, Levy RJ, Jonas EA. ATP Synthase c-Subunit Leak Causes Aberrant Cellular Metabolism in Fragile X Syndrome. Cell 2020; 182:1170-1185.e9. [PMID: 32795412 DOI: 10.1016/j.cell.2020.07.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/04/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022]
Abstract
Loss of the gene (Fmr1) encoding Fragile X mental retardation protein (FMRP) causes increased mRNA translation and aberrant synaptic development. We find neurons of the Fmr1-/y mouse have a mitochondrial inner membrane leak contributing to a "leak metabolism." In human Fragile X syndrome (FXS) fibroblasts and in Fmr1-/y mouse neurons, closure of the ATP synthase leak channel by mild depletion of its c-subunit or pharmacological inhibition normalizes stimulus-induced and constitutive mRNA translation rate, decreases lactate and key glycolytic and tricarboxylic acid (TCA) cycle enzyme levels, and triggers synapse maturation. FMRP regulates leak closure in wild-type (WT), but not FX synapses, by stimulus-dependent ATP synthase β subunit translation; this increases the ratio of ATP synthase enzyme to its c-subunit, enhancing ATP production efficiency and synaptic growth. In contrast, in FXS, inability to close developmental c-subunit leak prevents stimulus-dependent synaptic maturation. Therefore, ATP synthase c-subunit leak closure encourages development and attenuates autistic behaviors.
Collapse
Affiliation(s)
- Pawel Licznerski
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Han-A Park
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Harshvardhan Rolyan
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Rongmin Chen
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nelli Mnatsakanyan
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Paige Miranda
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Morven Graham
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jing Wu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | - Nikita Mehta
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sana Sohail
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Jorge Salcedo
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Erin Song
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Samuel Effman
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Lucas Brandao
- Department of Biology, Clark University, Worcester, MA 01610, USA
| | - Gulan N Xu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Amber Braker
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Valentin K Gribkoff
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Richard J Levy
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
3
|
Asiminas A, Jackson AD, Louros SR, Till SM, Spano T, Dando O, Bear MF, Chattarji S, Hardingham GE, Osterweil EK, Wyllie DJA, Wood ER, Kind PC. Sustained correction of associative learning deficits after brief, early treatment in a rat model of Fragile X Syndrome. Sci Transl Med 2020; 11:11/494/eaao0498. [PMID: 31142675 DOI: 10.1126/scitranslmed.aao0498] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/19/2018] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
Fragile X Syndrome (FXS) is one of the most common monogenic forms of autism and intellectual disability. Preclinical studies in animal models have highlighted the potential of pharmaceutical intervention strategies for alleviating the symptoms of FXS. However, whether treatment strategies can be tailored to developmental time windows that define the emergence of particular phenotypes is unknown. Similarly, whether a brief, early intervention can have long-lasting beneficial effects, even after treatment cessation, is also unknown. To address these questions, we first examined the developmental profile for the acquisition of associative learning in a rat model of FXS. Associative memory was tested using a range of behavioral paradigms that rely on an animal's innate tendency to explore novelty. Fmr1 knockout (KO) rats showed a developmental delay in their acquisition of object-place recognition and did not demonstrate object-place-context recognition paradigm at any age tested (up to 23 weeks of age). Treatment of Fmr1 KO rats with lovastatin between 5 and 9 weeks of age, during the normal developmental period that this associative memory capability is established, prevents the emergence of deficits but has no effect in wild-type animals. Moreover, we observe no regression of cognitive performance in the FXS rats over several months after treatment. This restoration of the normal developmental trajectory of cognitive function is associated with the sustained rescue of both synaptic plasticity and altered protein synthesis. The findings provide proof of concept that the impaired emergence of the cognitive repertoire in neurodevelopmental disorders may be prevented by brief, early pharmacological intervention.
Collapse
Affiliation(s)
- Antonis Asiminas
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Adam D Jackson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, Bangalore 560065, India
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sally M Till
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Teresa Spano
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, Bangalore 560065, India
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,UK Dementia Research Institute at the Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Mark F Bear
- Department of Brain and Cognitive Sciences, Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sumantra Chattarji
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, Bangalore 560065, India
| | - Giles E Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,UK Dementia Research Institute at the Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, Bangalore 560065, India
| | - Emma R Wood
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK. .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, Bangalore 560065, India
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK. .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Brain Development and Repair, InStem, Bangalore 560065, India
| |
Collapse
|
4
|
Wheater ENW, Stoye DQ, Cox SR, Wardlaw JM, Drake AJ, Bastin ME, Boardman JP. DNA methylation and brain structure and function across the life course: A systematic review. Neurosci Biobehav Rev 2020; 113:133-156. [PMID: 32151655 PMCID: PMC7237884 DOI: 10.1016/j.neubiorev.2020.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
MRI has enhanced our capacity to understand variations in brain structure and function conferred by the genome. We identified 60 studies that report associations between DNA methylation (DNAm) and human brain structure/function. Forty-three studies measured candidate loci DNAm; seventeen measured epigenome-wide DNAm. MRI features included region-of-interest and whole-brain structural, diffusion and functional imaging features. The studies report DNAm-MRI associations for: neurodevelopment and neurodevelopmental disorders; major depression and suicidality; alcohol use disorder; schizophrenia and psychosis; ageing, stroke, ataxia and neurodegeneration; post-traumatic stress disorder; and socio-emotional processing. Consistency between MRI features and differential DNAm is modest. Sources of bias: variable inclusion of comparator groups; different surrogate tissues used; variation in DNAm measurement methods; lack of control for genotype and cell-type composition; and variations in image processing. Knowledge of MRI features associated with differential DNAm may improve understanding of the role of DNAm in brain health and disease, but caution is required because conventions for linking DNAm and MRI data are not established, and clinical and methodological heterogeneity in existing literature is substantial.
