1
|
Karcz M, Abd-Elsayed A, Chakravarthy K, Aman MM, Strand N, Malinowski MN, Latif U, Dickerson D, Suvar T, Lubenow T, Peskin E, D’Souza R, Cornidez E, Dudas A, Lam C, Farrell II M, Sim GY, Sebai M, Garcia R, Bracero L, Ibrahim Y, Mahmood SJ, Lawandy M, Jimenez D, Shahgholi L, Sochacki K, Ramadan ME, Tieppo Francio V, Sayed D, Deer T. Pathophysiology of Pain and Mechanisms of Neuromodulation: A Narrative Review (A Neuron Project). J Pain Res 2024; 17:3757-3790. [PMID: 39583192 PMCID: PMC11581984 DOI: 10.2147/jpr.s475351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Pain serves as a vital innate defense mechanism that can significantly impact an individual's quality of life. Understanding the physiological effects of pain well plays an important role in developing novel pain treatments. Nociceptor neurons play a key role in pain and inflammation. Interactions between nociceptors and the immune system occur both at the site of injury and within the central nervous system. Modulating chemical mediators and nociceptor activity offers promising new approaches to pain management. Essentially, the sensory nervous system is essential for modulating the body's protective response, making it critical to understand these interactions to discover new pain treatment strategies. New innovations in neuromodulation have led to alternatives to opioids individuals with chronic pain with consequent improvement in disease-based treatment and nerve targeting. New neural targets from cellular and structural perspectives have revolutionized the field of neuromodulation. This narrative review aims to elucidate the mechanisms of pain transmission and processing, examine the characteristics and properties of nociceptors, and explore how the immune system influences pain perception. It further provides an updated overview of the physiology of pain and neuromodulatory mechanisms essential for managing acute and chronic pain. We assess the current understanding of different pain types, focusing on key molecules involved in each type and their physiological effects. Additionally, we compare painful and painless neuropathies and discuss the neuroimmune interactions involved in pain manifestation.
Collapse
Affiliation(s)
- Marcin Karcz
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | | | - Mansoor M Aman
- Aurora Pain Management, Aurora Health Care, Oshkosh, WI, USA
| | - Natalie Strand
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Mark N Malinowski
- OhioHealth Neurological Physicians, OhioHealth Inc, Columbus, OH, USA
| | - Usman Latif
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - David Dickerson
- Department of Pain Medicine, Northshore University Health System, Skokie, IL, USA
| | - Tolga Suvar
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Timothy Lubenow
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Evan Peskin
- Department of Pain Management, Insight Institute of Neurosurgery & Neuroscience, Flint, MI, USA
| | - Ryan D’Souza
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Andrew Dudas
- Mays and Schnapp Neurospine and Pain, Memphis, TN, USA
| | - Christopher Lam
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael Farrell II
- Department of Pain Management, Erie County Medical Center, Buffalo, NY, USA
| | - Geum Yeon Sim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Mohamad Sebai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosa Garcia
- Department of Physical Medicine & Rehabilitation, Larkin Hospital Health System, Miami, FL, USA
| | - Lucas Bracero
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Yussr Ibrahim
- Department of Pain Management at Northern Light Health – Eastern Maine Medical Center, Bangor, ME, USA
| | - Syed Jafar Mahmood
- Department of Pain Medicine, University of California Davis Health System, Sacramento, CA, USA
| | - Marco Lawandy
- Department of Physical Medicine & Rehabilitation, Montefiore Medical Center, Bronx, NY, USA
| | - Daniel Jimenez
- Department of Physical Medicine & Rehabilitation, Michigan State University, Lansing, MI, USA
| | - Leili Shahgholi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamil Sochacki
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson, New Brunswick, NJ, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vinicius Tieppo Francio
- Division of Pain Medicine, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Dawood Sayed
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy Deer
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| |
Collapse
|
2
|
Rêgo DSB, Calió ML, Filev R, Mello LE, Leslie ATFS. Long-term Effects of Cannabidiol and/or Fentanyl Exposure in Rats Submitted to Neonatal Pain. THE JOURNAL OF PAIN 2024; 25:715-729. [PMID: 37820846 DOI: 10.1016/j.jpain.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The current study aimed to evaluate anxiety behavior, hippocampal ionized calcium-binding adaptor molecule 1 (Iba1) and cannabinoid receptor 1 (CB1) gene expression, and nociceptive response in adulthood after a combination of fentanyl and cannabidiol (CBD) for nociceptive stimuli induced during the first week of life in rats. Complete Freund's adjuvant-induced inflammatory nociceptive insult on postnatal day (PN) 1 and PN3. Both fentanyl and CBD were used alone or in combination from PN1 to PN7. Behavioral and nociceptive tests were performed at PN60 and PN62. The expression of the microglial calcium-binding proteins Iba1 and CB1 was detected in the hippocampus using reverse Quantitative polymerase chain reaction (qPCR) and immunohistochemistry. Our results suggest that the anxiety behavior response and immune activation in adult life depend on the CBD dose combined with fentanyl for the nociceptive stimuli induced during the first week of life. Treatment of neonatal nociceptive insult with CBD and opioids showed significant dose-dependent and male-female differences. The increased gene expression in the hippocampus of the analyzed cannabinoid gene supports this data. In addition, treatment with fentanyl led to an increase in CB1 protein expression. Moreover, the expression of Iba1 varied according to the administered dose of CBD and may or may not be associated with the opioid. A lower dose of CBD during the inflammatory period was associated with enhanced anxiety in adult life. PERSPECTIVE: The treatment of nociceptive stimuli with CBD and opioids during the first week of life demonstrated significant sex differences in adult life on anxiety behavior and supraspinal pain sensitivity.
Collapse
Affiliation(s)
- Débora S B Rêgo
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Michele Longoni Calió
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Renato Filev
- Programa de Orientação e Atendimento a Dependentes (PROAD), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luiz E Mello
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Ana T F S Leslie
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
3
|
Yamakawa W, Yasukochi S, Tsurudome Y, Kusunose N, Yamaguchi Y, Tsuruta A, Matsunaga N, Ushijima K, Koyanagi S, Ohdo S. Suppression of neuropathic pain in the circadian clock-deficient Per2m/m mice involves up-regulation of endocannabinoid system. PNAS NEXUS 2024; 3:pgad482. [PMID: 38239754 PMCID: PMC10794166 DOI: 10.1093/pnasnexus/pgad482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Neuropathic pain often results from injuries and diseases that affect the somatosensory system. Disruption of the circadian clock has been implicated in the exacerbation of the neuropathic pain state. However, in this study, we report that mice deficient in a core clock component Period2 (Per2m/m mice) fail to develop tactile pain hypersensitivity even following peripheral nerve injury. Similar to male wild-type mice, partial sciatic nerve ligation (PSL)-Per2m/m male mice showed activation of glial cells in the dorsal horn of the spinal cord and increased expression of pain-related genes. Interestingly, α1D-adrenergic receptor (α1D-AR) expression was up-regulated in the spinal cord of Per2m/m mice, leading to increased production of 2-arachidonoylglycerol (2-AG), an endocannabinoid receptor ligand. This increase in 2-AG suppressed the PSL-induced tactile pain hypersensitivity. Furthermore, intraspinal dorsal horn injection of adeno-associated viral vectors expressing α1D-AR also attenuated pain hypersensitivity in PSL-wild-type male mice by increasing 2-AG production. Our findings reveal an uncovered role of the circadian clock in neuropathic pain disorders and suggest a link between α1D-AR signaling and the endocannabinoid system.
Collapse
Affiliation(s)
- Wakaba Yamakawa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sai Yasukochi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuya Tsurudome
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, 756-0884, Japan
| | - Naoki Kusunose
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuta Yamaguchi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akito Tsuruta
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kentaro Ushijima
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, 756-0884, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
4
|
Kouchaeknejad A, Van Der Walt G, De Donato MH, Puighermanal E. Imaging and Genetic Tools for the Investigation of the Endocannabinoid System in the CNS. Int J Mol Sci 2023; 24:15829. [PMID: 37958825 PMCID: PMC10648052 DOI: 10.3390/ijms242115829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
As central nervous system (CNS)-related disorders present an increasing cause of global morbidity, mortality, and high pressure on our healthcare system, there is an urgent need for new insights and treatment options. The endocannabinoid system (ECS) is a critical network of endogenous compounds, receptors, and enzymes that contribute to CNS development and regulation. Given its multifaceted involvement in neurobiology and its significance in various CNS disorders, the ECS as a whole is considered a promising therapeutic target. Despite significant advances in our understanding of the ECS's role in the CNS, its complex architecture and extensive crosstalk with other biological systems present challenges for research and clinical advancements. To bridge these knowledge gaps and unlock the full therapeutic potential of ECS interventions in CNS-related disorders, a plethora of molecular-genetic tools have been developed in recent years. Here, we review some of the most impactful tools for investigating the neurological aspects of the ECS. We first provide a brief introduction to the ECS components, including cannabinoid receptors, endocannabinoids, and metabolic enzymes, emphasizing their complexity. This is followed by an exploration of cutting-edge imaging tools and genetic models aimed at elucidating the roles of these principal ECS components. Special emphasis is placed on their relevance in the context of CNS and its associated disorders.
