1
|
Pisani A, Rolesi R, Mohamed-Hizam V, Montuoro R, Paludetti G, Giorgio C, Cocchiaro P, Brandolini L, Detta N, Sirico A, Amendola PG, Novelli R, Aramini A, Allegretti M, Paciello F, Grassi C, Fetoni AR. Early transtympanic administration of rhBDNF exerts a multifaceted neuroprotective effect against cisplatin-induced hearing loss. Br J Pharmacol 2025; 182:546-563. [PMID: 39390645 DOI: 10.1111/bph.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Cisplatin-induced sensorineural hearing loss is a significant clinical challenge. Although the potential effects of brain-derived neurotrophic factor (BDNF) have previously been investigated in some ototoxicity models, its efficacy in cisplatin-induced hearing loss remains uncertain. This study aimed to investigate the therapeutic potential of recombinant human BDNF (rhBDNF) in protecting cells against cisplatin-induced ototoxicity. EXPERIMENTAL APPROACH Using an in vivo model of cisplatin-induced hearing loss, we investigated the beneficial effects of transtympanic administration of rhBDNF in a thermogel solution on hearing function and cochlear injury, using electrophysiological, morphological, immunofluorescence and molecular analyses. KEY RESULTS Our data showed that local rhBDNF treatment counteracted hearing loss in rats receiving cisplatin by preserving synaptic connections in the cochlear epithelium and protecting hair cells (HCs) and spiral ganglion neurons (SGNs) against cisplatin-induced cell death. Specifically, rhBDNF maintains the balance of its receptor levels (pTrkB and p75), boosting TrkB-CREB pro-survival signalling and reducing caspase 3-dependent apoptosis in the cochlea. Additionally, it activates antioxidant mechanisms while inhibiting inflammation and promoting vascular repair. CONCLUSION AND IMPLICATIONS Collectively, we demonstrated that early transtympanic treatment with rhBDNF plays a multifaceted protective role against cisplatin-induced ototoxicity, thus holding promise as a novel potential approach to preserve hearing in adult and paediatric patients undergoing cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rolando Rolesi
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Raffaele Montuoro
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina Giorgio
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Pasquale Cocchiaro
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Laura Brandolini
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Anna Sirico
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Rubina Novelli
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Andrea Aramini
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
2
|
Maniaci A, Briglia M, Allia F, Montalbano G, Romano GL, Zaouali MA, H’mida D, Gagliano C, Malaguarnera R, Lentini M, Graziano ACE, Giurdanella G. The Role of Pericytes in Inner Ear Disorders: A Comprehensive Review. BIOLOGY 2024; 13:802. [PMID: 39452111 PMCID: PMC11504721 DOI: 10.3390/biology13100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Inner ear disorders, including sensorineural hearing loss, Meniere's disease, and vestibular neuritis, are prevalent conditions that significantly impact the quality of life. Despite their high incidence, the underlying pathophysiology of these disorders remains elusive, and current treatment options are often inadequate. Emerging evidence suggests that pericytes, a type of vascular mural cell specialized to maintain the integrity and function of the microvasculature, may play a crucial role in the development and progression of inner ear disorders. The pericytes are present in the microvasculature of both the cochlea and the vestibular system, where they regulate blood flow, maintain the blood-labyrinth barrier, facilitate angiogenesis, and provide trophic support to neurons. Understanding their role in inner ear disorders may provide valuable insights into the pathophysiology of these conditions and lead to the development of novel diagnostic and therapeutic strategies, improving the standard of living. This comprehensive review aims to provide a detailed overview of the role of pericytes in inner ear disorders, highlighting the anatomy and physiology in the microvasculature, and analyzing the mechanisms that contribute to the development of the disorders. Furthermore, we explore the potential pericyte-targeted therapies, including antioxidant, anti-inflammatory, and angiogenic approaches, as well as gene therapy strategies.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Marilena Briglia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Fabio Allia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019 Monastir, Tunisia;
| | - Dorra H’mida
- Department of Cytogenetics and Reproductive Biology, Farhat Hached Hospital, 4021 Sousse, Tunisia;
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| |
Collapse
|
3
|
Gross J, Knipper M, Mazurek B. Candidate Key Proteins in Tinnitus-A Bioinformatic Study of Synaptic Transmission in the Cochlear Nucleus. Biomedicines 2024; 12:1615. [PMID: 39062188 PMCID: PMC11274367 DOI: 10.3390/biomedicines12071615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this study was to identify key proteins of synaptic transmission in the cochlear nucleus (CN) that are involved in normal hearing, acoustic stimulation, and tinnitus. A gene list was compiled from the GeneCards database using the keywords "synaptic transmission" AND "tinnitus" AND "cochlear nucleus" (Tin). For comparison, two gene lists with the keywords "auditory perception" (AP) AND "acoustic stimulation" (AcouStim) were built. The STRING protein-protein interaction (PPI) network and the Cytoscape data analyzer were used to identify the top two high-degree proteins (HDPs) and their high-score interaction proteins (HSIPs), together referred to as key proteins. The top1 key proteins of the Tin-process were BDNF, NTRK1, NTRK3, and NTF3; the top2 key proteins are FOS, JUN, CREB1, EGR1, MAPK1, and MAPK3. Highly significant GO terms in CN in tinnitus were "RNA polymerase II transcription factor complex", "late endosome", cellular response to cadmium ion", "cellular response to reactive oxygen species", and "nerve growth factor signaling pathway", indicating changes in vesicle and cell homeostasis. In contrast to the spiral ganglion, where important changes in tinnitus are characterized by processes at the level of cells, important biological changes in the CN take place at the level of synapses and transcription.
Collapse
Affiliation(s)
- Johann Gross
- Tinnitus Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Leibniz Society of Science Berlin, 10117 Berlin, Germany;
| | - Marlies Knipper
- Leibniz Society of Science Berlin, 10117 Berlin, Germany;
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, 72076 Tübingen, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| |
Collapse
|
4
|
Mellott JG, Duncan S, Busby J, Almassri LS, Wawrzyniak A, Iafrate MC, Ohl AP, Slabinski EA, Beaver AM, Albaba D, Vega B, Mafi AM, Buerke M, Tokar NJ, Young JW. Age-related upregulation of dense core vesicles in the central inferior colliculus. Front Cell Neurosci 2024; 18:1396387. [PMID: 38774486 PMCID: PMC11107844 DOI: 10.3389/fncel.2024.1396387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
Presbycusis is one of the most prevalent disabilities in aged populations of industrialized countries. As we age less excitation reaches the central auditory system from the periphery. To compensate, the central auditory system [e.g., the inferior colliculus (IC)], downregulates GABAergic inhibition to maintain homeostatic balance. However, the continued downregulation of GABA in the IC causes a disruption in temporal precision related to presbycusis. Many studies of age-related changes to neurotransmission in the IC have therefore focused on GABAergic systems. However, we have discovered that dense core vesicles (DCVs) are significantly upregulated with age in the IC. DCVs can carry neuropeptides, co-transmitters, neurotrophic factors, and proteins destined for the presynaptic zone to participate in synaptogenesis. We used immuno transmission electron microscopy across four age groups (3-month; 19-month; 24-month; and 28-month) of Fisher Brown Norway rats to examine the ultrastructure of DCVs in the IC. Tissue was stained post-embedding for GABA immunoreactivity. DCVs were characterized by diameter and by the neurochemical profile (GABAergic/non-GABAergic) of their location (bouton, axon, soma, and dendrite). Our data was collected across the dorsolateral to ventromedial axis of the central IC. After quantification, we had three primary findings. First, the age-related increase of DCVs occurred most robustly in non-GABAergic dendrites in the middle and low frequency regions of the central IC during middle age. Second, the likelihood of a bouton having more than one DCV increased with age. Lastly, although there was an age-related loss of terminals throughout the IC, the proportion of terminals that contained at least one DCV did not decline. We interpret this finding to mean that terminals carrying proteins packaged in DCVs are spared with age. Several recent studies have demonstrated a role for neuropeptides in the IC in defining cell types and regulating inhibitory and excitatory neurotransmission. Given the age-related increase of DCVs in the IC, it will be critical that future studies determine whether (1) specific neuropeptides are altered with age in the IC and (2) if these neuropeptides contribute to the loss of inhibition and/or increase of excitability that occurs during presbycusis and tinnitus.
Collapse
Affiliation(s)
- Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- University Hospitals Hearing Research Center, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Syllissa Duncan
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Justine Busby
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Laila S. Almassri
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- University Hospitals Hearing Research Center, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Alexa Wawrzyniak
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Milena C. Iafrate
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Andrew P. Ohl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Elizabeth A. Slabinski
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Abigail M. Beaver
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Diana Albaba
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Brenda Vega
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Amir M. Mafi
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Morgan Buerke
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| | - Nick J. Tokar
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jesse W. Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
5
|
Plontke SK, Girndt M, Meisner C, Fischer I, Böselt I, Löhler J, Ludwig-Kraus B, Richter M, Steighardt J, Reuter B, Böttcher C, Langer J, Pethe W, Seiwerth I, Jovanovic N, Großmann W, Kienle-Gogolok A, Boehm A, Neudert M, Diensthuber M, Müller A, Dazert S, Guntinas-Lichius O, Hornung J, Vielsmeier V, Stadler J, Rahne T. High-Dose Glucocorticoids for the Treatment of Sudden Hearing Loss. NEJM EVIDENCE 2024; 3:EVIDoa2300172. [PMID: 38320514 DOI: 10.1056/evidoa2300172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND: Systemic glucocorticoids are commonly used for primary therapy of idiopathic sudden sensorineural hearing loss (ISSNHL). However, the comparative effectiveness and risk profiles of high-dose over lower-dose regimens remain unknown. METHODS: We randomly assigned patients with sudden hearing loss of greater than or equal to 50 dB within 7 days from onset to receive either 5 days of high-dose intravenous prednisolone at 250 mg/d (HD-Pred), 5 days of high-dose oral dexamethasone at 40 mg/d (HD-Dex), or, as a control, 5 days of oral prednisolone (Pred-Control) at 60 mg/d followed by 5 days of tapering doses. The primary outcome was the change in hearing threshold (pure tone average) in the three most affected contiguous frequencies from baseline to day 30. Secondary outcomes included speech understanding, tinnitus, communication competence, quality of life, hypertension, and insulin resistance. RESULTS: A total of 325 patients were randomly assigned. Mean change in 3PTAmost affected hearing threshold from baseline to 30 days was 34.2 dB (95% CI, 28.4 to 40.0) in the HD-Pred group, 41.4 dB (95% CI, 35.6 to 47.2) in the HD-Dex group, and 41.0 dB (95% CI, 35.2 to 46.8) in the Pred-Control group (P=0.09 for analysis of variance). There were more adverse events related to trial medication in the HD-Pred (n=73) and HD-Dex (n=76) groups than in the Pred-Control group (n=46). CONCLUSIONS: Systemic high-dose glucocorticoid therapy was not superior to a lower-dose regimen in patients with ISSNHL, and it was associated with a higher risk of side effects. (Funded by the Federal Ministry of Education and Research [BMBF]; EudraCT number, 2015‐002602‐36.)