Collapse
Affiliation(s)
- Emily N W Wheater
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - David Q Stoye
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - Simon R Cox
- Department of Psychology, University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - James P Boardman
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
5
|
Ethridge LE, De Stefano LA, Schmitt LM, Woodruff NE, Brown KL, Tran M, Wang J, Pedapati EV, Erickson CA, Sweeney JA. Auditory EEG Biomarkers in Fragile X Syndrome: Clinical Relevance. Front Integr Neurosci 2019; 13:60. [PMID: 31649514 PMCID: PMC6794497 DOI: 10.3389/fnint.2019.00060] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Sensory hypersensitivities are common and distressing features of Fragile X Syndrome (FXS). While there are many drug interventions that reduce behavioral deficits in Fmr1 mice and efforts to translate these preclinical breakthroughs into clinical trials for FXS, evidence-based clinical interventions are almost non-existent potentially due to lack of valid neural biomarkers. Local circuit function in sensory networks is dependent on the dynamic balance of activity in inhibitory/excitatory synapses. Studies are needed to examine the association of electrophysiological alterations in neural systems with sensory and other clinical features of FXS to establish their clinical relevance. Adolescents and adults with FXS (n = 38, Mean age = 25.5, std = 10.1; 13 females) and age matched typically developing controls (n = 40, Mean age = 27.7, std = 12.1; 17 females) completed auditory chirp and auditory habituation tasks while undergoing dense array electroencephalography (EEG). Amplitude, latency, and percent change (habituation) in N1 and P2 event-related potential (ERP) components were characterized for the habituation task; time-frequency calculations using Morlet wavelets characterized phase-locking and single trial power for the habituation and chirp tasks. FXS patients showed increased amplitude but some evidence for reduced habituation of the N1 ERP, and reduced phase-locking in the low and high gamma frequency range and increased low gamma power to the chirp stimulus. FXS showed increased theta power in both tasks. While the habituation finding was weaker than previously found, the remaining findings replicate our previous work in a new sample of patients with FXS. Females showed less deficit in the chirp task but not the habituation task. Abnormal increases in gamma power were related to more severe behavioral and psychiatric features as well as reductions in neurocognitive abilities. Replicating electrophysiological deficits in a new group of patients using different EEG equipment at a new data collection site with differing levels of environmental noise that were robust to data processing techniques utilizing multiple researchers, indicates a potential for scalability to multi-site clinical trials. Given the robust replicability, relevance to clinical measures, and preclinical evidence for sensitivity of these EEG measures to pharmacological intervention, the observed abnormalities may provide novel translational markers of target engagement and potentially outcome measures in large-scale studies evaluating new treatments targeting neural hyperexcitability in FXS.
Collapse
Affiliation(s)
- Lauren E Ethridge
- Department of Pediatrics, Section of Developmental and Behavioral Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Lisa A De Stefano
- Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Nicholas E Woodruff
- Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Kara L Brown
- Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Morgan Tran
- Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Jun Wang
- Department of Psychology, Zhejiang Normal University, Jinhua, China
| | - Ernest V Pedapati
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
6
|
Verma V, Paul A, Amrapali Vishwanath A, Vaidya B, Clement JP. Understanding intellectual disability and autism spectrum disorders from common mouse models: synapses to behaviour. Open Biol 2019; 9:180265. [PMID: 31185809 PMCID: PMC6597757 DOI: 10.1098/rsob.180265] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Normal brain development is highly dependent on the timely coordinated actions of genetic and environmental processes, and an aberration can lead to neurodevelopmental disorders (NDDs). Intellectual disability (ID) and autism spectrum disorders (ASDs) are a group of co-occurring NDDs that affect between 3% and 5% of the world population, thus presenting a great challenge to society. This problem calls for the need to understand the pathobiology of these disorders and to design new therapeutic strategies. One approach towards this has been the development of multiple analogous mouse models. This review discusses studies conducted in the mouse models of five major monogenic causes of ID and ASDs: Fmr1, Syngap1, Mecp2, Shank2/3 and Neuroligins/Neurnexins. These studies reveal that, despite having a diverse molecular origin, the effects of these mutations converge onto similar or related aetiological pathways, consequently giving rise to the typical phenotype of cognitive, social and emotional deficits that are characteristic of ID and ASDs. This convergence, therefore, highlights common pathological nodes that can be targeted for therapy. Other than conventional therapeutic strategies such as non-pharmacological corrective methods and symptomatic alleviation, multiple studies in mouse models have successfully proved the possibility of pharmacological and genetic therapy enabling functional recovery.
Collapse
Affiliation(s)
- Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Anjali Amrapali Vishwanath
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Bhupesh Vaidya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| |
Collapse
|
7
|
Moretto E, Murru L, Martano G, Sassone J, Passafaro M. Glutamatergic synapses in neurodevelopmental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:328-342. [PMID: 28935587 DOI: 10.1016/j.pnpbp.2017.09.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/28/2017] [Accepted: 09/16/2017] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders (NDDs) are a group of diseases whose symptoms arise during childhood or adolescence and that impact several higher cognitive functions such as learning, sociability and mood. Accruing evidence suggests that a shared pathogenic mechanism underlying these diseases is the dysfunction of glutamatergic synapses. We summarize present knowledge on autism spectrum disorders (ASD), intellectual disability (ID), Down syndrome (DS), Rett syndrome (RS) and attention-deficit hyperactivity disorder (ADHD), highlighting the involvement of glutamatergic synapses and receptors in these disorders. The most commonly shared defects involve α-amino-3-hydroxy-5-methyl- 4-isoxazole propionic acid receptors (AMPARs), N-methyl-d-aspartate receptors (NMDARs) and metabotropic glutamate receptors (mGluRs), whose functions are strongly linked to synaptic plasticity, affecting both cell-autonomous features as well as circuit formation. Moreover, the major scaffolding proteins and, thus, the general structure of the synapse are often deregulated in neurodevelopmental disorders, which is not surprising considering their crucial role in the regulation of glutamate receptor positioning and functioning. This convergence of defects supports the definition of neurodevelopmental disorders as a continuum of pathological manifestations, suggesting that glutamatergic synapses could be a therapeutic target to ameliorate patient symptomatology.
Collapse
Affiliation(s)
- Edoardo Moretto
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy
| | - Luca Murru
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy
| | - Giuseppe Martano
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy
| | - Jenny Sassone
- San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Maria Passafaro
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy.
| |
Collapse
|
8
|
Berzhanskaya J, Phillips MA, Gorin A, Lai C, Shen J, Colonnese MT. Disrupted Cortical State Regulation in a Rat Model of Fragile X Syndrome. Cereb Cortex 2018; 27:1386-1400. [PMID: 26733529 DOI: 10.1093/cercor/bhv331] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Children with Fragile X syndrome (FXS) have deficits of attention and arousal. To begin to identify the neural causes of these deficits, we examined juvenile rats lacking the Fragile X mental retardation protein (FMR-KO) for disruption of cortical activity related to attention and arousal. Specifically, we examined the switching of visual cortex between activated and inactivated states that normally occurs during movement and quiet rest, respectively. In both wild-type and FMR-KO rats, during the third and fourth postnatal weeks cortical activity during periods of movement was dominated by an activated state with prominent 18-52 Hz activity. However, during quiet rest, when activity in wild-type rats became dominated by the inactivated state (3-9 Hz activity), FMR-KO rat cortex abnormally remained activated, resulting in increased high-frequency and reduced low-frequency power during rest. Firing rate correlations revealed reduced synchronization in FMR-KO rats, particularly between fast-spiking interneurons, that developmentally precede cortical state defects. Together our data suggest that disrupted inhibitory connectivity impairs the ability of visual cortex to regulate exit from the activated state in a behaviorally appropriate manner, potentially contributing to disrupted attention and sensory processing observed in children with FXS by making it more difficult to decrease cortical drive by unattended stimuli.