Collapse
Affiliation(s)
| | | | | | - Emma Puighermanal
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (A.K.); (G.V.D.W.); (M.H.D.D.)
| |
Collapse
|
5
|
Salinas-Abarca AB, Martínez-Lorenzana G, Condés-Lara M, González-Hernández A. The role of the endocannabinoid 2-arachidonoylglycerol in the in vivo spinal oxytocin-induced antinociception in male rats. Exp Neurol 2023; 363:114383. [PMID: 36921751 DOI: 10.1016/j.expneurol.2023.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
Oxytocin receptor (OTR) activation at the spinal level produces antinociception. Some data suggest that central OTR activation enhances social interaction via an increase of endocannabinoids (eCB), but we do not know if this could occur at the spinal level, modulating pain transmission. Considering that oxytocin via OTR stimulates diacylglycerol formation, a key intermediate in synthesizing 2-arachidonylglycerol (2-AG), an eCB molecule, we sought to test the role of the eCB system on the spinal oxytocin-induced antinociception. Behavioral and electrophysiological experiments were conducted in naïve and formalin-treated (to induce long-term mechanical hypersensitivity) male Wistar rats. Intrathecal RHC 80267 injections, an inhibitor of the enzyme diacylglycerol lipase (thus, decreasing 2-AG formation), produces transient mechanical hypersensitivity, an effect unaltered by oxytocin but reversed by gabapentin. Similarly, in in vivo extracellular recordings of naïve spinal wide dynamic range cells, juxtacellular picoinjection of RHC 80267 increases the firing of nociceptive Aδ-, C-fibers, and post-discharge, an effect unaltered by oxytocin. Interestingly, in sensitized rats, oxytocin picoinjection reverses the RHC 80627-induced hyperactivity of Aδ-fibers (but not C- or post-discharge activity). In contrast, a sub-effective dose of JZL184 (a monoacylglycerol lipase inhibitor, thus favoring 2-AG levels), which does not have per se an antinociceptive effect in the formalin-induced hypernociception, the oxytocin-induced antinociception is boosted. Similarly, electrophysiological experiments suggest that juxtacellular JZL184 diminishes the neuronal firing of nociceptive fibers, and co-injection with oxytocin prolongs and enhances the antinociceptive effect. These data may imply that 2-AG formation may play a role in the spinal antinociception induced by oxytocin.
Collapse
Affiliation(s)
- Ana B Salinas-Abarca
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico; Department of Neural and Pain Sciences, University of Maryland Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| | - Guadalupe Martínez-Lorenzana
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| |
Collapse
|
6
|
Khasabova IA, Gable J, Johns M, Khasabov SG, Kalyuzhny AE, Golovko MY, Golovko SA, Kiven S, Gupta K, Seybold VS, Simone DA. Inhibition of DAGLβ as a therapeutic target for pain in sickle cell disease. Haematologica 2023; 108:859-869. [PMID: 35615929 PMCID: PMC9973472 DOI: 10.3324/haematol.2021.280460] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
Sickle cell disease (SCD) is the most common inherited disease. Pain is a key morbidity of SCD and opioids are the main treatment but their side effects emphasize the need for new analgesic approaches. Humanized transgenic mouse models have been instructive in understanding the pathobiology of SCD and mechanisms of pain. Homozygous (HbSS) Berkley mice express >99% human sickle hemoglobin and several features of clinical SCD including hyperalgesia. Previously, we reported that the endocannabinoid 2-arachidonoylglycerol (2-AG) is a precursor of the pro-nociceptive mediator prostaglandin E2-glyceryl ester (PGE2-G) which contributes to hyperalgesia in SCD. We now demonstrate the causal role of 2-AG in hyperalgesia in sickle mice. Hyperalgesia in HbSS mice correlated with elevated levels of 2-AG in plasma, its synthesizing enzyme diacylglycerol lipase β (DAGLβ) in blood cells, and with elevated levels of PGE2 and PGE2-G, pronociceptive derivatives of 2-AG. A single intravenous injection of 2-AG produced hyperalgesia in non-hyperalgesic HbSS mice, but not in control (HbAA) mice expressing normal human HbA. JZL184, an inhibitor of 2-AG hydrolysis, also produced hyperalgesia in non-hyperalgesic HbSS or hemizygous (HbAS) mice, but did not influence hyperalgesia in hyperalgesic HbSS mice. Systemic and intraplantar administration of KT109, an inhibitor of DAGLβ, decreased mechanical and heat hyperalgesia in HbSS mice. The decrease in hyperalgesia was accompanied by reductions in 2-AG, PGE2 and PGE2-G in the blood. These results indicate that maintaining the physiological level of 2-AG in the blood by targeting DAGLβ may be a novel and effective approach to treat pain in SCD.
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Jacob Gable
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN
| | - Malcolm Johns
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN
| | - Sergey G Khasabov
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| | | | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND
| | - Svetlana A Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND
| | - Stacy Kiven
- Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, CA
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, CA
| | | | - Donald A Simone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN.
| |
Collapse
|
7
|
Ford ZK, Reker AN, Chen S, Kadakia F, Bunk A, Davidson S. Cannabinoid Receptor 1 Expression in Human Dorsal Root Ganglia and CB13-Induced Bidirectional Modulation of Sensory Neuron Activity. FRONTIERS IN PAIN RESEARCH 2022; 2:721332. [PMID: 35295508 PMCID: PMC8915700 DOI: 10.3389/fpain.2021.721332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Cannabinoid receptors have been identified as potential targets for analgesia from studies on animal physiology and behavior, and from human clinical trials. Here, we sought to improve translational understanding of the mechanisms of cannabinoid-mediated peripheral analgesia. Human lumbar dorsal root ganglia were rapidly recovered from organ donors to perform physiological and anatomical investigations into the potential for cannabinoids to mediate analgesia at the level of the peripheral nervous system. Anatomical characterization of in situ gene expression and immunoreactivity showed that 61 and 53% of human sensory neurons express the CB1 gene and receptor, respectively. Calcium influx evoked by the algogen capsaicin was measured by Fura-2AM in dissociated human sensory neurons pre-exposed to the inflammatory mediator prostaglandin E2 (PGE2) alone or together with CB13 (1 μM), a cannabinoid agonist with limited blood–brain barrier permeability. Both a higher proportion of neurons and a greater magnitude of response to capsaicin were observed after exposure to CB13, indicating cannabinoid-mediated sensitization. In contrast, membrane properties measured by patch-clamp electrophysiology demonstrated that CB13 suppressed excitability and reduced action potential discharge in PGE2-pre-incubated sensory neurons, suggesting the suppression of sensitization. This bidirectional modulation of sensory neuron activity suggests that cannabinoids may suppress overall membrane excitability while simultaneously enhancing responsivity to TRPV1-mediated stimuli. We conclude that peripherally restricted cannabinoids may have both pro- and anti-nociceptive effects in human sensory neurons.
Collapse
Affiliation(s)
- Zachary K Ford
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Ashlie N Reker
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Sisi Chen
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Feni Kadakia
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Alexander Bunk
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Steve Davidson
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
8
|
Bhatti FI, Mowforth OD, Butler MB, Bhatti AI, Adeeko S, Akhbari M, Dilworth R, Grodzinski B, Osunronbi T, Ottewell L, Teh JQ, Robinson S, Suresh G, Waheed U, Walker B, Kuhn I, Smith L, Bartlett RD, Davies BM, Kotter MRN. Systematic review of the impact of cannabinoids on neurobehavioral outcomes in preclinical models of traumatic and nontraumatic spinal cord injury. Spinal Cord 2021; 59:1221-1239. [PMID: 34392312 PMCID: PMC8629762 DOI: 10.1038/s41393-021-00680-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/09/2022]
Abstract
STUDY DESIGN Systematic review. OBJECTIVES To evaluate the impact of cannabinoids on neurobehavioral outcomes in preclinical models of nontraumatic and traumatic spinal cord injury (SCI), with the aim of determining suitability for clinical trials involving SCI patients. METHODS A systematic search was performed in MEDLINE and Embase databases, following registration with PROPSERO (CRD42019149671). Studies evaluating the impact of cannabinoids (agonists or antagonists) on neurobehavioral outcomes in preclinical models of nontraumatic and traumatic SCI were included. Data extracted from relevant studies, included sample characteristics, injury model, neurobehavioural outcomes assessed and study results. PRISMA guidelines were followed and the SYRCLE checklist was used to assess risk of bias. RESULTS The search returned 8714 studies, 19 of which met our inclusion criteria. Sample sizes ranged from 23 to 390 animals. WIN 55,212-2 (n = 6) and AM 630 (n = 8) were the most used cannabinoid receptor agonist and antagonist respectively. Acute SCI models included traumatic injury (n = 16), ischaemia/reperfusion injury (n = 2), spinal cord cryoinjury (n = 1) and spinal cord ischaemia (n = 1). Assessment tools used assessed locomotor function, pain and anxiety. Cannabinoid receptor agonists resulted in statistically significant improvement in locomotor function in 9 out of 10 studies and pain outcomes in 6 out of 6 studies. CONCLUSION Modulation of the endo-cannabinoid system has demonstrated significant improvement in both pain and locomotor function in pre-clinical SCI models; however, the risk of bias is unclear in all studies. These results may help to contextualise future translational clinical trials investigating whether cannabinoids can improve pain and locomotor function in SCI patients.