Collapse
Affiliation(s)
- Stefan K Plontke
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medicine Halle, Halle (Saale), Germany
| | - Matthias Girndt
- Department of Internal Medicine, University Medicine Halle, Halle (Saale), Germany
| | - Christoph Meisner
- Robert Bosch Society for Medical Research, Robert Bosch Hospital, Stuttgart, Germany
| | - Imma Fischer
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Iris Böselt
- Coordination Centre for Clinical Trials, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jan Löhler
- Scientific Institute for Applied Oto-Rhino-Laryngology of the German Professional Association of ENT Surgeons, Bad Bramstedt, Germany
| | - Beatrice Ludwig-Kraus
- Department of Laboratory Medicine, Central Laboratory, University Hospital Halle, Halle (Saale), Germany
| | - Michael Richter
- Coordination Centre for Clinical Trials, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jörg Steighardt
- Coordination Centre for Clinical Trials, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Bernd Reuter
- Department of Otorhinolaryngology/Plastic Surgery, SRH Zentralklinikum Suhl, Suhl, Germany
| | - Christoph Böttcher
- Department of Otorhinolaryngology/Plastic Surgery, SRH Zentralklinikum Suhl, Suhl, Germany
- ENT Practice, Bad Neustadt, Germany
| | - Jörg Langer
- ENT Department, AMEOS Clinic Halberstadt, Halberstadt, Germany
| | - Wolfram Pethe
- ENT Department, AMEOS Clinic Halberstadt, Halberstadt, Germany
| | - Ingmar Seiwerth
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medicine Halle, Halle (Saale), Germany
| | - Nebojsa Jovanovic
- Department of Otorhinolaryngology, Head and Neck Surgery, Plastic Surgery, University Hospital of Giessen and Marburg, Giessen, Germany
| | - Wilma Großmann
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Körner," Rostock University Medical Center, Rostock, Germany
| | | | - Andreas Boehm
- ENT Department, Hospital St. Georg gGmbH, Leipzig, Germany
| | - Marcus Neudert
- Department of Otorhinolaryngology, Head and Neck Surgery, Technical University Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, Dresden, Germany
| | - Marc Diensthuber
- Department of Otorhinolaryngology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Andreas Müller
- Department Otorhinolaryngology/Plastic Surgery, SRH Wald-Klinikum Gera gGmbH, Gera, Germany
| | - Stefan Dazert
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth Hospital, Ruhr University Bochum, Bochum, Germany
| | | | - Joachim Hornung
- Department of Otorhinolaryngology and Head and Neck Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Veronika Vielsmeier
- Department of Otorhinolaryngology, University of Regensburg, Regensburg, Germany
| | - Joachim Stadler
- Department of Otorhinolaryngology, Head and Neck Surgery, Heinrich-Braun-Klinikum gGmbH, Zwickau, Germany
| | - Torsten Rahne
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medicine Halle, Halle (Saale), Germany
| |
Collapse
|
6
|
Min X, Deng XH, Lao H, Wu ZC, Chen Y, Luo Y, Wu H, Wang J, Fu QL, Xiong H. BDNF-enriched small extracellular vesicles protect against noise-induced hearing loss in mice. J Control Release 2023; 364:546-561. [PMID: 37939851 DOI: 10.1016/j.jconrel.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Noise-induced hearing loss (NIHL) is one of the most prevalent acquired sensorineural hearing loss etiologies and is characterized by the loss of cochlear hair cells, synapses, and nerve terminals. Currently, there are no agents available for the treatment of NIHL because drug delivery to the inner ear is greatly limited by the blood-labyrinth barrier. In this study, we used mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) as nanoscale vehicles to deliver brain-derived neurotrophic factor (BDNF) and evaluated their protective effects in a mouse model of NIHL. Following intravenous administration, BDNF-loaded sEVs (BDNF-sEVs) efficiently increased the expression of BDNF protein in the cochlea. Systemic application of sEVs and BDNF-sEVs significantly attenuated noise-induced cochlear hair cell loss and NIHL in CBA/J mice. BDNF-sEVs also alleviated noise-induced loss of inner hair cell ribbon synapses and cochlear nerve terminals. In cochlear explants, sEVs and BDNF-sEVs effectively protected hair cells against H2O2-induced cell loss. Additionally, BDNF-sEVs remarkably ameliorated H2O2-induced oxidative stress, cell apoptosis, and cochlear nerve terminal degeneration. Transcriptomic analysis revealed that many mRNAs and miRNAs were involved in the protective actions of BDNF-sEVs against oxidative stress. Collectively, our findings reveal a novel therapeutic strategy of MSC-sEVs-mediated BDNF delivery for the treatment of NIHL.
Collapse
Affiliation(s)
- Xin Min
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Xiao-Hui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Huilin Lao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Zi-Cong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yi Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Yuelian Luo
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Haoyang Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Junbo Wang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China.
| |
Collapse
|
7
|
Bonetti L, Bruzzone S, Paunio T, Kantojärvi K, Kliuchko M, Vuust P, Palva S, Brattico E. Moderate associations between BDNF Val66Met gene polymorphism, musical expertise, and mismatch negativity. Heliyon 2023; 9:e15600. [PMID: 37153429 PMCID: PMC10160759 DOI: 10.1016/j.heliyon.2023.e15600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
Auditory predictive processing relies on a complex interaction between environmental, neurophysiological, and genetic factors. In this view, the mismatch negativity (MMN) and intensive training on a musical instrument for several years have been used for studying environment-driven neural adaptations in audition. In addition, brain-derived neurotrophic factor (BDNF) has been shown crucial for both the neurogenesis and the later adaptation of the auditory system. The functional single-nucleotide polymorphism (SNP) Val66Met (rs6265) in the BDNF gene can affect BDNF protein levels, which are involved in neurobiological and neurophysiological processes such as neurogenesis and neuronal plasticity. In this study, we hypothesised that genetic variation within the BDNF gene would be associated with different levels of neuroplasticity of the auditory cortex in 74 musically trained participants. To achieve this goal, musicians and non-musicians were recruited and divided in Val/Val and Met- (Val/Met and Met/Met) carriers and their brain activity was measured with magnetoencephalography (MEG) while they listened to a regular auditory sequence eliciting different types of prediction errors. MMN responses indexing those prediction errors were overall enhanced in Val/Val carriers who underwent intensive musical training, compared to Met-carriers and non-musicians with either genotype. Although this study calls for replications with larger samples, our results provide a first glimpse of the possible role of gene-regulated neurotrophic factors in the neural adaptations of automatic predictive processing in the auditory domain after long-term training.
Collapse
Affiliation(s)
- L. Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Department of Psychology, University of Bologna, Italy
- Corresponding author. Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark, and Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK.
| | - S.E.P. Bruzzone
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - T. Paunio
- Department of Psychiatry, University of Helsinki, Finland
| | - K. Kantojärvi
- Department of Psychiatry, University of Helsinki, Finland
| | - M. Kliuchko
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - P. Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark
| | - S. Palva
- Helsinki Institute of Life Sciences, Neuroscience Center, University of Helsinki, Finland
- Centre for Cognitive Neuroscience, School of Neuroscience and Psychology, University of Glasgow, United Kingdom
| | - E. Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Italy
- Corresponding author. Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & the Royal Academy of Music Aarhus/Aalborg, Denmark.
| |
Collapse
|
8
|
Moreno A, Rajagopalan S, Tucker MJ, Lunsford P, Liu RC. Hearing Vocalizations during First Social Experience with Pups Increase Bdnf Transcription in Mouse Auditory Cortex. Neural Plast 2023; 2023:5225952. [PMID: 36845359 PMCID: PMC9946766 DOI: 10.1155/2023/5225952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
While infant cues are often assumed to innately motivate maternal response, recent research highlights how the neural coding of infant cues is altered through maternal care. Infant vocalizations are important social signals for caregivers, and evidence from mice suggests that experience caring for mouse pups induces inhibitory plasticity in the auditory cortex (AC), though the molecular mediators for such AC plasticity during the initial pup experience are not well delineated. Here, we used the maternal mouse communication model to explore whether transcription in AC of a specific, inhibition-linked, memory-associated gene, brain-derived neurotrophic factor (Bdnf) changes due to the very first pup caring experience hearing vocalizations, while controlling for the systemic influence of the hormone estrogen. Ovariectomized and estradiol or blank-implanted virgin female mice hearing pup calls with pups present had significantly higher AC exon IV Bdnf mRNA compared to females without pups present, suggesting that the social context of vocalizations induces immediate molecular changes at the site of auditory cortical processing. E2 influenced the rate of maternal behavior but did not significantly affect Bdnf mRNA transcription in the AC. To our knowledge, this is the first time Bdnf has been associated with processing social vocalizations in the AC, and our results suggest that it is a potential molecular component responsible for enhancing future recognition of infant cues by contributing to AC plasticity.
Collapse
Affiliation(s)
- Amielle Moreno
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia 30332, USA
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | - Matthew J. Tucker
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Parker Lunsford
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- College of Science Undergraduate Neuroscience Program, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
9
|
Matusiak M, Oziębło D, Ołdak M, Rejmak E, Kaczmarek L, Skarżyński H. Longitudinal Changes in BDNF and MMP-9 Protein Plasma Levels in Children after Cochlear Implantation. Int J Mol Sci 2023; 24:ijms24043714. [PMID: 36835126 PMCID: PMC9959301 DOI: 10.3390/ijms24043714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Congenitally deaf children who undergo cochlear implantation before 1 year of age develop their auditory skills faster than children who are implanted later. In this longitudinal study, a cohort of 59 implanted children were divided into two subgroups according to their ages at implantation-below or above 1 year old-and the plasma levels of matrix metalloproteinase-9 (MMP-9), brain-derived neurotrophic factor (BDNF), and pro-BDNF were measured at 0, 8, and 18 months after cochlear implant activation, while auditory development was simultaneously evaluated using the LittlEARs Questionnaire (LEAQ). A control group consisted of 49 age-matched healthy children. We identified statistically higher BDNF levels at 0 months and at the 18-month follow-ups in the younger subgroup compared to the older one and lower LEAQ scores at 0 months in the younger subgroup. Between the subgroups, there were significant differences in the changes in BDNF levels from 0 to 8 months and in LEAQ scores from 0 to 18 months. The MMP-9 levels significantly decreased from 0 to 18 months and from 0 to 8 months in both subgroups and from 8 to 18 months only in the older one. For all measured protein concentrations, significant differences were identified between the older study subgroup and the age-matched control group.
Collapse
Affiliation(s)
- Monika Matusiak
- Oto-Rhino-Laryngosurgery Clinic, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042 Warsaw, Poland
- World Hearing Centre, Mokra 17, 05-830 Nadarzyn, Poland
- Correspondence: ; Tel.: +48-223560366
| | - Dominika Oziębło
- World Hearing Centre, Mokra 17, 05-830 Nadarzyn, Poland
- Department of Genetics, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042 Warsaw, Poland
| | - Monika Ołdak
- World Hearing Centre, Mokra 17, 05-830 Nadarzyn, Poland
- Department of Genetics, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042 Warsaw, Poland
| | - Emilia Rejmak
- BRAINCITY, Nencki Institute of Experimental Biology, L Pasteura 3, 02-093 Warsaw, Poland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, L Pasteura 3, 02-093 Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngosurgery Clinic, Institute of Physiology and Pathology of Hearing, M Mochnackiego 10, 02-042 Warsaw, Poland
- World Hearing Centre, Mokra 17, 05-830 Nadarzyn, Poland
| |
Collapse
|
10
|
Li N, Chen B, Jia G, Xu R, Xia Y, Lai C, Li G, Li W, Han Y. Reduced BDNF expression in the auditory cortex contributed to neonatal pain-induced hearing impairment and dendritic pruning deficiency in mice. Reg Anesth Pain Med 2023; 48:85-92. [PMID: 36384877 PMCID: PMC9811087 DOI: 10.1136/rapm-2022-103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Procedural pain in neonates is associated with impaired neurodevelopment. Whether hearing development is impaired, however, remains unknown. This study examined potential cause-and-effect relationship between neonatal pain and subsequent hearing loss in mice. METHODS Male C57BL/6J mouse pups received an intra-plantar injection of complete Freund's adjuvant on postnatal day 7 or repetitive needle prick stimuli from postnatal days 0-7. Mechanical and thermal pain thresholds were tested between postnatal days 14 and 49. The auditory brainstem response test was used to determine hearing thresholds. The inner ear structures and dendritic morphology in auditory cortex were assessed using immunofluorescence and Golgi-staining. The effects of oxycodone, tropomyosin receptor kinase B agonists and antagonists were tested. RESULTS Neonatal pain resulted in impaired hearing in adulthood of both pain models No damage or synapse loss was found in the cochlea but increased dendritic spine density and reduced brain-derived neurotrophic factor level were found in auditory cortex in neonatal pain group. Oxycodone attenuated hearing loss and the associated changes in dendritic spine density and brain-derived neurotrophic factor changes in auditory cortex. A tropomyosin receptor kinase B agonist reversed neonatal pain-induced hearing impairment and decreased caspase 3 expression in auditory cortex. Administration of tropomyosin receptor kinase B antagonist in naïve mouse pups impaired hearing development suppressed phosphorylated-AKT, and increased caspase 3 expression. CONCLUSION Chronic pain during the neonatal period resulted in impaired hearing in adulthood in mice, possibly via the brain-derived neurotrophic factor signaling pathway and dendritic spine pruning deficiency in auditory cortex.