Collapse
Affiliation(s)
- Julia Berzhanskaya
- Department of Pharmacology and Physiology and Institute for Neuroscience
| | - Marnie A Phillips
- Department of Pharmacology and Physiology and Institute for Neuroscience
| | - Alexis Gorin
- Department of Electrical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, DC 20052, USA
| | - Chongxi Lai
- Department of Electrical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, DC 20052, USA
| | - Jing Shen
- Department of Electrical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, DC 20052, USA
| | | |
Collapse
|
9
|
Harper CB, Mancini GMS, van Slegtenhorst M, Cousin MA. Altered synaptobrevin-II trafficking in neurons expressing a synaptophysin mutation associated with a severe neurodevelopmental disorder. Neurobiol Dis 2017; 108:298-306. [PMID: 28887151 PMCID: PMC5673032 DOI: 10.1016/j.nbd.2017.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/27/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022] Open
Abstract
Following exocytosis, synaptic vesicles (SVs) have to be reformed with the correct complement of proteins in the correct stoichiometry to ensure continued neurotransmission. Synaptophysin is a highly abundant, integral SV protein necessary for the efficient retrieval of the SV SNARE protein, synaptobrevin II (sybII). However the molecular mechanism underpinning synaptophysin-dependent sybII retrieval is still unclear. We recently identified a male patient with severe intellectual disability, hypotonia, epilepsy and callosal agenesis who has a point mutation in the juxtamembrane region of the fourth transmembrane domain of synaptophysin (T198I). This mutation had no effect on the activity-dependent retrieval of synaptophysin that was tagged with the genetically-encoded pH-sensitive reporter (pHluorin) in synaptophysin knockout hippocampal cultures. This suggested the mutant has no global effect on SV endocytosis, which was confirmed when retrieval of a different SV cargo (the glutamate transporter vGLUT1) was examined. However neurons expressing this T198I mutant did display impaired activity-dependent sybII retrieval, similar to that observed in synaptophysin knockout neurons. Interestingly this impairment did not result in an increased stranding of sybII at the plasma membrane. Screening of known human synaptophysin mutations revealed a similar presynaptic phenotype between T198I and a mutation found in X-linked intellectual disability. Thus this novel human synaptophysin mutation has revealed that aberrant retrieval and increased plasma membrane localisation of SV cargo can be decoupled in human disease.
Collapse
Affiliation(s)
- Callista B Harper
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Simonds Initiative for the Developing Brain, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Michael A Cousin
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Simonds Initiative for the Developing Brain, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
10
|
Affiliation(s)
- Ruth F McCann
- Columbia University Department of Psychiatry, New York State Psychiatric Institute, New York, New York.
| | - David A Ross
- Department of Psychiatry, Yale University, New Haven, Connecticut
| |
Collapse
|
11
|
Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits. Neural Dev 2016; 11:14. [PMID: 27503008 PMCID: PMC4977860 DOI: 10.1186/s13064-016-0069-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/03/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fragile X Syndrome is the leading monogenetic cause of autism and most common form of intellectual disability. Previous studies have implicated changes in dendritic spine architecture as the primary result of loss of Fragile X Mental Retardation Protein (FMRP), but recent work has shown that neural proliferation is decreased and cell death is increased with either loss of FMRP or overexpression of FMRP. The purpose of this study was to investigate the effects of loss of FMRP on behavior and cellular activity. METHODS We knocked down FMRP expression using morpholino oligos in the optic tectum of Xenopus laevis tadpoles and performed a series of behavioral and electrophysiological assays. We investigated visually guided collision avoidance, schooling, and seizure propensity. Using single cell electrophysiology, we assessed intrinsic excitability and synaptic connectivity of tectal neurons. RESULTS We found that FMRP knockdown results in decreased swimming speed, reduced schooling behavior and decreased seizure severity. In single cells, we found increased inhibition relative to excitation in response to sensory input. CONCLUSIONS Our results indicate that the electrophysiological development of single cells in the absence of FMRP is largely unaffected despite the large neural proliferation defect. The changes in behavior are consistent with an increase in inhibition, which could be due to either changes in cell number or altered inhibitory drive, and indicate that FMRP can play a significant role in neural development much earlier than previously thought.
Collapse
|
12
|
Sensory hypo-excitability in a rat model of fetal development in Fragile X Syndrome. Sci Rep 2016; 6:30769. [PMID: 27465362 PMCID: PMC4964352 DOI: 10.1038/srep30769] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022] Open
Abstract
Fragile X syndrome (FXS) is characterized by sensory hyper-sensitivity, and animal models suggest that neuronal hyper-excitability contributes to this phenotype. To understand how sensory dysfunction develops in FXS, we used the rat model (FMR-KO) to quantify the maturation of cortical visual responses from the onset of responsiveness prior to eye-opening, through age equivalents of human juveniles. Rather than hyper-excitability, visual responses before eye-opening had reduced spike rates and an absence of early gamma oscillations, a marker for normal thalamic function at this age. Despite early hypo-excitability, the developmental trajectory of visual responses in FMR-KO rats was normal, and showed the expected loss of visually evoked bursting at the same age as wild-type, two days before eye-opening. At later ages, during the third and fourth post-natal weeks, signs of mild hyper-excitability emerged. These included an increase in the visually-evoked firing of regular spiking, presumptive excitatory, neurons, and a reduced firing of fast-spiking, presumptive inhibitory, neurons. Our results show that early network changes in the FMR-KO rat arise at ages equivalent to fetal humans and have consequences for excitability that are opposite those found in adults. This suggests identification and treatment should begin early, and be tailored in an age-appropriate manner.
Collapse
|
13
|
Broek JAC, Lin Z, de Gruiter HM, van 't Spijker H, Haasdijk ED, Cox D, Ozcan S, van Cappellen GWA, Houtsmuller AB, Willemsen R, de Zeeuw CI, Bahn S. Synaptic vesicle dynamic changes in a model of fragile X. Mol Autism 2016; 7:17. [PMID: 26933487 PMCID: PMC4772588 DOI: 10.1186/s13229-016-0080-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. METHODS Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MS(E)) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. RESULTS Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. CONCLUSIONS Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS.