Collapse
Affiliation(s)
- Faheem I Bhatti
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Oliver D Mowforth
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Max B Butler
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Aniqah I Bhatti
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | | | - Ben Grodzinski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | - Jye Quan Teh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Isla Kuhn
- Cambridge University Medical Library, Cambridge, UK
| | | | - Richard D Bartlett
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Benjamin M Davies
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Mark R N Kotter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Buffon AC, Javornik MA, Heymanns AC, Salm DC, Horewicz VV, Martins DF, Piovezan AP. Role of the endocannabinoid system on the antihyperalgesic action of gabapentin in animal model of neuropathic pain induced by partial sciatic nerve ligation. AN ACAD BRAS CIENC 2020; 92:e20191155. [PMID: 33331440 DOI: 10.1590/0001-3765202020191155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 08/20/2020] [Indexed: 11/22/2022] Open
Abstract
Gabapentin has antihyperalgesic action, decreasing central sensitization in neuropathic pain models; this effect depends on the mobilization of endogenous pain control pathways. This study aims to investigate the contribution of the endocannabinoid system to the antihyperalgesic action of gabapentin. Mus musculus Swiss, male, were submitted to PSL. On the 7th and 14th days post PSL, different groups were treated with CB1 receptor antagonist, AM281 via i.t. (2 μg/5 μl) or i.pl. (10 μg/20 μl) or CB2, AM630 via i.t. (5 μL i.t.) or (20 μL i.p.) and 15 min after gabapentin (30 mg / kg orally). Mechanical hyperalgesia was measured by the frequency of paw removal by the von Frey monofilament. Gabapentin demonstrated antihypernociceptive action, which was attenuated in animals pretreated with AM281 in both the i.t. and i.pl routes on the 7th and 14th days, differently from animals pretreated with AM630 that did not achieve a significant reduction with administration i.t. only on the 14th day with administration i.pl. The results show that endocannabinoid system contributes to the antihyperalgesic action of gabapetin in neuropathic pain by PSL, suggesting participation in the medullary and peripheral levels of CB1 receptors, and the peripheral performance of CB2 receptors.
Collapse
Affiliation(s)
- Alexandre C Buffon
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina/UNISUL, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil.,Curso de Medicina, Universidade do Sul de Santa Catarina/UNISUL, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil
| | - Marcelo A Javornik
- Curso de Medicina, Universidade do Sul de Santa Catarina/UNISUL, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil
| | - Ana C Heymanns
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina/UNISUL, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil.,Universidade do Sul de Santa Catarina/UNISUL, Laboratório de Neurociências Experimental/LaNex, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil
| | - Daiana C Salm
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina/UNISUL, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil.,Universidade do Sul de Santa Catarina/UNISUL, Laboratório de Neurociências Experimental/LaNex, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil
| | - VerÔnica V Horewicz
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina/UNISUL, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil.,Universidade do Sul de Santa Catarina/UNISUL, Laboratório de Neurociências Experimental/LaNex, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil
| | - Daniel F Martins
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina/UNISUL, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil.,Universidade do Sul de Santa Catarina/UNISUL, Laboratório de Neurociências Experimental/LaNex, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil
| | - Anna P Piovezan
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina/UNISUL, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil.,Curso de Medicina, Universidade do Sul de Santa Catarina/UNISUL, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil.,Universidade do Sul de Santa Catarina/UNISUL, Laboratório de Neurociências Experimental/LaNex, Av. Pedra Branca 25, Pedra Branca, 88137-270 Palhoça, SC, Brazil
| |
Collapse
|
10
|
Xue B, Zhang X, Wang Y. Bench to bedside: Multiple facets of cannabinoid control in epilepsy. Neurochem Int 2020; 141:104898. [PMID: 33159980 DOI: 10.1016/j.neuint.2020.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 11/27/2022]
Abstract
Epilepsy is a neurological disease recognized as the consequence of excessive neuronal excitability. Endocannabinoid system, the critical regulator of synaptic inhibition in brain, was supposed to be closely involved in epilepsy. Cannabinoid receptors mostly locate on presynaptic terminals of both excitatory and inhibitory neurons, but with characteristic distribution varying in different brain areas and synapses. Endocannabinoids are synthesized in postsynaptic neurons and retrogradely act on presynaptic cannabinoid receptors. Accumulating evidence suggest that the expression of cannabinoid receptors and synthesis or breakdown of endocannabinoids were cell-type specifically altered and spatiotemporally regulated in seizures, and intervention of the expression of cannabinoid receptors or the level of endocannabinoids could affect seizure actions. Further in clinic, cannabidiol as an add-on treatment could reduce seizures in patients with treatment-resistant epilepsy, but the underlying mechanisms are still unclear and independent of the endocannabinoid system. Therefore, we review recent advances from bench to bedside, to address the cannabinoid control on seizures, discuss the existing confusion in current studies and provide directions for further research, which may be clinically important for the design of cannabinoid-based precise therapeutic interventions for epilepsy.
Collapse
Affiliation(s)
- Bao Xue
- Institute of Brain Science and Disease, Qingdao University, No. 308, Ningxia Road, Qingdao, 266071, China; School of Basic Medicine, Qingdao University, No. 308, Ningxia Road, Qingdao, 266071, China
| | - Xia Zhang
- Institute of Brain Science and Disease, Qingdao University, No. 308, Ningxia Road, Qingdao, 266071, China
| | - Ying Wang
- Institute of Brain Science and Disease, Qingdao University, No. 308, Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
11
|
Thomas A, Okine BN, Finn DP, Masocha W. Peripheral deficiency and antiallodynic effects of 2-arachidonoyl glycerol in a mouse model of paclitaxel-induced neuropathic pain. Biomed Pharmacother 2020; 129:110456. [PMID: 32603895 DOI: 10.1016/j.biopha.2020.110456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Modulation of the endocannabinoid system has been shown to alleviate neuropathic pain. The aim of this study was to evaluate if treatment with paclitaxel, a chemotherapeutic agent that induces neuropathic pain, affects endocannabinoid levels at a time when mice develop paclitaxel-induced mechanical allodynia. We also evaluated the peripheral antiallodynic activity of the endocannabinoid 2-arachidonoyl glycerol (2-AG) and an inhibitor of monoacylglycerol lipase (MAGL), an enzyme responsible for 2-AG hydrolysis. METHODS Female BALB/c mice were treated intraperitoneally with paclitaxel to induce mechanical allodynia. Levels of the endocannabinoids, N-arachidonoylethanolamine (anandamide, AEA), 2-AG, and the N-acylethanolamines (NAEs), N-palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), which are structurally-related to AEA, in the brain, spinal cord and paw skin were measured using LC-MS/MS. Protein expression of MAGL in the paw skin was measured using Wes™. The effects of subcutaneous (s.c.) injection of 2-AG and JZL184 (a MAGL inhibitor) into the right hind paw of mice with paclitaxel-induced mechanical allodynia were assessed using the dynamic plantar aesthesiometer. The effects of pretreatment, s.c., into the right hind paw, with cannabinoid type 1 (CB1) receptor antagonist AM251 and CB2 receptor antagonist AM630 on the antiallodynic effects of 2-AG were also evaluated. RESULTS The levels of 2-AG were reduced only in the paw skin of paclitaxel-treated mice, whilst the levels of AEA, PEA and OEA were not significantly altered. There was no change in the expression of MAGL in the paw skin. Administration of 2-AG and JZL184 produced antiallodynic effects against paclitaxel-induced mechanical allodynia in the injected right paw, but did not affect the uninjected left paw. The antiallodynic activity of 2-AG was antagonized by both AM251 and AM630. CONCLUSION These results indicate that during paclitaxel-induced mechanical allodynia there is a deficiency of 2-AG in the periphery, but not in the CNS. Increasing 2-AG in the paw by local administration of 2-AG or a MAGL inhibitor, alleviates mechanical allodynia in a CB1 and CB2 receptor-dependent manner.