Collapse
Affiliation(s)
- Nanqi Li
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Bing Chen
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China,Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Gaogan Jia
- NHC Key Laboratory of Hearing Medicine, ENT Hospital of Fudan University, Shanghai, China
| | - Rui Xu
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Ying Xia
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Chuijin Lai
- NHC Key Laboratory of Hearing Medicine, ENT Hospital of Fudan University, Shanghai, China
| | - Gang Li
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Wenxian Li
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yuan Han
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
VDR Regulates BNP Promoting Neurite Growth and Survival of Cochlear Spiral Ganglion Neurons through cGMP-PKG Signaling Pathway. Cells 2022; 11:cells11233746. [PMID: 36497006 PMCID: PMC9739822 DOI: 10.3390/cells11233746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Spiral ganglion neurons (SGNs) are important for hearing, and their peripheral and central processes connect sensory cells of the Corti organ to the central nervous system. The resulting network forms a point-to-point auditory conduction. As a cardiac hormone, brain natriuretic peptide (BNP) binds to natriuretic peptide receptor type A leading to diuresis, vasodilatation, inhibition of renin and aldosterone production, and cardiac and vascular myocyte growth. This study primarily aimed to explore the expression and function of BNP in the rat's inner ear and elucidate its regulatory mechanism. We determined the expression and function of BNP and found that the vitamin D receptor (VDR) could upregulate the expression of BNP and enhance its function. In SGNs of the rat inner ear, BNP promotes neuron survival and prolongs neurite length through the cGMP-PKG signaling pathway, which could be regulated by VDR and provide a novel approach for neuronal regeneration therapy. To the best of our knowledge, this is the first study to report this potential transcriptional regulatory relationship and will act as a reference for research on neuronal regeneration therapy for SGNs injury.
Collapse
|
12
|
mTOR Signaling in BDNF-Treated Guinea Pigs after Ototoxic Deafening. Biomedicines 2022; 10:biomedicines10112935. [PMID: 36428503 PMCID: PMC9687683 DOI: 10.3390/biomedicines10112935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) signaling plays a critical role in cell homeostasis, growth and survival. Here, we investigated the localization of the main mTOR signaling proteins in the organ of Corti of normal-hearing and deafened guinea pigs, as well as their possible modulation by exogenously administered brain-derived neurotrophic factor (BDNF) in deafened guinea pigs. Animals were ototoxically deafened by systemic administration of kanamycin and furosemide, and one week later, the right cochleas were treated with gelatin sponge soaked in rhBDNF, while the left cochleas were used as negative controls. Twenty-four hours after treatment, animals were euthanized, and the cochleas were processed for subsequent analysis. Through immunofluorescence, we demonstrated the localization of AKT, pAKT, mTOR, pmTOR and PTEN proteins throughout the cochlea of guinea pigs for the first time, with a higher expression in supporting cells. Moreover, an increase in mTOR immunostaining was observed in BDNF-treated cochleas by means of fluorescence intensity compared to the other groups. Conversely, Western blot analysis showed no significant differences in the protein levels between groups, probably due to dilution of proteins in the neighboring tissues of the organ of Corti. Altogether, our data indicate that mTOR signaling proteins are expressed by the organ of Corti (with a major role for supporting cells) and that the modulation of mTOR may be a protective mechanism triggered by BDNF in the degenerating organ of Corti.
Collapse
|
13
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
14
|
Hearing loss drug discovery and medicinal chemistry: Current status, challenges, and opportunities. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:1-91. [PMID: 35753714 DOI: 10.1016/bs.pmch.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hearing loss is a severe high unmet need condition affecting more than 1.5 billion people globally. There are no licensed medicines for the prevention, treatment or restoration of hearing. Prosthetic devices, such as hearing aids and cochlear implants, do not restore natural hearing and users struggle with speech in the presence of background noise. Hearing loss drug discovery is immature, and small molecule approaches include repurposing existing drugs, combination therapeutics, late-stage discovery optimisation of known chemotypes for identified molecular targets of interest, phenotypic tissue screening and high-throughput cell-based screening. Hearing loss drug discovery requires the integration of specialist therapeutic area biology and otology clinical expertise. Small molecule drug discovery projects in the global clinical portfolio for hearing loss are here collated and reviewed. An overview is provided of human hearing, inner ear anatomy, inner ear delivery, types of hearing loss and hearing measurement. Small molecule experimental drugs in clinical development for hearing loss are reviewed, including their underpinning biology, discovery strategy and activities, medicinal chemistry, calculated physicochemical properties, pharmacokinetics and clinical trial status. SwissADME BOILED-Egg permeability modelling is applied to the molecules reviewed, and these results are considered. Non-small molecule hearing loss assets in clinical development are briefly noted in this review. Future opportunities in hearing loss drug discovery for human genomics and targeted protein degradation are highlighted.
Collapse
|
15
|
St. Peter M, Brough DE, Lawrence A, Nelson-Brantley J, Huang P, Harre J, Warnecke A, Staecker H. Improving Control of Gene Therapy-Based Neurotrophin Delivery for Inner Ear Applications. Front Bioeng Biotechnol 2022; 10:892969. [PMID: 35721868 PMCID: PMC9204055 DOI: 10.3389/fbioe.2022.892969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Survival and integrity of the spiral ganglion is vital for hearing in background noise and for optimal functioning of cochlear implants. Numerous studies have demonstrated that supplementation of supraphysiologic levels of the neurotrophins BDNF and NT-3 by pumps or gene therapy strategies supports spiral ganglion survival. The endogenous physiological levels of growth factors within the inner ear, although difficult to determine, are likely extremely low within the normal inner ear. Thus, novel approaches for the long-term low-level delivery of neurotrophins may be advantageous. Objectives: This study aimed to evaluate the long-term effects of gene therapy-based low-level neurotrophin supplementation on spiral ganglion survival. Using an adenovirus serotype 28-derived adenovector delivery system, the herpes latency promoter, a weak, long expressing promoter system, has been used to deliver the BDNF or NTF3 genes to the inner ear after neomycin-induced ototoxic injury in mice. Results: Treatment of the adult mouse inner ear with neomycin resulted in acute and chronic changes in endogenous neurotrophic factor gene expression and led to a degeneration of spiral ganglion cells. Increased survival of spiral ganglion cells after adenoviral delivery of BDNF or NTF3 to the inner ear was observed. Expression of BDNF and NT-3 could be demonstrated in the damaged organ of Corti after gene delivery. Hearing loss due to overexpression of neurotrophins in the normal hearing ear was avoided when using this novel vector–promoter combination. Conclusion: Combining supporting cell-specific gene delivery via the adenovirus serotype 28 vector with a low-strength long expressing promoter potentially can provide long-term neurotrophin delivery to the damaged inner ear.
Collapse
Affiliation(s)
| | | | - Anna Lawrence
- Department of Otolaryngology, University of Kansas School of Medicine, Kansas City, KS, United States
| | | | - Peixin Huang
- Department of Otolaryngology, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Jennifer Harre
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology, University of Kansas School of Medicine, Kansas City, KS, United States
- *Correspondence: Hinrich Staecker,
| |
Collapse
|
16
|
Wille I, Harre J, Oehmichen S, Lindemann M, Menzel H, Ehlert N, Lenarz T, Warnecke A, Behrens P. Development of Neuronal Guidance Fibers for Stimulating Electrodes: Basic Construction and Delivery of a Growth Factor. Front Bioeng Biotechnol 2022; 10:776890. [PMID: 35141211 PMCID: PMC8819688 DOI: 10.3389/fbioe.2022.776890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Abstract
State-of-the-art treatment for sensorineural hearing loss is based on electrical stimulation of residual spiral ganglion neurons (SGNs) with cochlear implants (CIs). Due to the anatomical gap between the electrode contacts of the CI and the residual afferent fibers of the SGNs, spatial spreading of the stimulation signal hampers focused neuronal stimulation. Also, the efficiency of a CI is limited because SGNs degenerate over time due to loss of trophic support. A promising option to close the anatomical gap is to install fibers as artificial nerve guidance structures on the surface of the implant and install on these fibers drug delivery systems releasing neuroprotective agents. Here, we describe the first steps in this direction. In the present study, suture yarns made of biodegradable polymers (polyglycolide/poly-ε-caprolactone) serve as the basic fiber material. In addition to the unmodified fiber, also fibers modified with amine groups were employed. Cell culture investigations with NIH 3T3 fibroblasts attested good cytocompatibility to both types of fibers. The fibers were then coated with the extracellular matrix component heparan sulfate (HS) as a biomimetic of the extracellular matrix. HS is known to bind, stabilize, modulate, and sustainably release growth factors. Here, we loaded the HS-carrying fibers with the brain-derived neurotrophic factor (BDNF) which is known to act neuroprotectively. Release of this neurotrophic factor from the fibers was followed over a period of 110 days. Cell culture investigations with spiral ganglion cells, using the supernatants from the release studies, showed that the BDNF delivered from the fibers drastically increased the survival rate of SGNs in vitro. Thus, biodegradable polymer fibers with attached HS and loaded with BDNF are suitable for the protection and support of SGNs. Moreover, they present a promising base material for the further development towards a future neuronal guiding scaffold.
Collapse
Affiliation(s)
- Inga Wille
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Jennifer Harre
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Sarah Oehmichen
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Lindemann
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henning Menzel
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nina Ehlert
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Thomas Lenarz
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Peter Behrens
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
- Cluster of Excellence PhoenixD, Hannover, Germany
| |
Collapse
|
17
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
18
|
Huo H, Hu C, Lu Y, Zhou J, Mai Z. Silencing of circCDC14A prevents cerebral ischemia-reperfusion injury via miR-23a-3p/CXCL12 axis. J Biochem Mol Toxicol 2022; 36:e22982. [PMID: 34978116 DOI: 10.1002/jbt.22982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Ischemic stroke is one of the main causes of death and disability. Circular RNAs (circRNAs) have received extensive attention in the pathogenesis of ischemic stroke. Here, we evaluated the role of circCDC14A in cerebral ischemia-reperfusion (CI/R) injury in vivo and in vitro. The expression of circCDC14A was significantly upregulated in the middle cerebral artery occlusion (MCAO) model and oxygen and glucose deprivation/reoxygenation (OGD/R)-treated HT22 cells. Knockdown of circCDC14A suppressed the cell viability reduction caused by OGD/R, as well as cell damage and apoptosis. Mechanistically, circCDC14A acted as a sponge for miR-23a-3p and promoted the expression of chemokine stromal-derived factor-1 (CXCL12) by negatively regulating miR-23a-3p. Rescue experiments further confirmed that miR-23a-3p inhibitor or circCDC14A-overexpression vectors blocked the beneficial effects of circCDC14A knockdown in OGD/R-induced HT22 cells. Moreover, knockdown of circCDC14A suppressed MCAO-induced cerebral infarction and neurological damage, as well as the brain tissue damage and neuronal apoptosis in vivo. Consistently, miR-23a-3p antagomir treatment abolished the cerebral protective effects of circCDC14A knockdown on MCAO mice. In conclusion, circCDC14A promoted CI/R injury by regulating the miR-23a-3p/CXCL12 axis, which suggested that circCDC14A may become a potential therapeutic target for CI/R injury.