Collapse
Affiliation(s)
- Jantine A C Broek
- Cambridge Centre for Neuropsychiatric Research, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Zhanmin Lin
- Department of Neurosciences, Erasmus MC, Rotterdam, The Netherlands
| | | | - Heleen van 't Spijker
- Cambridge Centre for Neuropsychiatric Research, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Elize D Haasdijk
- Department of Neurosciences, Erasmus MC, Rotterdam, The Netherlands
| | - David Cox
- Cambridge Centre for Neuropsychiatric Research, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Sureyya Ozcan
- Cambridge Centre for Neuropsychiatric Research, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I de Zeeuw
- Department of Neurosciences, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neurosciences, Royal Academy for Arts and Sciences, Amsterdam, The Netherlands
| | - Sabine Bahn
- Cambridge Centre for Neuropsychiatric Research, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.,Department of Neurosciences, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Abstract
UNLABELLED Previous studies have hypothesized that diverse genetic causes of intellectual disability (ID) and autism spectrum disorders (ASDs) converge on common cellular pathways. Testing this hypothesis requires detailed phenotypic analyses of animal models with genetic mutations that accurately reflect those seen in the human condition (i.e., have structural validity) and which produce phenotypes that mirror ID/ASDs (i.e., have face validity). We show that SynGAP haploinsufficiency, which causes ID with co-occurring ASD in humans, mimics and occludes the synaptic pathophysiology associated with deletion of the Fmr1 gene. Syngap(+/-) and Fmr1(-/y) mice show increases in basal protein synthesis and metabotropic glutamate receptor (mGluR)-dependent long-term depression that, unlike in their wild-type controls, is independent of new protein synthesis. Basal levels of phosphorylated ERK1/2 are also elevated in Syngap(+/-) hippocampal slices. Super-resolution microscopy reveals that Syngap(+/-) and Fmr1(-/y) mice show nanoscale alterations in dendritic spine morphology that predict an increase in biochemical compartmentalization. Finally, increased basal protein synthesis is rescued by negative regulators of the mGlu subtype 5 receptor and the Ras-ERK1/2 pathway, indicating that therapeutic interventions for fragile X syndrome may benefit patients with SYNGAP1 haploinsufficiency. SIGNIFICANCE STATEMENT As the genetics of intellectual disability (ID) and autism spectrum disorders (ASDs) are unraveled, a key issue is whether genetically divergent forms of these disorders converge on common biochemical/cellular pathways and hence may be amenable to common therapeutic interventions. This study compares the pathophysiology associated with the loss of fragile X mental retardation protein (FMRP) and haploinsufficiency of synaptic GTPase-activating protein (SynGAP), two prevalent monogenic forms of ID. We show that Syngap(+/-) mice phenocopy Fmr1(-/y) mice in the alterations in mGluR-dependent long-term depression, basal protein synthesis, and dendritic spine morphology. Deficits in basal protein synthesis can be rescued by pharmacological interventions that reduce the mGlu5 receptor-ERK1/2 signaling pathway, which also rescues the same deficit in Fmr1(-/y) mice. Our findings support the hypothesis that phenotypes associated with genetically diverse forms of ID/ASDs result from alterations in common cellular/biochemical pathways.
Collapse
|
15
|
Luo SY, Wu LQ, Duan RH. Molecular medicine of fragile X syndrome: based on known molecular mechanisms. World J Pediatr 2016; 12:19-27. [PMID: 26547211 DOI: 10.1007/s12519-015-0052-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Extensive research on fragile X mental retardation gene knockout mice and mutant Drosophila models has largely expanded our knowledge on mechanism-based treatment of fragile X syndrome (FXS). In light of these findings, several clinical trials are now underway for therapeutic translation to humans. DATA SOURCES Electronic literature searches were conducted using the PubMed database and ClinicalTrials.gov. The search terms included "fragile X syndrome", "FXS and medication", "FXS and therapeutics" and "FXS and treatment". Based on the publications identified in this search, we reviewed the neuroanatomical abnormalities in FXS patients and the potential pathogenic mechanisms to monitor the progress of FXS research, from basic studies to clinical trials. RESULTS The pathological mechanisms of FXS were categorized on the basis of neuroanatomy, synaptic structure, synaptic transmission and fragile X mental retardation protein (FMRP) loss of function. The neuroanatomical abnormalities in FXS were described to motivate extensive research into the region-specific pathologies in the brain responsible for FXS behavioural manifestations. Mechanism-directed molecular medicines were classified according to their target pathological mechanisms, and the most recent progress in clinical trials was discussed. CONCLUSIONS Current mechanism-based studies and clinical trials have greatly contributed to the development of FXS pharmacological therapeutics. Research examining the extent to which these treatments provided a rescue effect or FMRP compensation for the developmental impairments in FXS patients may help to improve the efficacy of treatments.
Collapse
Affiliation(s)
- Shi-Yu Luo
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Ling-Qian Wu
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, China
| | - Ran-Hui Duan
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
16
|
Bailey DB, Raspa M, Wheeler A, Edwards A, Bishop E, Bann C, Borasky D, Appelbaum PS. Parent ratings of ability to consent for clinical trials in fragile X syndrome. J Empir Res Hum Res Ethics 2016; 9:18-28. [PMID: 25422596 DOI: 10.1177/1556264614540591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Advances in understanding neurobiology and intellectual disabilities have led to clinical trials testing new medications. This study assessed parents' perceptions of the ability of their son or daughter with fragile X syndrome (FXS), an inherited form of intellectual disability, to participate in the consent process for clinical trials. Four hundred twenty-two families participated in a survey that included six items assessing various aspects of the ability to provide consent. A rank ordering of decisional tasks was found. The easiest task was to understand that the medication was different from his or her medical treatment; the most difficult was the ability to understand and weigh the potential benefits and risks of study participation. Factor analysis suggested that despite the range in difficulty, the six items were best summarized by a single decisional ability score. Parents of 29% of males reported that their son was not at all capable of participating, but the remainder exhibited a range of decisional skills. Factors associated with this variability include age and parents' willingness to enroll their child in clinical trials. We conclude that many individuals with FXS appear to be able to participate at some level in the consent or assent process, but will likely need individualized support to maximize effective participation.