Collapse
Affiliation(s)
- Amal Thomas
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Bright N Okine
- Pharmacology and Therapeutics, School of Medicine, NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait.
| |
Collapse
|
12
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int J Mol Sci 2020; 21:E1423. [PMID: 32093166 PMCID: PMC7073137 DOI: 10.3390/ijms21041423] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain conditions including neuropathic orofacial pain (NOP) are difficult to treat. Contemporary therapeutic agents for neuropathic pain are often ineffective in relieving pain and are associated with various adverse effects. Finding new options for treating neuropathic pain is a major priority in pain-related research. Cannabinoid-based therapeutic strategies have emerged as promising new options. Cannabinoids mainly act on cannabinoid 1 (CB1) and 2 (CB2) receptors, and the former is widely distributed in the brain. The therapeutic significance of cannabinoids is masked by their adverse effects including sedation, motor impairment, addiction and cognitive impairment, which are thought to be mediated by CB1 receptors in the brain. Alternative approaches have been developed to overcome this problem by selectively targeting CB2 receptors, peripherally restricted CB1 receptors and endocannabinoids that may be locally synthesized on demand at sites where their actions are pertinent. Many preclinical studies have reported that these strategies are effective for treating neuropathic pain and produce no or minimal side effects. Recently, we observed that inhibition of degradation of a major endocannabinoid, 2-arachydonoylglycerol, can attenuate NOP following trigeminal nerve injury in mice. This review will discuss the above-mentioned alternative approaches that show potential for treating neuropathic pain including NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| |
Collapse
|
13
|
Ellis KL, Contino EK. Treatment using cannabidiol in a horse with mechanical allodynia. EQUINE VET EDUC 2019. [DOI: 10.1111/eve.13168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- K. L. Ellis
- Department of Clinical Sciences Gail Holmes Equine Orthopaedic Research Center College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins Colorado USA
| | - E. K. Contino
- Department of Clinical Sciences Gail Holmes Equine Orthopaedic Research Center College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins Colorado USA
| |
Collapse
|
14
|
Jiang HX, Ke BW, Liu J, Ma G, Hai KR, Gong DY, Yang Z, Zhou C. Inhibition of Fatty Acid Amide Hydrolase Improves Depressive-Like Behaviors Independent of Its Peripheral Antinociceptive Effects in a Rat Model of Neuropathic Pain. Anesth Analg 2019; 129:587-597. [DOI: 10.1213/ane.0000000000003563] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Buisseret B, Alhouayek M, Guillemot-Legris O, Muccioli GG. Endocannabinoid and Prostanoid Crosstalk in Pain. Trends Mol Med 2019; 25:882-896. [PMID: 31160168 DOI: 10.1016/j.molmed.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Interfering with endocannabinoid (eCB) metabolism to increase their levels is a proven anti-nociception strategy. However, because the eCB and prostanoid systems are intertwined, interfering with eCB metabolism will affect the prostanoid system and inversely. Key to this connection is the production of the cyclooxygenase (COX) substrate arachidonic acid upon eCB hydrolysis as well as the ability of COX to metabolize the eCBs anandamide (AEA) and 2-arachidonoylglycerol (2-AG) into prostaglandin-ethanolamides (PG-EA) and prostaglandin-glycerol esters (PG-G), respectively. Recent studies shed light on the role of PG-Gs and PG-EAs in nociception and inflammation. Here, we discuss the role of these complex systems in nociception and new opportunities to alleviate pain by interacting with them.
Collapse
Affiliation(s)
- Baptiste Buisseret
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium.
| |
Collapse
|
16
|
Indomethacin plus minocycline coadministration relieves chemotherapy and antiretroviral drug-induced neuropathic pain in a cannabinoid receptors-dependent manner. J Pharmacol Sci 2019; 139:325-332. [PMID: 30871874 DOI: 10.1016/j.jphs.2019.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Neuropathic pain sometimes occurs during chemotherapy with paclitaxel or HIV/AIDS antiretroviral therapy with nucleoside reverse transcriptase inhibitors (NRTIs). We previously reported that coadministration of indomethacin plus minocycline (IPM) was antihyperalgesic in a cannabinoid type 1 (CB1) receptor-dependent manner in a mouse model of paclitaxel-induced neuropathic pain. We evaluated if IPM combination has antihyperalgesic and antiallodynic activities in animal models of paclitaxel or NRTI (ddC, zalcitabine)-induced neuropathic pain, and whether antagonists of CB1, CB2 receptors or G protein-coupled receptor 55 (GPR55) can inhibit these activities of IPM. IPM produced antihyperalgesic and antiallodynic effects against paclitaxel and ddC-induced thermal hyperalgesia and mechanical allodynia. WIN 55,212-2, a cannabinoid receptor agonist, also had antihyperalgesic activity. The antihyperalgesic and antiallodynic activities of IPM were antagonized by a CB1 receptor antagonist AM251 and a CB2 receptor antagonist AM630, but not a GPR55 antagonist ML193. IPM had no effects on the mean time spent on the rotarod, whereas WIN 55,212-2 reduced it in a dose-dependent manner. These results show that IPM at a fixed ratio produces antihyperalgesic and antiallodynic effects in mice models of both paclitaxel and NRTI-induced neuropathic pain which is dependent on both CB1 and CB2 receptors, without causing the typical cannabinoid receptor agonist-induced motor impairment.
Collapse
|
17
|
Brain permeant and impermeant inhibitors of fatty-acid amide hydrolase suppress the development and maintenance of paclitaxel-induced neuropathic pain without producing tolerance or physical dependence in vivo and synergize with paclitaxel to reduce tumor cell line viability in vitro. Pharmacol Res 2019; 142:267-282. [PMID: 30739035 DOI: 10.1016/j.phrs.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/22/2018] [Accepted: 02/01/2019] [Indexed: 12/19/2022]
Abstract
Activation of cannabinoid CB1 receptors suppresses pathological pain but also produces unwanted side effects, including tolerance and physical dependence. Inhibition of fatty-acid amide hydrolase (FAAH), the major enzyme catalyzing the degradation of anandamide (AEA), an endocannabinoid, and other fatty-acid amides, suppresses pain without unwanted side effects typical of direct CB1 agonists. However, FAAH inhibitors have failed to show efficacy in several clinical trials suggesting that the right partnership of FAAH inhibition and pathology has yet to be identified. We compared efficacy of chronic treatments with a centrally penetrant FAAH inhibitor (URB597), a peripherally restricted FAAH inhibitor (URB937) and an orthosteric pan-cannabinoid agonist (WIN55,212-2) in suppressing neuropathic pain induced by the chemotherapeutic agent paclitaxel. Each FAAH inhibitor suppressed the development of paclitaxel-induced neuropathic pain and reduced the maintenance of already established allodynia with sustained efficacy. Tolerance developed to the anti-allodynic efficacy of WIN55,212-2, but not to that of URB597 or URB937, in each dosing paradigm. Challenge with the CB1 antagonist rimonabant precipitated CB1-dependent withdrawal in paclitaxel-treated mice receiving WIN55,212-2 but not URB597 or URB937. When dosing with either URB597 or URB937 was restricted to the development of neuropathy, paclitaxel-induced allodynia emerged following termination of drug delivery. These observations suggest that both FAAH inhibitors were anti-allodynic rather than curative. Moreover, neither URB597 nor URB937 impeded the ability of paclitaxel to reduce breast (4T1) or ovarian (HeyA8) tumor cell line viability. In fact, URB597 and URB937 alone reduced 4T1 tumor cell line viability, albeit with low potency, and the dose matrix of each combination with paclitaxel was synergistic in reducing 4T1 and HeyA8 tumor cell line viability according to Bliss, Highest Single Agent (HSA) and Loewe additivity models. Both FAAH inhibitors synergized with paclitaxel to reduce 4T1 and HeyA8 tumor cell line viability without reducing viability of non-tumor HEK293 cells. Neither FAAH inhibitor reduced viability of non-tumor HEK293 cells in either the presence or absence of paclitaxel, suggesting that nonspecific cytotoxic effects were not produced by the same treatments. Our results suggest that FAAH inhibitors reduce paclitaxel-induced allodynia without the occurrence of CB1-dependence in vivo and may, in fact, enhance the anti-tumor actions of paclitaxel in vitro.
Collapse
|
18
|
Huo J, Ma R, Chai X, Liang HJ, Jiang P, Zhu XL, Chen X, Su BX. Inhibiting a spinal cord signaling pathway protects against ischemia injury in rats. J Thorac Cardiovasc Surg 2019; 157:494-503.e1. [DOI: 10.1016/j.jtcvs.2018.07.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 02/05/2023]
|
19
|
Pascual D, Sánchez-Robles E, García M, Goicoechea C. Chronic pain and cannabinoids. Great expectations or a christmas carol. Biochem Pharmacol 2018; 157:33-42. [DOI: 10.1016/j.bcp.2018.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
|
20
|
Slivicki RA, Saberi SA, Iyer V, Vemuri VK, Makriyannis A, Hohmann AG. Brain-Permeant and -Impermeant Inhibitors of Fatty Acid Amide Hydrolase Synergize with the Opioid Analgesic Morphine to Suppress Chemotherapy-Induced Neuropathic Nociception Without Enhancing Effects of Morphine on Gastrointestinal Transit. J Pharmacol Exp Ther 2018; 367:551-563. [PMID: 30275151 DOI: 10.1124/jpet.118.252288] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 01/15/2023] Open
Abstract
Opioid-based therapies remain a mainstay for chronic pain management, but unwanted side effects limit therapeutic use. We compared efficacies of brain-permeant and -impermeant inhibitors of fatty acid amide hydrolase (FAAH) in suppressing neuropathic pain induced by the chemotherapeutic agent paclitaxel. Paclitaxel produced mechanical and cold allodynia without altering nestlet shredding or marble burying behaviors. We compared FAAH inhibitors that differ in their ability to penetrate the central nervous system for antiallodynic efficacy, pharmacological specificity, and synergism with the opioid analgesic morphine. (3'-(aminocarbonyl)[1,1'-biphenyl]- 3-yl)-cyclohexylcarbamate (URB597), a brain-permeant FAAH inhibitor, attenuated paclitaxel-induced allodynia via cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) mechanisms. URB937, a brain-impermeant FAAH inhibitor, suppressed paclitaxel-induced allodynia through a CB1 mechanism only. 5-[4-(4-cyano-1-butyn-1-yl)phenyl]-1-(2,4-dichlorophenyl)-N-(1,1-dioxido-4-thiomorpholinyl)-4-methyl-1H-pyrazole-3-carboxamide (AM6545), a peripherally restricted CB1 antagonist, fully reversed the antiallodynic efficacy of N-cyclohexyl-carbamic acid, 3'-(aminocarbonyl)-6-hydroxy[1,1'- biphenyl]-3-yl ester (URB937) but only partially reversed that of URB597. Thus, URB937 suppressed paclitaxel-induced allodynia through a mechanism that was dependent upon peripheral CB1 receptor activation only. Antiallodynic effects of both FAAH inhibitors were reversed by N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). Antiallodynic effects of URB597, but not URB937, were reversed by 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630). Isobolographic analysis revealed synergistic interactions between morphine and either URB597 or URB937 in reducing paclitaxel-induced allodynia. A leftward shift in the dose-response curve of morphine antinociception was observed when morphine was coadministered with either URB597 or URB937, consistent with morphine sparing. However, neither URB937 nor URB597 enhanced morphine-induced deficits in colonic transit. Thus, our findings suggest that FAAH inhibition may represent a therapeutic avenue to reduce the overall amount of opioid needed for treating neuropathic pain with potential to reduce unwanted side effects that accompany opioid administration.