Collapse
Affiliation(s)
- Huiyi Huo
- Department of Neonatology, The First People's Hospital Of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, Guangdong, China
| | - Chao Hu
- Department of Stomatology, Shunde Hospital of Southern Medical University, Shunde, Guangdong, China
| | - Yongxue Lu
- Department of Neonatology, The First People's Hospital Of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, Guangdong, China
| | - Jinyu Zhou
- Department of Neonatology, The First People's Hospital Of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, Guangdong, China
| | - Zhiguang Mai
- Department of Neonatology, The First People's Hospital Of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University), Foshan, Guangdong, China
| |
Collapse
|
19
|
Chen F, Zhao F, Mahafza N, Lu W. Detecting Noise-Induced Cochlear Synaptopathy by Auditory Brainstem Response in Tinnitus Patients With Normal Hearing Thresholds: A Meta-Analysis. Front Neurosci 2021; 15:778197. [PMID: 34987358 PMCID: PMC8721093 DOI: 10.3389/fnins.2021.778197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
Noise-induced cochlear synaptopathy (CS) is defined as a permanent loss of synapses in the auditory nerve pathway following noise exposure. Several studies using auditory brainstem response (ABR) have indicated the presence of CS and increased central gain in tinnitus patients with normal hearing thresholds (TNHT), but the results were inconsistent. This meta-analysis aimed to review the evidence of CS and its pathological changes in the central auditory system in TNHT. Published studies using ABR to study TNHT were reviewed. PubMed, EMBASE, and Scopus databases were selected to search for relevant literature. Studies (489) were retrieved, and 11 were included for meta-analysis. The results supported significantly reduced wave I amplitude in TNHT, whereas the alternations in wave V amplitude were inconsistent among the studies. Consistently increased V/I ratio indicated noise-induced central gain enhancement. The results indicated the evidence of noise-induced cochlear synaptopathy in tinnitus patients with normal hearing. However, inconsistent changes in wave V amplitude may be explained by that the failure of central gain that triggers the pathological neural changes in the central auditory system and/or that increased central gain may be necessary to generate tinnitus but not to maintain tinnitus.
Collapse
Affiliation(s)
- Feifan Chen
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Fei Zhao
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
- Department of Hearing and Speech Science, Guangzhou Xinhua College, Guangzhou, China
| | - Nadeem Mahafza
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Wei Lu
- Department of Otolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Shew M, Wichova H, Warnecke A, Lenarz T, Staecker H. Evaluating Neurotrophin Signaling Using MicroRNA Perilymph Profiling in Cochlear Implant Patients With and Without Residual Hearing. Otol Neurotol 2021; 42:e1125-e1133. [PMID: 33973949 DOI: 10.1097/mao.0000000000003182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS MicroRNAs predicted to regulate neurotrophin signaling can be found in human perilymph. BACKGROUND Animal and human temporal bone studies suggest that spiral ganglion health can affect cochlear implant (CI) outcomes. Neurotrophins have been identified as a key factor in the maintenance of spiral ganglion health. Changes in miRNAs may regulate neurotrophin signaling and may reflect neurotrophin expression levels. METHODS Perilymph sampling was carried out in 18 patients undergoing cochlear implantation or stapedotomy. Expression of miRNAs in perilymph was evaluated using an Agilent miRNA gene chip. Using ingenuity pathway analysis (IPA) software, miRNAs targeting neurotrophin signaling pathway genes present in a cochlear cDNA library were annotated. Expression levels of miRNAs in perilymph were correlated to the patients' preoperative pure-tone average. RESULTS Expression of mRNAs coding for neurotrophins and their receptors were identified in tissue obtained from normal human cochlea during skull base surgery. We identified miRNAs predicted to regulate these signaling cascades, including miR-1207-5p, miR-4651, miR-103-3p, miR-100-5p, miR-221-3p, miR-200-3p. There was a correlation between poor preoperative hearing and lower expression of miR-1207 (predicted to regulate NTR3) and miR-4651 (predicted to regulate NTR2). Additionally, miR-3960, miR-4481, and miR-675 showed significant differences in expression level when comparing mild and profound hearing loss patients. CONCLUSIONS Expression of some miRNAs that are predicted to regulate neurotrophin signaling in the perilymph of cochlear implant patients vary with the patient's level of residual hearing. These miRNAs may serve as biomarkers for changes in neurotrophin signaling.
Collapse
Affiliation(s)
- Matthew Shew
- Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Helena Wichova
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| | - Athanasia Warnecke
- Department of Otolaryngology, Medizinische Hochschule Hannover, Hannover
- Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 1077), Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Medizinische Hochschule Hannover, Hannover
- Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 1077), Germany
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
21
|
Abstract
Supplemental Digital Content is available in the text. Objectives: Recently, it has been hypothesized that blood prestin concentration levels may reflect cochlear damage and thus serve as an easily measurable, early sensorineural hearing loss (HL) biomarker. This is a scoping review aiming to identify and critically appraise current evidence on prestin blood levels and their temporal variation in rodents and humans with normal hearing and with sensorineural HL. Design: This study was designed and held according to PRISMA Extension for Scoping Reviews (PRISMA-ScR) guidelines. With no limitation with regards to study type, animal and human studies focusing on prestin blood levels in normal hearing and in sensorineural HL were sought in major databases such as Medline, Central Scopus, PROSPERO, and Clinicaltrials.gov. Results were then hand-searched. A data charting form was developed including the parameters of interest. Results: Seven studies focusing on measuring prestin blood levels by means of ELISA in rodents and human subjects with normal hearing and noise-induced, drug-induced, or idiopathic sudden HL were found eligible and were included in the analysis. According to these proof-of-concept studies, prestin can be detected in the circulation of subjects with no HL; however, normal ranges remain unclear. After cochlear damage, blood prestin levels seem to initially rise and then return to near or below baseline. The degree of their change relates with subjects’ degree of HL, damaged cochlear region and recovery. Prestin blood levels and their temporal variation seem to correlate with cochlear damage; however, methodological weaknesses, such as small sample size, lack of detailed phenotyping, insufficient exclusion of confounding factors, and short follow-up, do not allow for robust conclusions. Conclusions: Current findings support the value of studying blood prestin levels in normal hearing and HL and highlight a need for larger-scale longitudinal research.
Collapse
|
22
|
Eckert P, Marchetta P, Manthey MK, Walter MH, Jovanovic S, Savitska D, Singer W, Jacob MH, Rüttiger L, Schimmang T, Milenkovic I, Pilz PKD, Knipper M. Deletion of BDNF in Pax2 Lineage-Derived Interneuron Precursors in the Hindbrain Hampers the Proportion of Excitation/Inhibition, Learning, and Behavior. Front Mol Neurosci 2021; 14:642679. [PMID: 33841098 PMCID: PMC8033028 DOI: 10.3389/fnmol.2021.642679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Numerous studies indicate that deficits in the proper integration or migration of specific GABAergic precursor cells from the subpallium to the cortex can lead to severe cognitive dysfunctions and neurodevelopmental pathogenesis linked to intellectual disabilities. A different set of GABAergic precursors cells that express Pax2 migrate to hindbrain regions, targeting, for example auditory or somatosensory brainstem regions. We demonstrate that the absence of BDNF in Pax2-lineage descendants of BdnfPax2KOs causes severe cognitive disabilities. In BdnfPax2KOs, a normal number of parvalbumin-positive interneurons (PV-INs) was found in the auditory cortex (AC) and hippocampal regions, which went hand in hand with reduced PV-labeling in neuropil domains and elevated activity-regulated cytoskeleton-associated protein (Arc/Arg3.1; here: Arc) levels in pyramidal neurons in these same regions. This immaturity in the inhibitory/excitatory balance of the AC and hippocampus was accompanied by elevated LTP, reduced (sound-induced) LTP/LTD adjustment, impaired learning, elevated anxiety, and deficits in social behavior, overall representing an autistic-like phenotype. Reduced tonic inhibitory strength and elevated spontaneous firing rates in dorsal cochlear nucleus (DCN) brainstem neurons in otherwise nearly normal hearing BdnfPax2KOs suggests that diminished fine-grained auditory-specific brainstem activity has hampered activity-driven integration of inhibitory networks of the AC in functional (hippocampal) circuits. This leads to an inability to scale hippocampal post-synapses during LTP/LTD plasticity. BDNF in Pax2-lineage descendants in lower brain regions should thus be considered as a novel candidate for contributing to the development of brain disorders, including autism.
Collapse
Affiliation(s)
- Philipp Eckert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philine Marchetta
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marie K Manthey
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany.,Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Michael H Walter
- Department for Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Daria Savitska
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Michele H Jacob
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Peter K D Pilz
- Department for Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Chakraborty R, Vijay Kumar MJ, Clement JP. Critical aspects of neurodevelopment. Neurobiol Learn Mem 2021; 180:107415. [PMID: 33647449 DOI: 10.1016/j.nlm.2021.107415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
Organisms have the unique ability to adapt to their environment by making use of external inputs. In the process, the brain is shaped by experiences that go hand-in-hand with optimisation of neural circuits. As such, there exists a time window for the development of different brain regions, each unique for a particular sensory modality, wherein the propensity of forming strong, irreversible connections are high, referred to as a critical period of development. Over the years, this domain of neurodevelopmental research has garnered considerable attention from many scientists, primarily because of the intensive activity-dependent nature of development. This review discusses the cellular, molecular, and neurophysiological bases of critical periods of different sensory modalities, and the disorders associated in cases the regulators of development are dysfunctional. Eventually, the neurobiological bases of the behavioural abnormalities related to developmental pathologies are discussed. A more in-depth insight into the development of the brain during the critical period of plasticity will eventually aid in developing potential therapeutics for several neurodevelopmental disorders that are categorised under critical period disorders.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India.
| |
Collapse
|
24
|
|
25
|
Schulze J, Staecker H, Wedekind D, Lenarz T, Warnecke A. Expression pattern of brain-derived neurotrophic factor and its associated receptors: Implications for exogenous neurotrophin application. Hear Res 2020; 413:108098. [PMID: 33143996 DOI: 10.1016/j.heares.2020.108098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/24/2020] [Accepted: 10/19/2020] [Indexed: 01/20/2023]
Abstract
The application of neurotrophins such as brain-derived neurotrophic factor (BDNF) is a promising pharmacological approach in cochlear implant research. Several in vitro and in vivo studies demonstrated that treatment with neurotrophins support the spiral ganglion neuron (SGN) survival and the synapses. Of the more than 40 companies that are working in the field of inner ear therapeutics, only one company is currently advancing BDNF towards clinical translation. Thus, there are no approved clinical therapies with neurotrophins, their precursors or neurotrophin-like substances. For a better understanding of the mechanisms of BDNF in the inner ear, we analysed the expression of mature BDNF (mBDNF), its pro-form proBDNF and their respective receptors the low affinity p75 neurotrophin receptor (p75NTR) and the neurotrophic receptor tyrosine kinase 2 (NTRK2). In the adult murine inner ear, mBDNF is expressed in the inner and outer hair cells (IHC and OHC) of the organ of Corti and in the spiral ganglion of the Rosenthal's canal, whereas proBDNF is only detected in the supporting cells below the OHC. The corresponding receptors NTRK2 and p75NTR are expressed in the spiral ganglion whereof p75NTR is stronger expressed. For more insights in the effects of mBDNF and proBDNF on inner ear specific cells, we treated primary dissociated SGN with different concentrations of mBDNF and proBDNF alone and in combination. Interestingly, treatment with proBDNF is not toxic for SGN but simultaneously not protective. However, combined treatment of mBDNF and proBDNF maintained and perhaps slightly increased the protective effect of mBDNF. Thus, the mixture of mBDNF and proBDNF could be the new direction for the development of BDNF-based therapeutics in cochlear implantation and could represent more precisely the natural environment.