Collapse
Affiliation(s)
| | - Melissa Raspa
- RTI International, Research Triangle Park, Durham, NC, USA
| | - Anne Wheeler
- RTI International, Research Triangle Park, Durham, NC, USA
| | - Anne Edwards
- RTI International, Research Triangle Park, Durham, NC, USA
| | - Ellen Bishop
- RTI International, Research Triangle Park, Durham, NC, USA
| | - Carla Bann
- RTI International, Research Triangle Park, Durham, NC, USA
| | | | | |
Collapse
|
17
|
Till SM, Asiminas A, Jackson AD, Katsanevaki D, Barnes SA, Osterweil EK, Bear MF, Chattarji S, Wood ER, Wyllie DJA, Kind PC. Conserved hippocampal cellular pathophysiology but distinct behavioural deficits in a new rat model of FXS. Hum Mol Genet 2015; 24:5977-84. [PMID: 26243794 PMCID: PMC4599667 DOI: 10.1093/hmg/ddv299] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/21/2015] [Indexed: 11/17/2022] Open
Abstract
Recent advances in techniques for manipulating genomes have allowed the generation of transgenic animals other than mice. These new models enable cross-mammalian comparison of neurological disease from core cellular pathophysiology to circuit and behavioural endophenotypes. Moreover they will enable us to directly test whether common cellular dysfunction or behavioural outcomes of a genetic mutation are more conserved across species. Using a new rat model of Fragile X Syndrome, we report that Fmr1 knockout (KO) rats exhibit elevated basal protein synthesis and an increase in mGluR-dependent long-term depression in CA1 of the hippocampus that is independent of new protein synthesis. These defects in plasticity are accompanied by an increase in dendritic spine density selectively in apical dendrites and subtle changes in dendritic spine morphology of CA1 pyramidal neurons. Behaviourally, Fmr1 KO rats show deficits in hippocampal-dependent, but not hippocampal-independent, forms of associative recognition memory indicating that the loss of fragile X mental retardation protein (FMRP) causes defects in episodic-like memory. In contrast to previous reports from mice, Fmr1 KO rats show no deficits in spatial reference memory reversal learning. One-trial spatial learning in a delayed matching to place water maze task was also not affected by the loss of FMRP in rats. This is the first evidence for conservation across mammalian species of cellular and physiological hippocampal phenotypes associated with the loss of FMRP. Furthermore, while key cellular phenotypes are conserved they manifest in distinct behavioural dysfunction. Finally, our data reveal novel information about the selective role of FMRP in hippocampus-dependent associative memory.
Collapse
Affiliation(s)
- Sally M Till
- Patrick Wild Centre, The University of Edinburgh, Edinburgh EH8 9XD, UK, Centre for Integrative Physiology, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Antonis Asiminas
- Patrick Wild Centre, The University of Edinburgh, Edinburgh EH8 9XD, UK, Centre for Cognitive and Neural Systems, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Adam D Jackson
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh EH8 9XD, UK, Centre for Brain Development and Repair, The Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Danai Katsanevaki
- Patrick Wild Centre, The University of Edinburgh, Edinburgh EH8 9XD, UK, Centre for Integrative Physiology, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Stephanie A Barnes
- Patrick Wild Centre, The University of Edinburgh, Edinburgh EH8 9XD, UK, Centre for Integrative Physiology, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Emily K Osterweil
- Patrick Wild Centre, The University of Edinburgh, Edinburgh EH8 9XD, UK, Centre for Integrative Physiology, The University of Edinburgh, Edinburgh EH8 9XD, UK, Department of Brain and Cognitive Sciences, Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge MA 02139, USA and
| | - Mark F Bear
- Department of Brain and Cognitive Sciences, Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge MA 02139, USA and
| | - Sumantra Chattarji
- Patrick Wild Centre, The University of Edinburgh, Edinburgh EH8 9XD, UK, Centre for Brain Development and Repair, The Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Emma R Wood
- Patrick Wild Centre, The University of Edinburgh, Edinburgh EH8 9XD, UK, Centre for Cognitive and Neural Systems, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - David J A Wyllie
- Patrick Wild Centre, The University of Edinburgh, Edinburgh EH8 9XD, UK, Centre for Integrative Physiology, The University of Edinburgh, Edinburgh EH8 9XD, UK, Centre for Brain Development and Repair, The Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Peter C Kind
- Patrick Wild Centre, The University of Edinburgh, Edinburgh EH8 9XD, UK, Centre for Integrative Physiology, The University of Edinburgh, Edinburgh EH8 9XD, UK, Centre for Brain Development and Repair, The Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India,
| |
Collapse
|
18
|
Sastre A, Campillo NE, Gil C, Martinez A. Therapeutic approaches for the future treatment of Fragile X. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Rescue of impaired long-term facilitation at sensorimotor synapses of Aplysia following siRNA knockdown of CREB1. J Neurosci 2015; 35:1617-26. [PMID: 25632137 DOI: 10.1523/jneurosci.3330-14.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Memory impairment is often associated with disrupted regulation of gene induction. For example, deficits in cAMP response element-binding protein (CREB) binding protein (CBP; an essential cofactor for activation of transcription by CREB) impair long-term synaptic plasticity and memory. Previously, we showed that small interfering RNA (siRNA)-induced knockdown of CBP in individual sensory neurons significantly reduced levels of CBP and impaired 5-HT-induced long-term facilitation (LTF) in sensorimotor cocultures from Aplysia. Moreover, computational simulations of the biochemical cascades underlying LTF successfully predicted training protocols that restored LTF following CBP knockdown. We examined whether simulations could also predict a training protocol that restores LTF impaired by siRNA-induced knockdown of the transcription factor CREB1. Simulations based on a previously described model predicted rescue protocols that were specific to CREB1 knockdown. Empirical studies demonstrated that one of these rescue protocols partially restored impaired LTF. In addition, the effectiveness of the rescue protocol was enhanced by pretreatment with rolipram, a selective cAMP phosphodiesterase inhibitor. These results provide further evidence that computational methods can help rescue disruptions in signaling cascades underlying memory formation. Moreover, the study demonstrates that the effectiveness of computationally designed training protocols can be enhanced with complementary pharmacological approaches.
Collapse
|
20
|
Gergev G, Máté A, Zimmermann A, Rárosi F, Sztriha L. Spectrum of neurodevelopmental disabilities: a cohort study in hungary. J Child Neurol 2015; 30:344-56. [PMID: 24868008 DOI: 10.1177/0883073814532543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The spectrum of neurodevelopmental disabilities was studied in a cohort of patients in Hungary. A search for etiologies and assessment of the degree of intellectual disability were carried out. The study included 241 (131 boys) patients. Disability occurred without any prenatal, perinatal, and/or neonatal adverse events in 167 patients. They were classified into the following subgroups: genetic syndromes with recognized etiology, global developmental delay/intellectual disability in association with dysmorphic features but unknown etiology, global developmental delay/intellectual disability without dysmorphic features and recognized etiology, brain malformations, inborn errors of metabolism, leukoencephalopathies, epileptic syndromes, developmental language impairment, and neuromuscular disorders. Adverse events occurred in 74 children classified into subgroups such as cerebral palsy after delivery preterm or at term, and disabilities without cerebral palsy. The etiology was identified in 66.4%, and genetic diagnosis was found in 19.5%. Classification of neurodevelopmental disorders contribute to etiological diagnosis, proper rehabilitation, and genetic counseling.