Collapse
Affiliation(s)
- Richard A Slivicki
- Program in Neuroscience (R.A.S., V.I., A.G.H.), Department of Psychological and Brain Sciences (R.A.S., S.A.S., V.I., A.G.H.), and Gill Center for Biomolecular Science (A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.K.V., A.M.)
| | - Shahin A Saberi
- Program in Neuroscience (R.A.S., V.I., A.G.H.), Department of Psychological and Brain Sciences (R.A.S., S.A.S., V.I., A.G.H.), and Gill Center for Biomolecular Science (A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.K.V., A.M.)
| | - Vishakh Iyer
- Program in Neuroscience (R.A.S., V.I., A.G.H.), Department of Psychological and Brain Sciences (R.A.S., S.A.S., V.I., A.G.H.), and Gill Center for Biomolecular Science (A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.K.V., A.M.)
| | - V Kiran Vemuri
- Program in Neuroscience (R.A.S., V.I., A.G.H.), Department of Psychological and Brain Sciences (R.A.S., S.A.S., V.I., A.G.H.), and Gill Center for Biomolecular Science (A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.K.V., A.M.)
| | - Alexandros Makriyannis
- Program in Neuroscience (R.A.S., V.I., A.G.H.), Department of Psychological and Brain Sciences (R.A.S., S.A.S., V.I., A.G.H.), and Gill Center for Biomolecular Science (A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.K.V., A.M.)
| | - Andrea G Hohmann
- Program in Neuroscience (R.A.S., V.I., A.G.H.), Department of Psychological and Brain Sciences (R.A.S., S.A.S., V.I., A.G.H.), and Gill Center for Biomolecular Science (A.G.H.), Indiana University, Bloomington, Indiana; and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (V.K.V., A.M.)
| |
Collapse
|
21
|
Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci 2018; 204:20-45. [PMID: 29729263 DOI: 10.1016/j.lfs.2018.04.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/19/2018] [Accepted: 04/28/2018] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is up-regulated in numerous pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic and cardiovascular diseases, pain, and cancer. It has been suggested that this phenomenon primarily serves an autoprotective role in inhibiting disease progression and/or diminishing signs and symptoms. Accordingly, enhancement of endogenous endocannabinoid tone by inhibition of endocannabinoid degradation represents a promising therapeutic approach for the treatment of many diseases. Importantly, this allows for the avoidance of unwanted psychotropic side effects that accompany exogenously administered cannabinoids. The effects of endocannabinoid metabolic pathway modulation are complex, as endocannabinoids can exert their actions directly or via numerous metabolites. The two main strategies for blocking endocannabinoid degradation are inhibition of endocannabinoid-degrading enzymes and inhibition of endocannabinoid cellular uptake. To date, the most investigated compounds are inhibitors of fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid anandamide. However, application of FAAH inhibitors (and consequently other endocannabinoid degradation inhibitors) in medicine became questionable due to a lack of therapeutic efficacy in clinical trials and serious adverse effects evoked by one specific compound. In this paper, we discuss multiple pathways of endocannabinoid metabolism, changes in endocannabinoid levels across numerous human diseases and corresponding experimental models, pharmacological strategies for enhancing endocannabinoid tone and potential therapeutic applications including multi-target drugs with additional targets outside of the endocannabinoid system (cyclooxygenase-2, cholinesterase, TRPV1, and PGF2α-EA receptors), and currently used medicines or medicinal herbs that additionally enhance endocannabinoid levels. Ultimately, further clinical and preclinical studies are warranted to develop medicines for enhancing endocannabinoid tone.
Collapse
|
22
|
Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Ruggiero E, De Stefano L, Rizzolio F, Di Cesare Mannelli L, Ghelardini C, Chicca A, Lapillo M, Gertsch J, Manera C, Macchia M, Martinelli A, Granchi C, Minutolo F, Tuccinardi T. Discovery of 1,5-Diphenylpyrazole-3-Carboxamide Derivatives as Potent, Reversible, and Selective Monoacylglycerol Lipase (MAGL) Inhibitors. J Med Chem 2018; 61:1340-1354. [DOI: 10.1021/acs.jmedchem.7b01845] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Pier Giovanni Baraldi
- Department
of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Stefania Baraldi
- Department
of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Emanuela Ruggiero
- Department
of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Lucia De Stefano
- Graduate
School in Chemistry, University of Trieste, 34127 Trieste, Italy
- Division
of Experimental and Clinical Pharmacology, Department of Molecular
Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, 33081 Aviano, Pordenone, Italy
| | - Flavio Rizzolio
- Division
of Experimental and Clinical Pharmacology, Department of Molecular
Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, 33081 Aviano, Pordenone, Italy
- Department
of Molecular Science and Nanosystems, Ca’ Foscari Università di Venezia, 30172 Venezia-Mestre, Italy
| | - Lorenzo Di Cesare Mannelli
- Department
of Neuroscience, Psychology, Drug Research and Child Health, Section
of Pharmacology and Toxicology, University of Firenze, 50139 Firenze, Italy
| | - Carla Ghelardini
- Department
of Neuroscience, Psychology, Drug Research and Child Health, Section
of Pharmacology and Toxicology, University of Firenze, 50139 Firenze, Italy
| | - Andrea Chicca
- Institute
of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Margherita Lapillo
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Institute
of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Jürg Gertsch
- Institute
of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | | | - Marco Macchia
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | | | | | - Tiziano Tuccinardi
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Sbarro
Institute for Cancer Research and Molecular Medicine, Center for Biotechnology,
College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
23
|
Donvito G, Nass SR, Wilkerson JL, Curry ZA, Schurman LD, Kinsey SG, Lichtman AH. The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain. Neuropsychopharmacology 2018; 43:52-79. [PMID: 28857069 PMCID: PMC5719110 DOI: 10.1038/npp.2017.204] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/24/2017] [Accepted: 08/27/2017] [Indexed: 02/07/2023]
Abstract
A great need exists for the development of new medications to treat pain resulting from various disease states and types of injury. Given that the endogenous cannabinoid (that is, endocannabinoid) system modulates neuronal and immune cell function, both of which play key roles in pain, therapeutics targeting this system hold promise as novel analgesics. Potential therapeutic targets include the cannabinoid receptors, type 1 and 2, as well as biosynthetic and catabolic enzymes of the endocannabinoids N-arachidonoylethanolamine and 2-arachidonoylglycerol. Notably, cannabinoid receptor agonists as well as inhibitors of endocannabinoid-regulating enzymes fatty acid amide hydrolase and monoacylglycerol lipase produce reliable antinociceptive effects, and offer opioid-sparing antinociceptive effects in myriad preclinical inflammatory and neuropathic pain models. Emerging clinical studies show that 'medicinal' cannabis or cannabinoid-based medications relieve pain in human diseases such as cancer, multiple sclerosis, and fibromyalgia. However, clinical data have yet to demonstrate the analgesic efficacy of inhibitors of endocannabinoid-regulating enzymes. Likewise, the question of whether pharmacotherapies aimed at the endocannabinoid system promote opioid-sparing effects in the treatment of pain reflects an important area of research. Here we examine the preclinical and clinical evidence of various endocannabinoid system targets as potential therapeutic strategies for inflammatory and neuropathic pain conditions.