Collapse
Affiliation(s)
- Jennifer Schulze
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1).
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Dirk Wedekind
- Department of experimental animal science, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1)
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1)
| |
Collapse
|
26
|
BDNF Activates Postsynaptic TrkB Receptors to Induce Endocannabinoid Release and Inhibit Presynaptic Calcium Influx at a Calyx-Type Synapse. J Neurosci 2020; 40:8070-8087. [PMID: 32948677 PMCID: PMC7574661 DOI: 10.1523/jneurosci.2838-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 12/26/2022] Open
Abstract
Brain-derived neurotropic factor (BDNF) has been shown to play critical roles in neural development, plasticity, and neurodegenerative diseases. The main function of BDNF in the brain is widely accepted to be synaptic regulation. However, how BDNF modulates synaptic transmission, especially the underlying signaling cascades between presynaptic and postsynaptic neurons, remains controversial. Brain-derived neurotropic factor (BDNF) has been shown to play critical roles in neural development, plasticity, and neurodegenerative diseases. The main function of BDNF in the brain is widely accepted to be synaptic regulation. However, how BDNF modulates synaptic transmission, especially the underlying signaling cascades between presynaptic and postsynaptic neurons, remains controversial. In the present study, we investigated the actions of BDNF at rat calyx-type synapses of either sex by measuring the excitatory postsynaptic current (EPSC) and presynaptic calcium current and capacitance changes. We found that BDNF inhibits the EPSC, presynaptic calcium influx, and exocytosis/endocytosis via activation of the presynaptic cannabinoid Type 1 receptors (CB1Rs). Inhibition of the CB1Rs abolished the BDNF-induced presynaptic inhibition, whereas CB1R agonist mimicked the effect of BDNF. Exploring the underlying signaling cascade, we found that BDNF specifically activates the postsynaptic TrkB receptors, inducing the release of endocannabinoids via the PLCγ/DGL pathway and retrogradely activating presynaptic CB1Rs. We also reported the involvement of AC/PKA in modulating vesicle endocytosis, which may account for the BDNF-induced calcium-dependent and -independent regulation of endocytosis. Thus, our study provides new insights into the BDNF/endocannabinoid-associated modulation of neurotransmission in physiological and pathologic processes. SIGNIFICANCE STATEMENT BDNF plays critical roles in the modulation of synaptic strength. However, how BDNF regulates synaptic transmission and its underlying signaling cascade(s) remains elusive. By measuring EPSC and the presynaptic calcium current and capacitance changes at rat calyces, we found that BDNF inhibits synaptic transmission via BDNF-TrkB-eCB signaling pathway. Activation of postsynaptic TrkB receptors induces endocannabinoid release via the PLCγ/DGL pathway, retrogradely activating the presynaptic CB1Rs, inhibiting the AC/PKA, and suppressing calcium influx. Our findings provide a comprehensive understanding of BDNF/endocannabinoid-associated modulation of neuronal activities.
Collapse
|
27
|
Scheffel JL, Mohammed SS, Borcean CK, Parng AJ, Yoon HJ, Gutierrez DA, Yu WM. Spatiotemporal Analysis of Cochlear Nucleus Innervation by Spiral Ganglion Neurons that Serve Distinct Regions of the Cochlea. Neuroscience 2020; 446:43-58. [PMID: 32866604 DOI: 10.1016/j.neuroscience.2020.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Cochlear neurons innervate the brainstem cochlear nucleus in a tonotopic fashion according to their sensitivity to different sound frequencies (known as the neuron's characteristic frequency). It is unclear whether these neurons with distinct characteristic frequencies use different strategies to innervate the cochlear nucleus. Here, we use genetic approaches to differentially label spiral ganglion neurons (SGNs) and their auditory nerve fibers (ANFs) that relay different characteristic frequencies in mice. We found that SGN populations that supply distinct regions of the cochlea employ different cellular strategies to target and innervate neurons in the cochlear nucleus during tonotopic map formation. ANFs that will exhibit high-characteristic frequencies initially overshoot and sample a large area of targets before refining their connections to correct targets, while fibers that will exhibit low-characteristic frequencies are more accurate in initial targeting and undergo minimal target sampling. Moreover, similar to their peripheral projections, the central projections of ANFs show a gradient of development along the tonotopic axis, with outgrowth and branching of prospective high-frequency ANFs initiated about two days earlier than those of prospective low-frequency ANFs. The processes of synaptogenesis are similar between high- and low-frequency ANFs, but a higher proportion of low-frequency ANFs form smaller endbulb synaptic endings. These observations reveal the diversity of cellular mechanisms that auditory neurons that will become functionally distinct use to innervate their targets during tonotopic map formation.
Collapse
Affiliation(s)
- Jennifer L Scheffel
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Samiha S Mohammed
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Chloe K Borcean
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Annie J Parng
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Hyun Ju Yoon
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Darwin A Gutierrez
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Wei-Ming Yu
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States.
| |
Collapse
|
28
|
Qiu J, Singh P, Pan G, de Paolis A, Champagne FA, Liu J, Cardoso L, Rodríguez-Contreras A. Defining the relationship between maternal care behavior and sensory development in Wistar rats: Auditory periphery development, eye opening and brain gene expression. PLoS One 2020; 15:e0237933. [PMID: 32822407 PMCID: PMC7442246 DOI: 10.1371/journal.pone.0237933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Defining the relationship between maternal care, sensory development and brain gene expression in neonates is important to understand the impact of environmental challenges during sensitive periods in early life. In this study, we used a selection approach to test the hypothesis that variation in maternal licking and grooming (LG) during the first week of life influences sensory development in Wistar rat pups. We tracked the onset of the auditory brainstem response (ABR), the timing of eye opening (EO), middle ear development with micro-CT X-ray tomography, and used qRT-PCR to monitor changes in gene expression of the hypoxia-sensitive pathway and neurotrophin signaling in pups reared by low-LG or high-LG dams. The results show the first evidence that the transcription of genes involved in the hypoxia-sensitive pathway and neurotrophin signaling is regulated during separate sensitive periods that occur before and after hearing onset, respectively. Although the timing of ABR onset, EO, and the relative mRNA levels of genes involved in the hypoxia-sensitive pathway did not differ between pups from different LG groups, we found statistically significant increases in the relative mRNA levels of four genes involved in neurotrophin signaling in auditory brain regions from pups of different LG backgrounds. These results suggest that sensitivity to hypoxic challenge might be widespread in the auditory system of neonate rats before hearing onset, and that maternal LG may affect the transcription of genes involved in experience-dependent neuroplasticity.
Collapse
Affiliation(s)
- Jingyun Qiu
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
| | - Preethi Singh
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
| | - Geng Pan
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
| | - Annalisa de Paolis
- Department of Biomedical Engineering, City College, City University of New York, New York, New York, United States of America
| | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, New York, United States of America
| | - Luis Cardoso
- Department of Biomedical Engineering, City College, City University of New York, New York, New York, United States of America
| | - Adrián Rodríguez-Contreras
- Department of Biology and Center for Discovery and Innovation, City College, City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Blakley BW, Seaman M, Alenezi A. Brain-derived nerve growth factor in the cochlea - a reproducibility study. J Otolaryngol Head Neck Surg 2020; 49:37. [PMID: 32503640 PMCID: PMC7275362 DOI: 10.1186/s40463-020-00432-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/24/2020] [Indexed: 11/14/2022] Open
Abstract
Objective Brain-derived nerve growth factor (BDNF) plays an important role in cochlear development so it is plausible that it could restore hearing loss if delivered directly into the cochlea. We wished to confirm our previous report that a single intracochlear injection of brain-derived nerve growth factor (BDNF) was beneficial for hearing in guinea pigs. We wished to assess the reproducibility of our results and assess possible improved methods with a view to developing a clinical treatment for sensorineural hearing loss. Methods CDDP was used to create partial hearing loss in 25 guinea pigs. After 30 days the animals underwent ABR testing and unilateral BDNF injection through the round window in one ear and saline injection into the other ear. After allowing possible effects to stabilize, thirty days later, ABR threshold testing was repeated to assess change in threshold. Results Final ABR thresholds were 60–70 dB and were about 11 dB better in the ears treated with BDNF. Conclusion Our original finding that Intracochlear BDNF can improve hearing in guinea pigs was confirmed, but the improvement demonstrated by the methods in this paper is too small for clinical application.
Collapse
Affiliation(s)
- Brian W Blakley
- Department of Otolaryngology, University of Manitoba, Winnipeg, Manitoba, R3A 1R9, Canada.
| | - Michael Seaman
- Department of Otolaryngology, University of Manitoba, Winnipeg, Manitoba, R3A 1R9, Canada
| | - Abdulrahman Alenezi
- Department of Otolaryngology, University of Manitoba, Winnipeg, Manitoba, R3A 1R9, Canada
| |
Collapse
|
30
|
Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020; 397:107976. [PMID: 32591097 PMCID: PMC8546402 DOI: 10.1016/j.heares.2020.107976] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment. During CPs, brain plasticity is enhanced and sensitive to acoustic experience. Enhanced plasticity can be reinstated in the adult brain following hearing loss. Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity. Plasticity resulting from hearing loss may contribute to the emergence of tinnitus. Modifying plasticity in the adult brain may offer new treatments for tinnitus.
Collapse
Affiliation(s)
- Dora Persic
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Vassilis Pelekanos
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Katrin Krumbholz
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
31
|
Marchetta P, Möhrle D, Eckert P, Reimann K, Wolter S, Tolone A, Lang I, Wolters M, Feil R, Engel J, Paquet-Durand F, Kuhn M, Knipper M, Rüttiger L. Guanylyl Cyclase A/cGMP Signaling Slows Hidden, Age- and Acoustic Trauma-Induced Hearing Loss. Front Aging Neurosci 2020; 12:83. [PMID: 32327991 PMCID: PMC7160671 DOI: 10.3389/fnagi.2020.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/10/2020] [Indexed: 12/24/2022] Open
Abstract
In the inner ear, cyclic guanosine monophosphate (cGMP) signaling has been described as facilitating otoprotection, which was previously observed through elevated cGMP levels achieved by phosphodiesterase 5 inhibition. However, to date, the upstream guanylyl cyclase (GC) subtype eliciting cGMP production is unknown. Here, we show that mice with a genetic disruption of the gene encoding the cGMP generator GC-A, the receptor for atrial and B-type natriuretic peptides, display a greater vulnerability of hair cells to hidden hearing loss and noise- and age-dependent hearing loss. This vulnerability was associated with GC-A expression in spiral ganglia and outer hair cells (OHCs) but not in inner hair cells (IHCs). GC-A knockout mice exhibited elevated hearing thresholds, most pronounced for the detection of high-frequency tones. Deficits in OHC input–output functions in high-frequency regions were already present in young GC-A-deficient mice, with no signs of an accelerated progression of age-related hearing loss or higher vulnerability to acoustic trauma. OHCs in these frequency regions in young GC-A knockout mice exhibited diminished levels of KCNQ4 expression, which is the dominant K+ channel in OHCs, and decreased activation of poly (ADP-ribose) polymerase-1, an enzyme involved in DNA repair. Further, GC-A knockout mice had IHC synapse impairments and reduced amplitudes of auditory brainstem responses that progressed with age and with acoustic trauma, in contrast to OHCs, when compared to GC-A wild-type littermates. We conclude that GC-A/cGMP-dependent signaling pathways have otoprotective functions and GC-A gene disruption differentially contributes to hair-cell damage in a healthy, aged, or injured system. Thus, augmentation of natriuretic peptide GC-A signaling likely has potential to overcome hidden and noise-induced hearing loss, as well as presbycusis.