Collapse
Affiliation(s)
- Gyurgyinka Gergev
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Szeged, Hungary 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Adrienn Máté
- Department of Neurosurgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Alíz Zimmermann
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ferenc Rárosi
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, Szeged, Hungary Bolyai Institute, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Sztriha
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
21
|
Wang H, Pati S, Pozzo-Miller L, Doering LC. Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes. Front Cell Neurosci 2015; 9:55. [PMID: 25767435 PMCID: PMC4341567 DOI: 10.3389/fncel.2015.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/05/2015] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASDs) are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, 1 King's College Circle Toronto, ON, Canada
| | - Sandipan Pati
- Department of Neurology, Epilepsy Division, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Laurie C Doering
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| |
Collapse
|
22
|
Abstract
Fragile X Syndrome (FXS) is commonly thought to arise from dysfunction of the synapse, the site of communication between neurons. However, loss of the protein that results in FXS occurs early in embryonic development, while synapses are formed relatively late. Fragile X Syndrome (FXS) is the leading known monogenic form of autism and the most common form of inherited intellectual disability. FXS results from silencing the FMR1 gene during embryonic development, leading to loss of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein that regulates mRNA transport, stability, and translation. FXS is commonly thought of as a disease of synaptic dysfunction; however, FMRP expression is lost early in embryonic development, well before most synaptogenesis occurs. Recent studies suggest that loss of FMRP results in aberrant neurogenesis, but neurogenic defects have been variable. We investigated whether FMRP affects neurogenesis in Xenopus laevis tadpoles that express a homolog of FMR1. We used in vivo time-lapse imaging of neural progenitor cells and their neuronal progeny to evaluate the effect of acute loss or overexpression of FMRP on neurogenesis in the developing optic tectum. We complimented the time-lapse studies with SYTOX labeling to quantify apoptosis and CldU labeling to measure cell proliferation. Animals with increased or decreased levels of FMRP have significantly decreased neuronal proliferation and survival. They also have increased neuronal differentiation, but deficient dendritic arbor elaboration. The presence and severity of these defects was highly sensitive to FMRP levels. These data demonstrate that FMRP plays an important role in neurogenesis and suggest that endogenous FMRP levels are carefully regulated. These studies show promise in using Xenopus as an experimental system to study fundamental deficits in brain development with loss of FMRP and give new insight into the pathophysiology of FXS.
Collapse
|
23
|
Reduced phenotypic severity following adeno-associated virus-mediated Fmr1 gene delivery in fragile X mice. Neuropsychopharmacology 2014; 39:3100-11. [PMID: 24998620 PMCID: PMC4229583 DOI: 10.1038/npp.2014.167] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/06/2014] [Accepted: 06/24/2014] [Indexed: 12/21/2022]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a trinucleotide repeat expansion in the FMR1 gene that codes for fragile X mental retardation protein (FMRP). To determine if FMRP expression in the central nervous system could reverse phenotypic deficits in the Fmr1 knockout (KO) mouse model of FXS, we used a single-stranded adeno-associated viral (AAV) vector with viral capsids from serotype 9 that contained a major isoform of FMRP. FMRP transgene expression was driven by the neuron-selective synapsin-1 promoter. The vector was delivered to the brain via a single bilateral intracerebroventricular injection into neonatal Fmr1 KO mice and transgene expression and behavioral assessments were conducted 22-26 or 50-56 days post injection. Western blotting and immunocytochemical analyses of AAV-FMRP-injected mice revealed FMRP expression in the striatum, hippocampus, retrosplenial cortex, and cingulate cortex. Cellular expression was selective for neurons and reached ∼ 50% of wild-type levels in the hippocampus and cortex at 56 days post injection. The pathologically elevated repetitive behavior and the deficit in social dominance behavior seen in phosphate-buffered saline-injected Fmr1 KO mice were reversed in AAV-FMRP-injected mice. These results provide the first proof of principle that gene therapy can correct specific behavioral abnormalities in the mouse model of FXS.
Collapse
|
24
|
Wang B, Jaffe DB, Brenner R. Current understanding of iberiotoxin-resistant BK channels in the nervous system. Front Physiol 2014; 5:382. [PMID: 25346692 PMCID: PMC4190997 DOI: 10.3389/fphys.2014.00382] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/15/2014] [Indexed: 11/13/2022] Open
Abstract
While most large-conductance, calcium-, and voltage-activated potassium channels (BK or Maxi-K type) are blocked by the scorpion venom iberiotoxin, the so-called “type II” subtype has the property of toxin resistance. This property is uniquely mediated by channel assembly with one member of the BK accessory β subunit family, the neuron-enriched β4 subunit. This review will focus on current understanding of iberiotoxin-resistant, β4-containing BK channel properties and their function in the CNS. Studies have shown that β4 dramatically promotes BK channel opening by shifting voltage sensor activation to more negative voltage ranges, but also slows activation to timescales that theoretically preclude BK ability to shape action potentials (APs). In addition, β4 membrane trafficking is regulated through an endoplasmic retention signal and palmitoylation. More recently, the challenge has been to understand the functional role of the iberiotoxin-resistant BK subtype utilizing computational modeling of neurons and neurophysiological approaches. Utilizing iberiotoxin-resistance as a footprint for these channels, they have been identified in dentate gyrus granule neurons and in purkinje neurons of the cerebellum. In these neurons, the role of these channels is largely consistent with slow-gated channels that reduce excitability either through an interspike conductance, such as in purkinje neurons, or by replacing fast-gating BK channels that otherwise facilitate high frequency AP firing, such as in dentate gyrus neurons. They are also observed in presynaptic mossy fiber terminals of the dentate gyrus and posterior pituitary terminals. More recent studies suggest that β4 subunits may also be expressed in some neurons lacking iberiotoxin-resistant BK channels, such as in CA3 hippocampus neurons. Ongoing research using novel, specific blockers and agonists of BK/β4, and β4 knockout mice, will continue to move the field forward in understanding the function of these channels.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - David B Jaffe
- Department of Biology and the UTSA Neurosciences Institute, University of Texas at San Antonio San Antonio, TX, USA
| | - Robert Brenner
- Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| |
Collapse
|
25
|
Bey AL, Jiang YH. Overview of mouse models of autism spectrum disorders. CURRENT PROTOCOLS IN PHARMACOLOGY 2014; 66:5.66.1-5.66.26. [PMID: 25181011 PMCID: PMC4186887 DOI: 10.1002/0471141755.ph0566s66] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This overview describes many well characterized mouse models of autism spectrum disorders (ASDs). Mouse models considered here were selected because they are examples of genetically engineered models where human genetic evidence supports a causative relationship between the targeted mutation and the behavioral phenotype. As the ASD diagnosis is based primarily on behavioral evaluations in humans in the domains of social interaction, communication, and restricted interests, the murine phenotypes analogous to human autistic behaviors are highlighted for the different models and behaviors. Although genetically engineered mouse models with good construct and face validity are valuable for identifying and defining underlying pathophysiological mechanisms and for developing potential therapeutic interventions for the human condition, the translational value of various rodent behavioral assays remains a subject of debate. Significant challenges associated with modeling ASDs in rodents because of the clinical and molecular heterogeneity that characterize this disorder are also considered.