Collapse
Affiliation(s)
- Giulia Donvito
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara R Nass
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary A Curry
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Lesley D Schurman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven G Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
24
|
Silva NR, Gomes FV, Fonseca MD, Mechoulam R, Breuer A, Cunha TM, Guimarães FS. Antinociceptive effects of HUF-101, a fluorinated cannabidiol derivative. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:369-377. [PMID: 28720466 DOI: 10.1016/j.pnpbp.2017.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Cannabidiol (CBD) is a phytocannabinoid with multiple pharmacological effects and several potential therapeutic properties. Its low oral bioavailability, however, can limit its clinical use. Preliminary results indicate that fluorination of the CBD molecule increases its pharmacological potency. Here, we investigated whether HUF-101 (3, 10, and 30mg/kg), a fluorinated CBD analogue, would induce antinociceptive effects. HUF-101 effects were compared to those induced by CBD (10, 30, and 90mg/kg) and the cannabinoid CB1/2 receptor agonist WIN55,212-2 (1, 3, and 5mg/kg). These drugs were tested in male Swiss mice submitted to the following models predictive to antinociceptive drugs: hot plate, acetic acid-induced writhing, and carrageenan-induced inflammatory hyperalgesia. To evaluate the involvement of CB1 and CB2 receptors in HUF-101 and CBD effects, mice received the CB1 receptor antagonist AM251 (1 or 3mg/kg) or the CB2 receptor antagonist AM630 (1 or 3mg/kg) 30min before HUF-101, CBD, or WIN55,212-2. In the hot plate test, HUF-101 (30mg/kg) and WIN55,212-2 (5mg/kg) induced antinociceptive effects, which were attenuated by the pretreatment with AM251 and AM630. In the abdominal writhing test, CBD (30 and 90mg/kg), HUF-101 (30mg/kg), and WIN55,212-2 (3 and 5mg/kg) induced antinociceptive effects indicated by a reduction in the number of writhing. Whereas the pretreatment with AM630 did not mitigate the effects induced by any drug in this test, the pretreatment with AM251 attenuated the effect caused by WIN55,212-2. In the carrageenan-induced hyperalgesia test, CBD (30 and 90mg/kg), HUF-101 (3, 10 and 30mg/kg) and WIN55,212-2 (1mg/kg) decreased the intensity of mechanical hyperalgesia measured by the electronic von Frey method. The effects of all compounds were attenuated by the pretreatment with AM251 and AM630. Additionally, we evaluated whether HUF-101 would induce the classic cannabinoid CB1 receptor-mediated tetrad (hypolocomotion, catalepsy, hypothermia, and antinociception). Unlike WIN55,212-2, CBD and HUF-101 did not induce the cannabinoid tetrad. These findings show that HUF-101 produced antinociceptive effects at lower doses than CBD, indicating that the addition of fluoride improved its pharmacological profile. Furthermore, some of the antinociceptive effects of CBD and HUF-101 effects seem to involve the activation of CB1 and CB2 receptors.
Collapse
Affiliation(s)
- Nicole R Silva
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil.
| | - Felipe V Gomes
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Miriam D Fonseca
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Raphael Mechoulam
- Department of Medicinal Chemistry and Natural Products, Medical Faculty, Hebrew University of Jerusalem, Israel
| | - Aviva Breuer
- Department of Medicinal Chemistry and Natural Products, Medical Faculty, Hebrew University of Jerusalem, Israel
| | - Thiago M Cunha
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| |
Collapse
|
25
|
Woodhams SG, Chapman V, Finn DP, Hohmann AG, Neugebauer V. The cannabinoid system and pain. Neuropharmacology 2017; 124:105-120. [PMID: 28625720 PMCID: PMC5785108 DOI: 10.1016/j.neuropharm.2017.06.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 01/20/2023]
Abstract
Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Stephen G Woodhams
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| | - Victoria Chapman
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - David P Finn
- Pharmacology & Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Interdisciplinary Biochemistry Graduate Program, Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
26
|
Veloso CC, Ferreira RCM, Rodrigues VG, Duarte LP, Klein A, Duarte ID, Romero TRL, Perez AC. Tingenone, a pentacyclic triterpene, induces peripheral antinociception due to cannabinoid receptors activation in mice. Inflammopharmacology 2017; 26:227-233. [DOI: 10.1007/s10787-017-0391-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/23/2017] [Indexed: 01/24/2023]
|
27
|
Zubrzycki M, Janecka A, Liebold A, Ziegler M, Zubrzycka M. Effects of centrally administered endocannabinoids and opioids on orofacial pain perception in rats. Br J Pharmacol 2017; 174:3780-3789. [PMID: 28771697 DOI: 10.1111/bph.13970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids and opioids play a vital role in mediating pain-induced analgesia. The specific effects of these compounds within the orofacial region are largely unknown. In this study, we tried to determine whether an increase in cannabinoid and opioid concentration in the CSF affects impulse transmission between the motor centres localized in the vicinity of the third and fourth cerebral ventricles. EXPERIMENTAL APPROACH The study objectives were realized on rats using a method that allows the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation. The amplitude of ETJ was a measure of the effect of neurotransmitters on neural structures. KEY RESULTS Perfusion of cerebral ventricles with anandamide (AEA), endomorphin-2 (EM-2), URB597, an inhibitor of fatty acid amide hydrolase (FAAH) and JZL195, a dual inhibitor of FAAH and monoacylglycerol lipase (MAGL) reduced the ETJ amplitude. The antinociceptive effect of AEA, EM-2, URB597 and JZL195 was blocked by CB1 receptor antagonist, AM251 and by μ receptor-antagonist, β-funaltrexamine. In contrast to AEA, 2-arachidonoylglycerol alone did not decrease ETJ amplitude. CONCLUSIONS AND IMPLICATIONS We demonstrated that in the orofacial area, analgesic activity is modulated by AEA and that EM-2-induced antinociception was mediated by μ and CB1 receptors. The action of AEA and EM-2 is tightly regulated by FAAH and FAAH/MAGL, by preventing the breakdown of endogenous cannabinoids in regions where they are produced on demand. Therefore, the current findings support the therapeutic potential of FAAH and FAAH/MAGL inhibitors as novel pharmacotherapeutic agents for orofacial pain.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Cardiovascular and Thoracic Surgery, University of Ulm, Ulm, Germany
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andreas Liebold
- Department of Cardiovascular and Thoracic Surgery, University of Ulm, Ulm, Germany
| | - Mechthild Ziegler
- Department of Cardiac Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - Maria Zubrzycka
- Department of Cardiovascular Physiology, Interdepartmental Chair of Experimental and Clinical Physiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
28
|
Pace MC, Passavanti MB, De Nardis L, Bosco F, Sansone P, Pota V, Barbarisi M, Palagiano A, Iannotti FA, Panza E, Aurilio C. Nociceptor plasticity: A closer look. J Cell Physiol 2017; 233:2824-2838. [PMID: 28488779 DOI: 10.1002/jcp.25993] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 04/20/2017] [Accepted: 05/09/2017] [Indexed: 12/17/2022]
Abstract
Nociceptors are receptors specifically involved in detecting a tissue damage and transducing it in an electrical signal. Nociceptor activation provoked by any kind of acute lesion is related to the release of several mediators of inflammation, within the framework of a process defined as "peripheral sensitization." This results in an exaggerated response to the painful stimulus, clinically defined as "primary hyperalgesia." The concept of "neuroplasticity" may explain the adaptive mechanisms carried out by the Nervous System in relation to a "harmful" damage; also, neuroplasticity mechanisms are also fundamental for rehabilitative intervention protocols. Here we review several studies that addressed the role of different receptors and ionic channels discovered on nociceptor surface and their role in pain perception. The changes in expression, distribution, and functioning of receptors and ionic channels are thought to be a part of the neuroplasticity property, through which the Nervous System constantly adapts to external stimuli. Moreover, some of the reviewed mediators are also been associated to "central sensitization," a process that results in pain chronicization when the painful stimulation is particularly prolonged or intense, and lastly leads to the memorization of the uncomfortable painful perception.