Collapse
Affiliation(s)
- Philine Marchetta
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Dorit Möhrle
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Philipp Eckert
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Katrin Reimann
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Steffen Wolter
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Arianna Tolone
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Isabelle Lang
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Hearing Research, Saarland University, Homburg, Germany
| | - Markus Wolters
- Signal Transduction and Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Signal Transduction and Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Hearing Research, Saarland University, Homburg, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Kathpalia P, Nag TC, Chattopadhyay P, Sharma A, Bhat MA, Roy TS, Wadhwa S. In ovo Sound Stimulation Mediated Regulation of BDNF in the Auditory Cortex and Hippocampus of Neonatal Chicks. Neuroscience 2019; 408:293-307. [PMID: 31026564 DOI: 10.1016/j.neuroscience.2019.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/15/2019] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is known to mediate activity-dependent changes in the developing auditory system. Its expression in the brainstem auditory nuclei, auditory cortex and hippocampus of neonatal chicks (Gallus gallus domesticus) in response to in ovo high intensity sound exposure at 110 dB (arrhythmic sound: recorded traffic noise, 30-3000 Hz with peak at 2700 Hz, rhythmic sound: sitar music, 100-4000 Hz) was examined to understand the previously reported altered volume and neuronal number in these regions. In the brainstem auditory nuclei, no mature BDNF, but proBDNF at the protein level was detected, and no change in its levels was observed after in ovo sound stimulation (music and noise). Increased ProBDNF protein levels were found in the auditory cortex in response to arrhythmic sound, along with decreased levels of one of the BDNF mRNA transcripts, in response to both rhythmic and arrhythmic sound stimulation. In the hippocampus, increased levels of mature BDNF were found in response to music. Expression microarray analysis was performed to understand changes in gene expression in the hippocampus in response to music and noise, followed by gene ontology analysis showing enrichment of probable signaling pathways. Differentially expressed genes like CAMK1 and STAT1 were found to be involved in downstream signaling on comparing music versus noise-exposed chicks. In conclusion, we report that BDNF is differentially regulated in the auditory cortex at the transcriptional and post-translational level, and in the hippocampus at the post-translational level in response to in ovo sound stimulation.
Collapse
Affiliation(s)
- Poorti Kathpalia
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | | | - Arundhati Sharma
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Muzaffer Ahmed Bhat
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India; Department of Anatomy, North Delhi Municipal Medical College, New Delhi, India
| |
Collapse
|
33
|
de Vries I, Schmitt H, Lenarz T, Prenzler N, Alvi S, Staecker H, Durisin M, Warnecke A. Detection of BDNF-Related Proteins in Human Perilymph in Patients With Hearing Loss. Front Neurosci 2019; 13:214. [PMID: 30971872 PMCID: PMC6445295 DOI: 10.3389/fnins.2019.00214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/25/2019] [Indexed: 12/05/2022] Open
Abstract
The outcome of cochlear implantation depends on multiple variables including the underlying health of the cochlea. Brain derived neurotrophic factor (BDNF) has been shown to support spiral ganglion neurons and to improve implant function in animal models. Whether endogenous BDNF or BDNF-regulated proteins can be used as biomarkers to predict cochlear health and implant outcome has not been investigated yet. Gene expression of BDNF and downstream signaling molecules were identified in tissue of human cochleae obtained from normal hearing patients (n = 3) during skull base surgeries. Based on the gene expression data, bioinformatic analysis was utilized to predict the regulation of proteins by BDNF. The presence of proteins corresponding to these genes was investigated in perilymph (n = 41) obtained from hearing-impaired patients (n = 38) during cochlear implantation or skull base surgery for removal of vestibular schwannoma by nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). Analyzed by mass spectrometry were 41 perilymph samples despite three patients undergoing bilateral cochlear implantation. These particular BDNF regulated proteins were not detectable in any of the perilymph samples. Subsequently, targeted analysis of the perilymph proteome data with Ingenuity Pathway Analysis (IPA) identified further proteins in human perilymph that could be regulated by BDNF. These BDNF regulated proteins were correlated to the presence of residual hearing (RH) prior to implantation and to the performance data with the cochlear implant after 1 year. There was overall a decreased level of expression of BDNF-regulated proteins in profoundly hearing-impaired patients compared to patients with some RH. Phospholipid transfer protein was positively correlated to the preoperative hearing level of the patients. Our data show that combination of gene expression arrays and bioinformatic analysis can aid in the prediction of downstream signaling proteins related to the BDNF pathway. Proteomic analysis of perilymph may help to identify the presence or absence of these molecules in the diseased organ. The impact of such prediction algorithms on diagnosis and treatment needs to be established in further studies.
Collapse
Affiliation(s)
- Ines de Vries
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Heike Schmitt
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover Medical School, Hanover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover Medical School, Hanover, Germany
| | - Nils Prenzler
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Sameer Alvi
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, MO, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, MO, United States
| | - Martin Durisin
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence Hearing4all, German Research Foundation, Hannover Medical School, Hanover, Germany
| |
Collapse
|
34
|
Beckers L, Geric I, Stroobants S, Beel S, Van Damme P, D'Hooge R, Baes M. Microglia lacking a peroxisomal β-oxidation enzyme chronically alter their inflammatory profile without evoking neuronal and behavioral deficits. J Neuroinflammation 2019; 16:61. [PMID: 30866963 PMCID: PMC6417251 DOI: 10.1186/s12974-019-1442-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Microglia play a central role in most neurological disorders, but the impact of microgliosis on brain environment and clinical functions is not fully understood. Mice lacking multifunctional protein-2 (MFP2), a pivotal enzyme in peroxisomal β-oxidation, develop a fatal disorder characterized by motor problems similar to the milder form of MFP2 deficiency in humans. The hallmark of disease in mice is the chronic proliferation of microglia in the brain, but molecular pathomechanisms that drive rapid clinical deterioration in human and mice remain unknown. In the present study, we identified the effects of specific deletion of MFP2 from microglia in the brain on immune responses, neuronal functioning, and behavior. Methods We created a novel Cx3cr1-Mfp2−/− mouse model and studied the impact of MFP2 deficiency on microglial behavior at different ages using immunohistochemistry and real-time PCR. Pro- and anti-inflammatory responses of Mfp2−/− microglia were assessed in vitro and in vivo after stimulation with IL-1β/INFγ and IL-4 (in vitro) and LPS and IL-4 (in vivo). Facial nerve axotomy was unilaterally performed in Cx3cr1-Mfp2−/− and control mice, and microglial functioning in response to neuronal injury was subsequently analyzed by histology and real-time PCR. Finally, neuronal function, motor function, behavior, and cognition were assessed using brainstem auditory evoked potentials, grip strength and inverted grid test, open field exploration, and passive avoidance learning, respectively. Results We found that Mfp2−/− microglia in a genetically intact brain environment adopt an inflammatory activated and proliferative state. In addition, we found that acute inflammatory and neuronal injury provoked normal responses of Mfp2−/− microglia in Cx3cr1-Mfp2−/− mice during the post-injury period. Despite chronic pro-inflammatory microglial reactivity, Cx3cr1-Mfp2−/− mice exhibited normal neuronal transmission, clinical performance, and cognition. Conclusion Our data demonstrate that MFP2 deficiency in microglia causes intrinsic dysregulation of their inflammatory profile, which is not harmful to neuronal function, motor function, and cognition in mice during their first year of life. Electronic supplementary material The online version of this article (10.1186/s12974-019-1442-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lien Beckers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium.,Present Address: Center for Translational and Computational Neuro-immunology, Department of Neurology, Columbia University Medical Center, New York City, NY, USA
| | - Ivana Geric
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium
| | - Stijn Stroobants
- Faculty of Psychology and Educational Sciences, Biological Psychology Unit, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
| | - Sander Beel
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven - University of Leuven, Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven - University of Leuven, Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium.,Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Rudi D'Hooge
- Faculty of Psychology and Educational Sciences, Biological Psychology Unit, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
35
|
Paulsen AJ, Cruickshanks KJ, Pinto A, Schubert CR, Dalton DS, Fischer ME, Klein BEK, Klein R, Tsai MY, Tweed TS. Neuroprotective factors and incident hearing impairment in the epidemiology of hearing loss study. Laryngoscope 2019; 129:2178-2183. [PMID: 30698838 DOI: 10.1002/lary.27847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Hearing impairment (HI) is common in aging adults. Aldosterone, insulin-like growth factor (IGF1), and brain-derived neurotrophic factor (BDNF) have been identified as potentially protective of hearing. The present study aims to investigate these relationships. METHODS The Epidemiology of Hearing Loss Study is a longitudinal population-based study of aging in Beaver Dam, Wisconsin, that began in 1993. Baseline for the present investigation is the 1998 to 2000 phase. Follow-up exams occurred approximately every 5 years, with the most recent occurring from 2013 to 2016. Hearing was measured by pure-tone audiometry. HI was defined as a pure tone average (PTA) > 25 decibels hearing level in either ear. Change in PTA was the difference between follow-up examinations and baseline. Baseline serum samples were used to measure biomarkers in 2017. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated to assess the effect of biomarker levels in the lowest quintile (Q1) versus the highest (Q5) on incident HI and PTA change. RESULTS There were 1,088 participants (69.3% women) at risk of HI included in analyses. The mean baseline age was 63.8 years (standard deviation = 7.0). The 16-year incidence of HI was 54.9% and was higher in men (61.1%) than women (52.1%). In age- and sex-adjusted models, aldosterone (HR = 1.06, 95% CI = 0.82-1.37), IGF1 (HR = 0.92, 95% CI = 0.71-1.19), and BDNF (HR = 0.86, 95% CI = 0.66-1.12) levels were not associated with risk of HI. PTA change was similarly not affected by biomarker levels. CONCLUSION Aldosterone, IGF1, and BDNF were not associated with decreased risk of age-related hearing loss in this study. LEVEL OF EVIDENCE 2b Laryngoscope, 129:2178-2183, 2019.