Collapse
Affiliation(s)
- Alexandra L. Bey
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710
| | - Yong-hui Jiang
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710,Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710,Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC 27710,Corresponding author: , Phone: (919) 681-2789, Fax: (919) 668-0414
| |
Collapse
|
26
|
Kerr C, Breheny K, Lloyd A, Brazier J, Bailey DB, Berry-Kravis E, Cohen J, Petrillo J. Developing a utility index for the Aberrant Behavior Checklist (ABC-C) for fragile X syndrome. Qual Life Res 2014; 24:305-14. [PMID: 25063082 PMCID: PMC4317522 DOI: 10.1007/s11136-014-0759-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE This study aimed to develop a utility index (the ABC-UI) from the Aberrant Behavior Checklist-Community (ABC-C), for use in quantifying the benefit of emerging treatments for fragile X syndrome (FXS). METHODS The ABC-C is a proxy-completed assessment of behaviour and is a widely used measure in FXS. A subset of ABC-C items across seven dimensions was identified to include in health state descriptions. This item reduction process was based on item performance, factor analysis and Rasch analysis performed on an observational study dataset, and consultation with five clinical experts and a methodological expert. Dimensions were combined into health states using an orthogonal design and valued using time trade-off (TTO), with lead-time TTO methods used where TTO indicated a state valued as worse than dead. Preference weights were estimated using mean, individual level, ordinary least squares and random-effects maximum likelihood estimation [RE (MLE)] regression models. RESULTS A representative sample of the UK general public (n = 349; mean age 35.8 years, 58.2% female) each valued 12 health states. Mean observed values ranged from 0.92 to 0.16 for best to worst health states. The RE (MLE) model performed best based on number of significant coefficients and mean absolute error of 0.018. Mean utilities predicted by the model covered a similar range to that observed. CONCLUSIONS The ABC-UI estimates a wide range of utilities from patient-level FXS ABC-C data, allowing estimation of FXS health-related quality of life impact for economic evaluation from an established FXS clinical trial instrument.
Collapse
Affiliation(s)
- Cicely Kerr
- ICON Patient Reported Outcomes, Seacourt Tower, West Way, Oxford, OX2 0JJ, UK,
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang XS, Peng CZ, Cai WJ, Xia J, Jin D, Dai Y, Luo XG, Klyachko VA, Deng PY. Activity-dependent regulation of release probability at excitatory hippocampal synapses: a crucial role of fragile X mental retardation protein in neurotransmission. Eur J Neurosci 2014; 39:1602-12. [PMID: 24646437 DOI: 10.1111/ejn.12546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/21/2014] [Accepted: 02/03/2014] [Indexed: 01/23/2023]
Abstract
Transcriptional silencing of the Fmr1 gene encoding fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), the most common form of inherited intellectual disability and the leading genetic cause of autism. FMRP has been suggested to play important roles in regulating neurotransmission and short-term synaptic plasticity at excitatory hippocampal and cortical synapses. However, the origins and mechanisms of these FMRP actions remain incompletely understood, and the role of FMRP in regulating synaptic release probability and presynaptic function remains debated. Here we used variance-mean analysis and peak-scaled nonstationary variance analysis to examine changes in both presynaptic and postsynaptic parameters during repetitive activity at excitatory CA3-CA1 hippocampal synapses in a mouse model of FXS. Our analyses revealed that loss of FMRP did not affect the basal release probability or basal synaptic transmission, but caused an abnormally elevated release probability specifically during repetitive activity. These abnormalities were not accompanied by changes in excitatory postsynaptic current kinetics, quantal size or postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor conductance. Our results thus indicate that FMRP regulates neurotransmission at excitatory hippocampal synapses specifically during repetitive activity via modulation of release probability in a presynaptic manner. Our study suggests that FMRP function in regulating neurotransmitter release is an activity-dependent phenomenon that may contribute to the pathophysiology of FXS.
Collapse
Affiliation(s)
- Xiao-Sheng Wang
- Department of Histology and Embryology, Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
King BH, de Lacy N, Siegel M. Psychiatric assessment of severe presentations in autism spectrum disorders and intellectual disability. Child Adolesc Psychiatr Clin N Am 2014; 23:1-14. [PMID: 24231163 DOI: 10.1016/j.chc.2013.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Children with autism spectrum and related disorders and intellectual disability are not protected from the experience of psychiatric illnesses. Many factors can contribute to exacerbation of existing behavioral symptoms or to the emergence of new psychiatric problems. The psychiatric assessment must thus take into account a range of possible etiologic or contributory factors. The approach outlined in this article highlights the value of assessing 4 broad domains, including diagnostic (genetic) factors, medical considerations, developmental influences, and environmental factors. Examples of how the consideration of each of these domains may inform the diagnostic formulation are highlighted.
Collapse
Affiliation(s)
- Bryan H King
- Department of Psychiatry and Behavioral Medicine, Seattle Children's Autism Center, Seattle Children's Hospital, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | | | | |
Collapse
|
29
|
Bagni C, Oostra BA. Fragile X syndrome: From protein function to therapy. Am J Med Genet A 2013; 161A:2809-21. [PMID: 24115651 DOI: 10.1002/ajmg.a.36241] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/28/2013] [Indexed: 12/23/2022]
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism. The FMR1 gene contains a CGG repeat present in the 5'-untranslated region which can be unstable upon transmission to the next generation. The repeat is up to 55 CGGs long in the normal population. In patients with fragile X syndrome (FXS), a repeat length exceeding 200 CGGs generally leads to methylation of the repeat and the promoter region, which is accompanied by silencing of the FMR1 gene. The disease is a result of lack of expression of the fragile X mental retardation protein leading to severe symptoms, including intellectual disability, hyperactivity, and autistic-like behavior. The FMR1 protein (FMRP) has a number of functions. The translational dysregulation of a subset of mRNAs targeted by FMRP is probably the major contribution to FXS. FMRP is also involved in mRNA transport to synapses where protein synthesis occurs. For some FMRP-bound mRNAs, FMRP is a direct modulator of mRNA stability either by sustaining or preventing mRNA decay. Increased knowledge about the role of FMRP has led to the identification of potential treatments for fragile X syndrome that were often tested first in the different animal models. This review gives an overview about the present knowledge of the function of FMRP and the therapeutic strategies in mouse and man.