Collapse
Affiliation(s)
- Maria Caterina Pace
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Maria Beatrice Passavanti
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Lorenzo De Nardis
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Fabio Bosco
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Pasquale Sansone
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Vincenzo Pota
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Manlio Barbarisi
- Laboratory of Applied Biotechnology, Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Antonio Palagiano
- Department of Women, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry (ICB) Research National Council (CNR), Pozzuoli, Italy
| | - Elisabetta Panza
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Caterina Aurilio
- Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| |
Collapse
|
29
|
King-Himmelreich TS, Möser CV, Wolters MC, Schmetzer J, Schreiber Y, Ferreirós N, Russe OQ, Geisslinger G, Niederberger E. AMPK contributes to aerobic exercise-induced antinociception downstream of endocannabinoids. Neuropharmacology 2017; 124:134-142. [PMID: 28479394 DOI: 10.1016/j.neuropharm.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Physical exercise has been repeatedly associated with decreased nociceptive responses but the underlying mechanisms have still not been fully clarified. In this study, we investigated exercise-induced effects after a single bout of treadmill running on the mouse model of formalin-induced inflammatory nociception. As potential molecular mediators, we focused on endogenous endocannabinoids as well as AMP-activated protein kinase (AMPK). Our results showed that wild type mice display a reduced nociceptive response in the formalin test after treadmill running, while exercise had no effect on inflammatory nociception in AMPKα2 knockout mice. Levels of the endocannabinoid anandamide (AEA) were increased after physical activity in both wild type and AMPKα2 knockout mice, in association with decreased expression of the AEA-hydrolyzing enzyme FAAH and an increased level of the cannabinoid receptor 1 (CB1). Accordingly, treatment of wild type mice with the CB1 inverse agonist AM251 prior to the treadmill running reversed exercise-induced antinociception. However, if mice received AM251 in combination with the AMPK activator 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR), the positive effect of treadmill running on inflammatory nociception was restored, indicating that AMPK affects exercise-induced antinociception downstream of endocannabinoids. This assumption was further supported by cell culture experiments showing AMPK activation after stimulation of neuronal cells with AEA. In conclusion, our data suggest that AMPK is an intermediate effector in endocannabinoid-mediated exercise-induced antinociception. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Tanya S King-Himmelreich
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Christine V Möser
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Miriam C Wolters
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Julia Schmetzer
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Yannik Schreiber
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Nerea Ferreirós
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Otto Q Russe
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Ellen Niederberger
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Cui N, Yang Y, Xu Y, Zhang J, Jiang L, Hao G. Decreased expression of fatty acid amide hydrolase in women with polycystic ovary syndrome. Gynecol Endocrinol 2017; 33:368-372. [PMID: 28132572 DOI: 10.1080/09513590.2016.1269742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This study aimed to investigate the correlation between endocannabinoids and polycystic ovary syndrome (PCOS), and the expression levels of endocannabinoids in different phases of menstruation. The expression of cannabinoid receptors (CB1) and fatty acid amide hydrolase (FAAH) in the endometrium were immunohistochemically stained and compared between women with PCOS and the control group. Integrated optical density (IOD) was assessed to analyze their expression levels. The CB1 and FAAH were expressed in endometrial epithelial cytoplasm. No significant difference in CB1 level was observed between PCOS and non-PCOS women. Additionally, the expression of CB1 did not fluctuate with menstrual cycle. However, the FAAH levels were lower in the PCOS group than the non-PCOS group (p < 0.05). FAAH levels in secretory phases were significantly elevated compared to menstrual and proliferative phases (p < 0.05). Our results demonstrate that the endocannabinoid system may play an important role in menstruation, and dysregulation of the system may result in PCOS.
Collapse
Affiliation(s)
- Na Cui
- a Department of Reproduction , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Yang Yang
- a Department of Reproduction , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Yueming Xu
- a Department of Reproduction , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Jie Zhang
- a Department of Reproduction , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Lei Jiang
- a Department of Reproduction , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Guimin Hao
- a Department of Reproduction , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| |
Collapse
|
31
|
Munawar N, Oriowo MA, Masocha W. Antihyperalgesic Activities of Endocannabinoids in a Mouse Model of Antiretroviral-Induced Neuropathic Pain. Front Pharmacol 2017; 8:136. [PMID: 28373843 PMCID: PMC5357623 DOI: 10.3389/fphar.2017.00136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/06/2017] [Indexed: 01/28/2023] Open
Abstract
Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the cornerstone of the antiretroviral therapy for human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). However, their use is sometimes limited by the development of a painful sensory neuropathy, which does not respond well to drugs. Smoked cannabis has been reported in clinical trials to have efficacy in relieving painful HIV-associated sensory neuropathy. Objectives: The aim of this study was to evaluate whether the expression of endocannabinoid system molecules is altered during NRTI-induced painful neuropathy, and also whether endocannabinoids can attenuate NRTI-induced painful neuropathy. Methods: BALB/c mice were treated with 25 mg/kg of 2',3'-dideoxycytidine (ddC, zalcitabine), a NRTI, to induce thermal hyperalgesia. The expression of endocannabinoid system molecules was evaluated by real time polymerase chain reaction in the brain, spinal cord and paw skin at 6 days post ddC administration, a time point when mice had developed thermal hyperalgesia. The effects of the endocannabinoids, N-arachidonoyl ethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG), the cannabinoid type 1 (CB1) receptor antagonist AM 251, CB2 receptor antagonist AM 630, and G protein-coupled receptor 55 (GPR55) antagonists ML193 and CID 16020046 on ddC-induced thermal hyperalgesia were evaluated using the hot plate test. Results: ddC treatment resulted in thermal hyperalgesia and increased transcripts of the synthesizing enzyme Plcβ1 and decreased Daglβ in the paw skins, but not Napepld, and Daglα compared to vehicle treatment. Transcripts of the inactivating enzymes Faah and Mgll were downregulated in the brain and/or paw skin but not in the spinal cord of ddC-treated mice. Both AEA and 2-AG had antihyperalgesic effects in mice with ddC-induced thermal hyperalgesia, but had no effect in ddC-naïve mice. The antihyperalgesic activity of AEA was antagonized by AM251 and AM630, whereas the activity of 2-AG was antagonized by AM251, ML193 and CID 16020046, but not by AM630. Conclusion: These data show that ddC induces thermal hyperalgesia, which is associated with dysregulation of the mRNA expression of some endocannabinoid system molecules. The endocannabinoids AEA and 2-AG have antihyperalgesic activity, which is dependent on cannabinoid receptor and GPR55 activation. Thus, agonists of cannabinoid receptors and GPR55 could be useful therapeutic agents for the management of NRTI-induced painful sensory neuropathy.
Collapse
Affiliation(s)
- Neha Munawar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait UniversitySafat, Kuwait; Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait UniversitySafat, Kuwait
| | - Mabayoje A Oriowo
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University Safat, Kuwait
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University Safat, Kuwait
| |
Collapse
|
32
|
Luongo L, Starowicz K, Maione S, Di Marzo V. Allodynia Lowering Induced by Cannabinoids and Endocannabinoids (ALICE). Pharmacol Res 2017; 119:272-277. [PMID: 28237514 DOI: 10.1016/j.phrs.2017.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a neurological disorder that strongly affects the quality of life of patients. The molecular and cellular mechanisms at the basis of the neuropathic pain establishment still need to be clarified. Among the neuromodulators that play a role in the pathological pain pathways, endocannabinoids could be deeply involved in both neuronal and non-neuronal mechanisms responsible for the appearance of tactile allodynia. Indeed, the function and dysfunction of this complex system in the molecular and cellular mechanisms of chronic pain induction and maintenance have been widely studied over the last two decades. In this review article, we highlighted the possible modulation of the endocannabinoid system in the neuronal, glial and microglial modulation in neuropathic pain treatment.
Collapse
Affiliation(s)
- Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Via Costantinopoli 16, Naples, Italy; Endocannabinoid Research Group, Pozzuoli, Italy; Young Against Pain (YAP) Italian Group, Italy.
| | - Katarzyna Starowicz
- Pain Pathophysiology Lab, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland; Endocannabinoid Research Group, Pozzuoli, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Via Costantinopoli 16, Naples, Italy; Endocannabinoid Research Group, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; Endocannabinoid Research Group, Pozzuoli, Italy
| |
Collapse
|
33
|
Lipina C, Hundal HS. Modulation of cellular redox homeostasis by the endocannabinoid system. Open Biol 2016; 6:150276. [PMID: 27248801 PMCID: PMC4852457 DOI: 10.1098/rsob.150276] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/01/2016] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS) and reactive oxygen species (ROS) constitute two key cellular signalling systems that participate in the modulation of diverse cellular functions. Importantly, growing evidence suggests that cross-talk between these two prominent signalling systems acts to modulate functionality of the ECS as well as redox homeostasis in different cell types. Herein, we review and discuss evidence pertaining to ECS-induced regulation of ROS generating and scavenging mechanisms, as well as highlighting emerging work that supports redox modulation of ECS function. Functionally, the studies outlined reveal that interactions between the ECS and ROS signalling systems can be both stimulatory and inhibitory in nature, depending on cell stimulus, the source of ROS species and cell context. Importantly, such cross-talk may act to maintain cell function, whereas abnormalities in either system may propagate and undermine the stability of both systems, thereby contributing to various pathologies associated with their dysregulation.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
34
|
Vincent L, Vang D, Nguyen J, Benson B, Lei J, Gupta K. Cannabinoid receptor-specific mechanisms to alleviate pain in sickle cell anemia via inhibition of mast cell activation and neurogenic inflammation. Haematologica 2015; 101:566-77. [PMID: 26703965 DOI: 10.3324/haematol.2015.136523] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022] Open
Abstract
Sickle cell anemia is a manifestation of a single point mutation in hemoglobin, but inflammation and pain are the insignia of this disease which can start in infancy and continue throughout life. Earlier studies showed that mast cell activation contributes to neurogenic inflammation and pain in sickle mice. Morphine is the common analgesic treatment but also remains a major challenge due to its side effects and ability to activate mast cells. We, therefore, examined cannabinoid receptor-specific mechanisms to mitigate mast cell activation, neurogenic inflammation and hyperalgesia, using HbSS-BERK sickle and cannabinoid receptor-2-deleted sickle mice. We show that cannabinoids mitigate mast cell activation, inflammation and neurogenic inflammation in sickle mice via both cannabinoid receptors 1 and 2. Thus, cannabinoids influence systemic and neural mechanisms, ameliorating the disease pathobiology and hyperalgesia in sickle mice. This study provides 'proof of principle' for the potential of cannabinoid/cannabinoid receptor-based therapeutics to treat several manifestations of sickle cell anemia.