Collapse
Affiliation(s)
- Adam J Paulsen
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Karen J Cruickshanks
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alex Pinto
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carla R Schubert
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dayna S Dalton
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mary E Fischer
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Barbara E K Klein
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School-Minneapolis, Minneapolis, Minnesota, U.S.A
| | - Ted S Tweed
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
36
|
Gao S, Chen S, Chen L, Zhao Y, Sun L, Cao M, Huang Y, Niu Q, Wang F, Yuan C, Li C, Zhou X. Brain-derived neurotrophic factor: A steroidogenic regulator of Leydig cells. J Cell Physiol 2019; 234:14058-14067. [PMID: 30628054 DOI: 10.1002/jcp.28095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) was first recognized for its roles in the peripheral and central nervous systems, and its complex functions on mammalian organs have been extended constantly. However, to date, little is known about its effects on the male reproductive system, including the steroidogenesis of mammals. The purpose of this study was to elucidate the effects of BDNF on testosterone generation of Leydig cells and the underlying mechanisms. We found that BDNF-induced proliferation of TM3 Leydig cells via upregulation of proliferating cell nuclear antigen ( Pcna) and promoted testosterone generation as a result of upregulation of steroidogenic acute regulatory protein ( Star), 3b-hydroxysteroid dehydrogenase ( Hsd3b1), and cytochrome P450 side-chain cleavage enzyme ( Cyp11a1) both in primary Leydig cells and TM3 Leydig cells, which were all attenuated in Bdnf knockdown TM3 Leydig cells. Furthermore, the possible mechanism of testosterone synthesis was explored in TM3 Leydig cells. The results showed that BDNF enhanced extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation, and the effect was disrupted by Bdnf deletion. Moreover, PD98059, a potent selective inhibitor of ERK1/2 activation, compromised BDNF-induced testosterone generation and upregulation of Star, Hsd3b1, and Cyp11a1. The Bdnf knockdown assay, on the other hand, indicated the autocrine effect of BDNF on steroidogenesis in TM3 Leydig cells. On the basis of these results, we concluded that BDNF, acting as an autocrine factor, induced testosterone generation as a result of the upregulation of Star, Hsd3b1, and Cyp11a1 via stimulation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Shan Gao
- College of Animal Science, Jilin University, Changchun, China
| | - Shuxiong Chen
- College of Animal Science, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Science, Jilin University, Changchun, China
| | - Yun Zhao
- College of Animal Science, Jilin University, Changchun, China
| | - Liting Sun
- College of Animal Science, Jilin University, Changchun, China
| | - Maosheng Cao
- College of Animal Science, Jilin University, Changchun, China
| | - Yuwen Huang
- College of Animal Science, Jilin University, Changchun, China
| | - Qiaoge Niu
- College of Animal Science, Jilin University, Changchun, China
| | - Fengge Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Chenfeng Yuan
- College of Animal Science, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Science, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
37
|
Liu DW, Ma L, Zhang XH, Wang YY. Conditioned taste aversion memory extinction temporally induces insular cortical BDNF release and inhibits neuronal apoptosis. Neuropsychiatr Dis Treat 2019; 15:2403-2414. [PMID: 31933521 PMCID: PMC6709797 DOI: 10.2147/ndt.s215289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Memory extinction has been reported to be related to psychiatric disorders, such as post-traumatic stress disorder (PTSD). Secretion and synthesis of brain-derived neurotrophic factor (BDNF) have been shown to temporally regulate various memory processes via activation of tropomyosin-related kinase B (TrkB) receptors. However, whether memory extinction induces the synthesis and secretion of BDNF on the basis of its localization is not understood. In this study, we aim to investigate activity-dependent BDNF secretion and synthesis in the insular cortex (IC) in the setting of conditioned taste aversion (CTA) memory extinction. MATERIALS AND METHODS Rats were subjected to CTA memory extinction and BDNF antibody (or the equal volume of vehicle) was microinjected into the IC immediately after the extinction testing. Real-time polymerase chain reaction and in situ hybridization were used to detect the gene expression of BDNF, NGF and NT4. The protein levels of BDNF were determined through the enzyme-linked immunosorbent assay. In addition, the levels of phosphorylated TrkB normalized to total TrkB were evaluated using immunoprecipitation and immunoblotting. c-Fos, total extracellular signal-regulated kinase (Erk), phosphorylated Erk, and apoptosis-related protein (caspase-3), were detected by Western blotting. RESULTS We found that blocking BDNF signaling within the IC disrupts CTA extinction, suggesting that BDNF signaling in the IC is necessary for CTA extinction. Increased expression levels of c-Fos indicate the induced neuronal activity in the IC during CTA extinction. In addition, temporal changes in the gene expression and protein levels of BDNF in the IC were noted during extinction. Moreover, we found that phosphorylation of TrkB increased prior to the enhanced BDNF expression, suggesting that CTA extinction induces rapid activity-dependent BDNF secretion in the IC. Finally, we found decreased expression of caspase-3 in the IC after CTA extinction. CONCLUSION These results demonstrate that CTA memory extinction temporally induces the release and synthesis of BDNF in the IC and inhibits neuronal apoptosis.
Collapse
Affiliation(s)
- Dian-Wei Liu
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Ling Ma
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Xu-Hua Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Yun-Yan Wang
- Department of Neurosurgery, QiLu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
38
|
Fourneau J, Canu MH, Cieniewski-Bernard C, Bastide B, Dupont E. Synaptic protein changes after a chronic period of sensorimotor perturbation in adult rats: a potential role of phosphorylation/O-GlcNAcylation interplay. J Neurochem 2018; 147:240-255. [DOI: 10.1111/jnc.14474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Julie Fourneau
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| | - Marie-Hélène Canu
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| | | | - Bruno Bastide
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| | - Erwan Dupont
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| |
Collapse
|
39
|
Beckers L, Stroobants S, D'Hooge R, Baes M. Neuronal Dysfunction and Behavioral Abnormalities Are Evoked by Neural Cells and Aggravated by Inflammatory Microglia in Peroxisomal β-Oxidation Deficiency. Front Cell Neurosci 2018; 12:136. [PMID: 29892213 PMCID: PMC5975114 DOI: 10.3389/fncel.2018.00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/02/2018] [Indexed: 01/22/2023] Open
Abstract
It is becoming evident that microglia, the resident immune cells of the central nervous system (CNS), are active contributors in neurological disorders. Nevertheless, the impact of microgliosis on neuropathology, behavior and clinical decline in neuropathological conditions remains elusive. A mouse model lacking multifunctional protein-2 (MFP2), a pivotal enzyme in peroxisomal β-oxidation, develops a fatal disorder characterized by motor problems similar to the milder form of human disease. The molecular mechanisms underlying neurological decline in men and mice remain unknown. The hallmark of disease in the mouse model is chronic proliferation of microglia in the brain without provoking neuronal loss or demyelination. In order to define the contribution of Mfp2-/- neural cells to development of microgliosis and clinical neuropathology, the constitutive Mfp2-/- mouse model was compared to a neural selective Nestin-Mfp2-/- mouse model. We demonstrate in this study that, in contrast to early-onset and severe microgliosis in constitutive Mfp2-/- mice, Mfp2+/+ microglia in Nestin-Mfp2-/- mice only become mildly inflammatory at end stage of disease. Mfp2-/- microglia are primed and acquire a chronic and strong inflammatory state in Mfp2-/- mice whereas Mfp2+/+ microglia in Nestin-Mfp2-/- mice are not primed and adopt a minimal activation state. The inflammatory microglial phenotype in Mfp2-/- mice is correlated with more severe neuronal dysfunction, faster clinical deterioration and reduced life span compared to Nestin-Mfp2-/- mice. Taken together, our study shows that deletion of MFP2 impairs behavior and locomotion. Clinical decline and neural pathology is aggravated by an early-onset and excessive microglial response in Mfp2-/- mice and strongly indicates a cell-autonomous role of MFP2 in microglia.
Collapse
Affiliation(s)
- Lien Beckers
- Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Stijn Stroobants
- Department of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Rudi D'Hooge
- Department of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Myriam Baes
- Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Alemi R, Motassadi Zarandy M, Joghataei MT, Eftekharian A, Zarrindast MR, Vousooghi N. Plasticity after pediatric cochlear implantation: Implication from changes in peripheral plasma level of BDNF and auditory nerve responses. Int J Pediatr Otorhinolaryngol 2018; 105:103-110. [PMID: 29447794 DOI: 10.1016/j.ijporl.2017.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Sensory neural hearing loss could lead to some structural and physiological changes in the auditory pathways, such as alteration in the expression of neurotrophins. These factors, especially Brain-Derived Neurotrophic Factor (BDNF), play an important role in synaptic functions and experience-related plasticity. Restoring cochlear function after hearing loss is possible through cochlear implantation (CI). Evaluation of the blood concentration changes of neurotrophins as prerequisites of plasticity could help scientists to determine the prognosis of CI as in the candidacy procedure or enhancing prosthesis function by adding the exact needed amount of BDNF to the electrode array. METHODS Here we have studied the plasma BDNF concentration before CI surgery and 6 months after using CI device in 15 pediatric CI recipients and compared this level with changes of BDNF concentration in 10 children who were using hearing aid (H.A). In addition, we searched for a possible correlation between post-surgery plasma BDNF concentration and electrical compound action potential (ECAP) and comfort-level (C-level) thresholds. RESULTS Plasma BDNF concentration in children with CI increased significantly after CI surgery, while this difference in H.A group was not significant. Analysis of repeated measures of ECAP and C-level thresholds in CI group showed that there were some kinds of steadiness during follow- up sessions for ECAP thresholds in basal and E16 of middle electrodes, whereas C-level thresholds for all selected electrodes increased significantly up to six months follow-up. Interestingly, we did not find any significant correlation between post-surgery plasma BDNF concentration and ECAP or C-level threshold changes. CONCLUSION It is concluded that changes in C-level threshold and steady state of ECAP thresholds and significant changes in BDNF concentration could be regarded as an indicator of experienced-related plasticity after CI stimulation.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cochlear Implant Center and Department of Otorhinolaryngology, Amir Aalam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Motassadi Zarandy
- Cochlear Implant Center and Department of Otorhinolaryngology, Amir Aalam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Eftekharian
- Department of Otorhinolaryngology, Loghman Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran; Genomic Center, School of Advanced Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Basinou V, Park JS, Cederroth CR, Canlon B. Circadian regulation of auditory function. Hear Res 2017; 347:47-55. [PMID: 27665709 PMCID: PMC5364078 DOI: 10.1016/j.heares.2016.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
The circadian system integrates environmental cues to regulate physiological functions in a temporal fashion. The suprachiasmatic nucleus, located in the hypothalamus, is the master clock that synchronizes central and peripheral organ clocks to orchestrate physiological functions. Recently, molecular clock machinery has been identified in the cochlea unravelling the potential involvement in the circadian regulation of auditory functions. Here, we present background information on the circadian system and review the recent findings that introduce circadian rhythms to the auditory field. Understanding the mechanisms by which circadian rhythms regulate auditory function will provide fundamental knowledge on the signalling networks that control vulnerability and resilience to auditory insults.
Collapse
Affiliation(s)
- Vasiliki Basinou
- Department of Physiology and Pharmacology, Laboratory of Experimental Audiology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jung-Sub Park
- Department of Physiology and Pharmacology, Laboratory of Experimental Audiology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Otolaryngology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Christopher R Cederroth
- Department of Physiology and Pharmacology, Laboratory of Experimental Audiology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Laboratory of Experimental Audiology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
42
|
Wang Y, Xu O, Liu Y, Lu H. Auditory deprivation modifies the expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the rat auditory cortex. J Otol 2017; 12:34-40. [PMID: 29937835 PMCID: PMC6011803 DOI: 10.1016/j.joto.2017.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
The development and plasticity of central auditory system can be influenced by the change of peripheral neuronal activity. However, the molecular mechanism participating in the process remains elusive. Brain-derived neurotrophic factor (BDNF) binding with its functional receptor tropomyosin receptor kinase B (TrkB) has multiple effects on neurons. Here we used a rat model of auditory deprivation by bilateral cochlear ablation, to investigate the changes in expression of BDNF and TrkB in the auditory cortex after auditory deprivation that occurred during the critical period for the development of central auditory system. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry methods were adopted to detect the mRNA and protein expression levels of BDNF and TrkB in the auditory cortex at 2, 4, 6 and 8 weeks after surgery, respectively. The change in the expression of BDNF and TrkB mRNAs and proteins followed similar trend. In the bilateral cochlear ablation groups, the BDNF-TrkB expression level initially decreased at 2 weeks but increased at 4 weeks followed by the reduction at 6 and 8 weeks after cochlear removal, as compared to the age-matched sham control groups. In conclusion, the BDNF-TrkB signaling is involved in the plasticity of auditory cortex in an activity-dependent manner.
Collapse
Affiliation(s)
- Yuxing Wang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Ou Xu
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yanxing Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Hong Lu
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| |
Collapse
|
43
|
Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation. Neural Plast 2016; 2016:2523458. [PMID: 28119785 PMCID: PMC5227174 DOI: 10.1155/2016/2523458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 01/29/2023] Open
Abstract
Hair cells (HCs) are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.