Collapse
Affiliation(s)
- Claudia Bagni
- VIB Center for the Biology of Disease, Catholic University of Leuven, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Italy
| | | |
Collapse
|
30
|
Frye RE, Rossignol D, Casanova MF, Brown GL, Martin V, Edelson S, Coben R, Lewine J, Slattery JC, Lau C, Hardy P, Fatemi SH, Folsom TD, MacFabe D, Adams JB. A review of traditional and novel treatments for seizures in autism spectrum disorder: findings from a systematic review and expert panel. Front Public Health 2013; 1:31. [PMID: 24350200 PMCID: PMC3859980 DOI: 10.3389/fpubh.2013.00031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 08/20/2013] [Indexed: 01/20/2023] Open
Abstract
Despite the fact that seizures are commonly associated with autism spectrum disorder (ASD), the effectiveness of treatments for seizures has not been well studied in individuals with ASD. This manuscript reviews both traditional and novel treatments for seizures associated with ASD. Studies were selected by systematically searching major electronic databases and by a panel of experts that treat ASD individuals. Only a few anti-epileptic drugs (AEDs) have undergone carefully controlled trials in ASD, but these trials examined outcomes other than seizures. Several lines of evidence point to valproate, lamotrigine, and levetiracetam as the most effective and tolerable AEDs for individuals with ASD. Limited evidence supports the use of traditional non-AED treatments, such as the ketogenic and modified Atkins diet, multiple subpial transections, immunomodulation, and neurofeedback treatments. Although specific treatments may be more appropriate for specific genetic and metabolic syndromes associated with ASD and seizures, there are few studies which have documented the effectiveness of treatments for seizures for specific syndromes. Limited evidence supports l-carnitine, multivitamins, and N-acetyl-l-cysteine in mitochondrial disease and dysfunction, folinic acid in cerebral folate abnormalities and early treatment with vigabatrin in tuberous sclerosis complex. Finally, there is limited evidence for a number of novel treatments, particularly magnesium with pyridoxine, omega-3 fatty acids, the gluten-free casein-free diet, and low-frequency repetitive transcranial magnetic simulation. Zinc and l-carnosine are potential novel treatments supported by basic research but not clinical studies. This review demonstrates the wide variety of treatments used to treat seizures in individuals with ASD as well as the striking lack of clinical trials performed to support the use of these treatments. Additional studies concerning these treatments for controlling seizures in individuals with ASD are warranted.
Collapse
Affiliation(s)
- Richard E. Frye
- Arkansas Children’s Hospital Research Institute, Little Rock, AR, USA
| | | | | | - Gregory L. Brown
- Autism Recovery and Comprehensive Health Medical Center, Franklin, WI, USA
| | - Victoria Martin
- Autism Recovery and Comprehensive Health Medical Center, Franklin, WI, USA
| | | | - Robert Coben
- New York University Brain Research Laboratory, New York, NY, USA
| | - Jeffrey Lewine
- MIND Research Network, University of New Mexico, Albuquerque, NM, USA
| | - John C. Slattery
- Arkansas Children’s Hospital Research Institute, Little Rock, AR, USA
| | - Chrystal Lau
- Arkansas Children’s Hospital Research Institute, Little Rock, AR, USA
| | - Paul Hardy
- Hardy Healthcare Associates, Hingham, MA, USA
| | | | | | | | | |
Collapse
|
31
|
Sakurai T. [Drug development targeting synaptic molecules - autism mouse models as an example]. Nihon Yakurigaku Zasshi 2013; 142:116-21. [PMID: 24025492 DOI: 10.1254/fpj.142.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Siniscalco D, Cirillo A, Bradstreet JJ, Antonucci N. Epigenetic findings in autism: new perspectives for therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4261-73. [PMID: 24030655 PMCID: PMC3799534 DOI: 10.3390/ijerph10094261] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/14/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
Abstract
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, communications, restricted interests, and repetitive stereotypic behaviors. Despite extensive genetic and biological research, significant controversy surrounds our understanding of the specific mechanisms of their pathogenesis. However, accumulating evidence points to the involvement of epigenetic modifications as foundational in creating ASD pathophysiology. Epigenetic modifications or the alteration of DNA transcription via variations in DNA methylation and histone modifications but without alterations in the DNA sequence, affect gene regulation. These alterations in gene expression, obtained through DNA methylation and/or histone modifications, result from transcriptional regulatory influences of environmental factors, such as nutritional deficiencies, various toxicants, immunological effects, and pharmaceuticals. As such these effects are epigenetic regulators which determine the final biochemistry and physiology of the individual. In contrast to psychopharmacological interventions, bettering our understanding of how these gene-environmental interactions create autistic symptoms should facilitate the development of therapeutic targeting of gene expression for ASD biomedical care.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, Second University of Naples; via S. Maria di Costantinopoli, Napoli 16-80138, Italy
- Centre for Autism—La Forza del Silenzio, Caserta 81036, Italy
- Cancellautismo—Non-Profit Association for Autism Care, Florence 50132, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0-81-566-5880; Fax: +39-0-81-566-7503
| | - Alessandra Cirillo
- Institute of Protein Biochemistry, National Research Council of Italy; Naples 80128, Italy; E-Mail:
| | | | - Nicola Antonucci
- Biomedical Centre for Autism Research and Treatment, Bari 70126, Italy; E-Mail:
| |
Collapse
|
33
|
Benchoua A, Peschanski M. Pluripotent stem cells as a model to study non-coding RNAs function in human neurogenesis. Front Cell Neurosci 2013; 7:140. [PMID: 23986659 PMCID: PMC3753451 DOI: 10.3389/fncel.2013.00140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/12/2013] [Indexed: 12/22/2022] Open
Abstract
As fine regulators of gene expression, non-coding RNAs, and more particularly micro-RNAs (miRNAs), have emerged as key players in the development of the nervous system. In vivo experiments manipulating miRNAs expression as neurogenesis proceeds are very challenging in the mammalian embryo and totally impossible in the human. Human pluripotent stem cells (hPSCs), from embryonic origin (hESCs) or induced from adult somatic cells (iPSCs), represent an opportunity to study the role of miRNAs in the earliest steps of human neurogenesis in both physiological and pathological contexts. Robust protocols are now available to convert pluripotent stem cells into several sub-types of fully functional neurons, recapitulating key developmental milestones along differentiation. This provides a convenient cellular system for dissecting the role of miRNAs in phenotypic transitions critical to brain development and plasticity that may be impaired in neurological diseases with onset during development. The aim of this review is to illustrate how hPSCs can be used to recapitulate early steps of human neurogenesis and summarize recent reports of their contribution to the study of the role of miRNA in regulating development of the nervous system.
Collapse
Affiliation(s)
- Alexandra Benchoua
- Centre d'Etude des Cellules Souches, Institut des cellules Souches pour le Traitement et l'Étude des Maladies monogéniques, Association Française contre les Myopathies Evry, France
| | | |
Collapse
|
34
|
Vitiello B, Grabb M. The development of targeted neurobiological therapies in child and adolescent psychiatry. J Am Acad Child Adolesc Psychiatry 2013; 52:775-9. [PMID: 23880487 DOI: 10.1016/j.jaac.2013.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 11/15/2022]
|