Collapse
|
44
|
Effects of brain-derived neurotrophic factor (BDNF) on the cochlear nucleus in cats deafened as neonates. Hear Res 2016; 342:134-143. [PMID: 27773647 DOI: 10.1016/j.heares.2016.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/23/2016] [Accepted: 10/15/2016] [Indexed: 01/11/2023]
Abstract
Many previous studies have shown significant neurotrophic effects of intracochlear delivery of BDNF in preventing degeneration of cochlear spiral ganglion (SG) neurons after deafness in rodents and our laboratory has shown similar results in developing cats deafened prior to hearing onset. This study examined the morphology of the cochlear nucleus (CN) in a group of neonatally deafened cats from a previous study in which infusion of BDNF elicited a significant improvement in survival of the SG neurons. Five cats were deafened by systemic injections of neomycin sulfate (60 mg/kg, SQ, SID) starting one day after birth, and continuing for 16-18 days until auditory brainstem response (ABR) testing demonstrated profound bilateral hearing loss. The animals were implanted unilaterally at about 1 month of age using custom-designed electrodes with a drug-delivery cannula connected to an osmotic pump. BDNF (94 μg/ml; 0.25 μl/hr) was delivered for 10 weeks. The animals were euthanized and studied at 14-23 weeks of age. Consistent with the neurotrophic effects of BDNF on SG survival, the total CN volume in these animals was significantly larger on the BDNF-treated side than on the contralateral side. However, total CN volume, both ipsi- and contralateral to the implants in these deafened juvenile animals, was markedly smaller than the CN in normal adult animals, reflecting the severe effects of deafness on the central auditory system during development. Data from the individual major CN subdivisions (DCN, Dorsal Cochlear Nucleus; PVCN, Posteroventral Cochlear Nucleus; AVCN, Anteroventral Cochlear Nucleus) also were analyzed. A significant difference was observed between the BDNF-treated and control sides only in the AVCN. Measurements of the cross-sectional areas of spherical cells showed that cells were significantly larger in the AVCN ipsilateral to the implant than on the contralateral side. Further, the numerical density of spherical cells was significantly lower in the AVCN ipsilateral to the implant than on the contralateral side, consistent with the larger AVCN volume observed with BDNF treatment. Together, findings indicate significant neurotrophic effects of intracochlear BDNF infusion on the developing CN.
Collapse
|
45
|
Effect of repetitive transcranial magnetic stimulation on auditory function following acoustic trauma. Neurol Sci 2016; 37:1511-6. [DOI: 10.1007/s10072-016-2603-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023]
|
46
|
Xiong H, Yang H, Liang M, Ou Y, Huang X, Cai Y, Lai L, Pang J, Zheng Y. Plasma brain-derived neurotrophic factor levels are increased in patients with tinnitus and correlated with therapeutic effects. Neurosci Lett 2016; 622:15-8. [PMID: 27095590 DOI: 10.1016/j.neulet.2016.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 03/20/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023]
Abstract
Tinnitus is the perception of sound without an external source and is known to be associated with altered neuronal excitability in the auditory system. Tinnitus severity can be assessed by various psychometric instruments and there is no objective measures developed to evaluate tinnitus severity and therapeutic effects so far. Brain-derived nerve growth factor (BDNF) is believed in playing a key role in regulating neuronal excitability in the brain. To determine whether BDNF correlates with tinnitus induction and severity, we described plasma BDNF levels in patients with tinnitus and healthy controls and evaluated the correlation between plasma BDNF levels and tinnitus severity measured by Tinnitus Handicap Inventory (THI) and Visual Analog Scale (VAS). Moreover, alteration of plasma BDNF levels before and after tinnitus retraining therapy (TRT) in patients with severe tinnitus was also analyzed. We found plasma BDNF levels were elevated in patients with tinnitus compared with healthy controls. In addition, plasma BDNF levels in patients with severe tinnitus were decreased significantly after effective TRT. However, plasma BDNF levels were not correlated with tinnitus loudness and tinnitus severity measured by THI and VAS. These findings support plasma BDNF as a marker for activity changes in the auditory system and could possibly evaluate therapeutic effects in patients with tinnitus.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Maojin Liang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Yongkang Ou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Xiayin Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Lan Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China.
| |
Collapse
|
47
|
Armbruster D, Müller-Alcazar A, Strobel A, Lesch KP, Kirschbaum C, Brocke B. BDNF val(66)met genotype shows distinct associations with the acoustic startle reflex and the cortisol stress response in young adults and children. Psychoneuroendocrinology 2016; 66:39-46. [PMID: 26773399 DOI: 10.1016/j.psyneuen.2015.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/28/2022]
Abstract
Brain Derived Neurotrophic Factor (BDNF) is a crucial regulator of neuronal development, organization and function and the val(66)met polymorphism in the BDNF gene has been associated with several (endo-) phenotypes of cognitive and affective processing. The BDNF met allele is considered a risk factor for anxiety and fear related phenotypes although findings are not entirely consistent. Here, the impact of BDNF val(66)met on two parameters of anxiety and stress was investigated in a series of studies. Acoustic startle responses were assessed in three adult samples (N1=117, N2=104, N3=116) as well as a children sample (N4=123). Cortisol increase in response to the Trier Social Stress Test (TSST) was measured in one adult sample (N3) and in the children sample (N4). The BDNF met allele was associated with enhanced cortisol responses in young adults (p=0.039) and children (p=0.013). On the contrary, BDNF met allele carriers showed a reduced acoustic startle response which reached significance in most samples (N1: p=0.004; N2: p=0.045; N3: n.s., N4: p=0.043) pointing to differential effects of BDNF val(66)met on distinct endophenotypes of anxiety and stress-related responses. However, small effect sizes suggest substantial additional genetic as well as environmental contributors.
Collapse
Affiliation(s)
- Diana Armbruster
- Institute of Psychology II, Technische Universität Dresden, Dresden, Germany.
| | - Anett Müller-Alcazar
- MSH Medical School Hamburg, University of Applied Science and Medical University, Hamburg, Germany
| | - Alexander Strobel
- Institute of Psychology II, Technische Universität Dresden, Dresden, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neurobiology, Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Clemens Kirschbaum
- Institute of Psychology I, Technische Universität Dresden, Dresden, Germany
| | - Burkhard Brocke
- Institute of Psychology II, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
48
|
Singer W, Geisler HS, Panford-Walsh R, Knipper M. Detection of Excitatory and Inhibitory Synapses in the Auditory System Using Fluorescence Immunohistochemistry and High-Resolution Fluorescence Microscopy. Methods Mol Biol 2016; 1427:263-76. [PMID: 27259932 DOI: 10.1007/978-1-4939-3615-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In sensory systems, a balanced excitatory and inhibitory circuit along the ascending pathway is not only important for the establishment of topographically ordered connections from the periphery to the cortex but also for temporal precision of signal processing. The accomplishment of spatial and temporal cortical resolution in the central nervous system is a process that is likely initiated by the first sensory experiences that drive a period of increased intracortical inhibition. In the auditory system, the time of first sensory experience is also the period in which a reorganization of cochlear efferent and afferent fibers occurs leading to the mature innervation of inner and outer hair cells. This mature hair cell innervation is the basis of accurate sound processing along the ascending pathway up to the auditory cortex. We describe here, a protocol for detecting excitatory and inhibitory marker proteins along the ascending auditory pathway, which could be a useful tool for detecting changes in auditory signal processing during various forms of hearing disorders. Our protocol uses fluorescence immunohistochemistry in combination with high-resolution fluorescence microscopy in cochlear and brain tissue.
Collapse
Affiliation(s)
- Wibke Singer
- Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, ENT Clinic, University of Tübingen, Elfriede-Aulhorn-Str. 5, Tübingen, 72076, Germany
| | - Hyun-Soon Geisler
- Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, ENT Clinic, University of Tübingen, Elfriede-Aulhorn-Str. 5, Tübingen, 72076, Germany
| | - Rama Panford-Walsh
- Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, ENT Clinic, University of Tübingen, Elfriede-Aulhorn-Str. 5, Tübingen, 72076, Germany.,DNA Genotek Inc., Ottawa, ON, Canada
| | - Marlies Knipper
- Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, ENT Clinic, University of Tübingen, Elfriede-Aulhorn-Str. 5, Tübingen, 72076, Germany.
| |
Collapse
|
49
|
Chumak T, Rüttiger L, Lee SC, Campanelli D, Zuccotti A, Singer W, Popelář J, Gutsche K, Geisler HS, Schraven SP, Jaumann M, Panford-Walsh R, Hu J, Schimmang T, Zimmermann U, Syka J, Knipper M. BDNF in Lower Brain Parts Modifies Auditory Fiber Activity to Gain Fidelity but Increases the Risk for Generation of Central Noise After Injury. Mol Neurobiol 2015; 53:5607-27. [PMID: 26476841 PMCID: PMC5012152 DOI: 10.1007/s12035-015-9474-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022]
Abstract
For all sensory organs, the establishment of spatial and temporal cortical resolution is assumed to be initiated by the first sensory experience and a BDNF-dependent increase in intracortical inhibition. To address the potential of cortical BDNF for sound processing, we used mice with a conditional deletion of BDNF in which Cre expression was under the control of the Pax2 or TrkC promoter. BDNF deletion profiles between these mice differ in the organ of Corti (BDNFPax2-KO) versus the auditory cortex and hippocampus (BDNFTrkC-KO). We demonstrate that BDNFPax2-KO but not BDNFTrkC-KO mice exhibit reduced sound-evoked suprathreshold ABR waves at the level of the auditory nerve (wave I) and inferior colliculus (IC) (wave IV), indicating that BDNF in lower brain regions but not in the auditory cortex improves sound sensitivity during hearing onset. Extracellular recording of IC neurons of BDNFPax2 mutant mice revealed that the reduced sensitivity of auditory fibers in these mice went hand in hand with elevated thresholds, reduced dynamic range, prolonged latency, and increased inhibitory strength in IC neurons. Reduced parvalbumin-positive contacts were found in the ascending auditory circuit, including the auditory cortex and hippocampus of BDNFPax2-KO, but not of BDNFTrkC-KO mice. Also, BDNFPax2-WT but not BDNFPax2-KO mice did lose basal inhibitory strength in IC neurons after acoustic trauma. These findings suggest that BDNF in the lower parts of the auditory system drives auditory fidelity along the entire ascending pathway up to the cortex by increasing inhibitory strength in behaviorally relevant frequency regions. Fidelity and inhibitory strength can be lost following auditory nerve injury leading to diminished sensory outcome and increased central noise.
Collapse
Affiliation(s)
- Tetyana Chumak
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Lukas Rüttiger
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Sze Chim Lee
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Dario Campanelli
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Annalisa Zuccotti
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany.,Department of Clinical Neurobiology, University Hospital and DKFZ Heidelberg, In Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Wibke Singer
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Jiří Popelář
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Katja Gutsche
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003, Valladolid, Spain
| | - Hyun-Soon Geisler
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Sebastian Philipp Schraven
- Department of Otolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Mirko Jaumann
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | | | - Jing Hu
- Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Straße 25, 72076, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, E-47003, Valladolid, Spain
| | - Ulrike Zimmermann
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Marlies Knipper
- Department of Otolaryngology, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany.
| |
Collapse
|
50
|
Knipper M, Panford-Walsh R, Singer W, Rüttiger L, Zimmermann U. Specific synaptopathies diversify brain responses and hearing disorders: you lose the gain from early life. Cell Tissue Res 2015; 361:77-93. [PMID: 25843689 PMCID: PMC4487345 DOI: 10.1007/s00441-015-2168-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/05/2015] [Indexed: 01/08/2023]
Abstract
Before hearing onset, inner hair cell (IHC) maturation proceeds under the influence of spontaneous Ca(2+) action potentials (APs). The temporal signature of the IHC Ca(2+) AP is modified through an efferent cholinergic feedback from the medial olivocochlear bundle (MOC) and drives the IHC pre- and post-synapse phenotype towards low spontaneous (spike) rate (SR), high-threshold characteristics. With sensory experience, the IHC pre- and post-synapse phenotype matures towards the instruction of low-SR, high-threshold and of high-SR, low-threshold auditory fiber characteristics. Corticosteroid feedback together with local brain-derived nerve growth factor (BDNF) and catecholaminergic neurotransmitters (dopamine) might be essential for this developmental step. In this review, we address the question of whether the control of low-SR and high-SR fiber characteristics is linked to various degrees of vulnerability of auditory fibers in the mature system. In particular, we examine several IHC synaptopathies in the context of various hearing disorders and exemplified shortfalls before and after hearing onset.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | | | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|