Collapse
Affiliation(s)
- Lucile Vincent
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Derek Vang
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Julia Nguyen
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Barbara Benson
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jianxun Lei
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
35
|
Fu W, Taylor BK. Activation of cannabinoid CB2 receptors reduces hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Neurosci Lett 2015; 595:1-6. [PMID: 25849525 DOI: 10.1016/j.neulet.2015.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/19/2015] [Accepted: 04/01/2015] [Indexed: 12/17/2022]
Abstract
Clinical trials investigating the analgesic efficacy of cannabinoids in multiple sclerosis have yielded mixed results, possibly due to psychotropic side effects mediated by cannabinoid CB1 receptors. We hypothesized that, a CB2-specific agonist (JWH-133) would decrease hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Four weeks after induction of experimental autoimmune encephalomyelitis, we found that intrathecal administration of JWH-133 (10-100μg) dose-dependently reduced both mechanical and cold hypersensitivity without producing signs of sedation or ataxia. The anti-hyperalgesic effects of JWH-133 could be dose-dependently prevented by intrathecal co-administration of the CB2 antagonist, AM-630 (1-3μg). Our results suggest that JWH-133 acts at CB2 receptors, most likely within the dorsal horn of the spinal cord, to suppress the hypersensitivity associated with experimental autoimmune encephalomyelitis. These are the first pre-clinical studies to directly promote CB2 as a promising target for the treatment of central pain in an animal model of multiple sclerosis.
Collapse
Affiliation(s)
- Weisi Fu
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA
| | - Bradley K Taylor
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.
| |
Collapse
|
36
|
The Potential of Inhibitors of Endocannabinoid Metabolism for Drug Development: A Critical Review. Handb Exp Pharmacol 2015; 231:95-128. [PMID: 26408159 DOI: 10.1007/978-3-319-20825-1_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endocannabinoids anandamide and 2-arachidonoylglycerol are metabolised by both hydrolytic enzymes (primarily fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL)) and oxygenating enzymes (e.g. cyclooxygenase-2, COX-2). In the present article, the in vivo data for compounds inhibiting endocannabinoid metabolism have been reviewed, focussing on inflammation and pain. Potential reasons for the failure of an FAAH inhibitor in a clinical trial in patients with osteoarthritic pain are discussed. It is concluded that there is a continued potential for compounds inhibiting endocannabinoid metabolism in terms of drug development, but that it is wise not to be unrealistic in terms of expectations of success.
Collapse
|
37
|
Abstract
The physiological and pathophysiological functions of the endocannabinoid system have been studied extensively using transgenic and targeted knockout mouse models. The first gene deletions of the cannabinoid CB(1) receptor were described in the late 1990s, soon followed by CB(2) and FAAH mutations in early 2000. These mouse models helped to elucidate the fundamental role of endocannabinoids as retrograde transmitters in the CNS and in the discovery of many unexpected endocannabinoid functions, for example, in the skin, bone and liver. We now have knockout mouse models for almost every receptor and enzyme of the endocannabinoid system. Conditional mutant mice were mostly developed for the CB(1) receptor, which is widely expressed on many different neurons, astrocytes and microglia, as well as on many cells outside the CNS. These mouse strains include "floxed" CB(1) alleles and mice with a conditional re-expression of CB(1). The availability of these mice made it possible to decipher the function of CB(1) in specific neuronal circuits and cell populations or to discriminate between central and peripheral effects. Many of the genetic mouse models were also used in combination with viral expression systems. The purpose of this review is to provide a comprehensive overview of the existing genetic models and to summarize some of the most important discoveries that were made with these animals.
Collapse
MESH Headings
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Animals
- Endocannabinoids/genetics
- Endocannabinoids/metabolism
- Gene Deletion
- Gene Expression Regulation
- Genotype
- Humans
- Hydrolysis
- Mice, Knockout
- Mice, Mutant Strains
- Monoacylglycerol Lipases/genetics
- Monoacylglycerol Lipases/metabolism
- Mutation
- Phenotype
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany.
| |
Collapse
|
38
|
Khasabova IA, Yao X, Paz J, Lewandowski CT, Lindberg AE, Coicou L, Burlakova N, Simone DA, Seybold VS. JZL184 is anti-hyperalgesic in a murine model of cisplatin-induced peripheral neuropathy. Pharmacol Res 2014; 90:67-75. [PMID: 25304184 DOI: 10.1016/j.phrs.2014.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 12/28/2022]
Abstract
Cisplatin has been used effectively to treat a variety of cancers but its use is limited by the development of painful peripheral neuropathy. Because the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) is anti-hyperalgesic in several preclinical models of chronic pain, the anti-hyperalgesic effect of JZL184, an inhibitor of 2-AG hydrolysis, was tested in a murine model of cisplatin-induced hyperalgesia. Systemic injection of cisplatin (1mg/kg) produced mechanical hyperalgesia when administered daily for 7 days. Daily peripheral administration of a low dose of JZL184 in conjunction with cisplatin blocked the expression of mechanical hyperalgesia. Acute injection of a cannabinoid (CB)-1 but not a CB2 receptor antagonist reversed the anti-hyperalgesic effect of JZL184 indicating that downstream activation of CB1 receptors suppressed the expression of mechanical hyperalgesia. Components of endocannabinoid signaling in plantar hind paw skin and lumbar dorsal root ganglia (DRGs) were altered by treatments with cisplatin and JZL184. Treatment with cisplatin alone reduced levels of 2-AG and AEA in skin and DRGs as well as CB2 receptor protein in skin. Combining treatment of JZL184 with cisplatin increased 2-AG in DRGs compared to cisplatin alone but had no effect on the amount of 2-AG in skin. Evidence that JZL184 decreased the uptake of [(3)H]AEA into primary cultures of DRGs at a concentration that also inhibited the enzyme fatty acid amide hydrolase, in conjunction with data that 2-AG mimicked the effect of JZL184 on [(3)H]AEA uptake support the conclusion that AEA most likely mediates the anti-hyperalgesic effect of JZL184 in this model.
Collapse
MESH Headings
- Amides
- Analgesics/pharmacology
- Analgesics/therapeutic use
- Animals
- Antineoplastic Agents
- Arachidonic Acids/metabolism
- Arachidonic Acids/pharmacology
- Benzodioxoles/pharmacology
- Benzodioxoles/therapeutic use
- Cells, Cultured
- Cisplatin
- Disease Models, Animal
- Endocannabinoids/metabolism
- Endocannabinoids/pharmacology
- Ethanolamines/metabolism
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Glycerides/metabolism
- Glycerides/pharmacology
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Indoles/pharmacology
- Male
- Mesencephalon/drug effects
- Mesencephalon/metabolism
- Mice
- Mice, Inbred C3H
- Monoacylglycerol Lipases/antagonists & inhibitors
- Morpholines/pharmacology
- Neuralgia/chemically induced
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Palmitic Acids/metabolism
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Polyunsaturated Alkamides/metabolism
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Skin/drug effects
- Skin/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | - Xu Yao
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | - Justin Paz
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | | | - Amy E Lindberg
- Pharmacology Graduate Program, University of Minnesota, USA
| | - Lia Coicou
- Department of Neuroscience, Medical School, University of Minnesota, USA
| | - Natasha Burlakova
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | - Don A Simone
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | - Virginia S Seybold
- Department of Neuroscience, Medical School, University of Minnesota, USA.
| |
Collapse
|
39
|
Grim TW, Ghosh S, Hsu KL, Cravatt BF, Kinsey SG, Lichtman AH. Combined inhibition of FAAH and COX produces enhanced anti-allodynic effects in mouse neuropathic and inflammatory pain models. Pharmacol Biochem Behav 2014; 124:405-11. [PMID: 25058512 PMCID: PMC4206939 DOI: 10.1016/j.pbb.2014.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED Common pharmacological treatments of neuropathic and chronic inflammatory pain conditions generally lack efficacy and/or are associated with significant untoward side effects. However, recent preclinical data indicate that combined inhibition of cyclooxygenase (COX) and fatty acid amide hydrolase (FAAH), the primary catabolic enzyme of the endocannabinoid N-arachidonoylethanolamine (anandamide; AEA), produces enhanced antinociceptive effects in a variety of murine models of pain. Accordingly, the primary objective of the present study was to investigate the consequences of co-administration of the COX inhibitor diclofenac and the highly selective FAAH inhibitor PF-3845 in models of neuropathic pain (i.e., chronic constrictive injury of the sciatic nerve (CCI)) and inflammatory pain induced by an intraplantar injection of carrageenan. Here, we report that combined administration of subthreshold doses of these drugs produced enhanced antinociceptive effects in CCI and carrageenan pain models, the latter of which was demonstrated to require both CB1 and CB2 receptors. The combined administration of subthreshold doses of these drugs also increased AEA levels and decreased prostaglandin levels in whole brain. Together, these data add to the growing research that dual blockade of FAAH and COX represents a potential therapeutic strategy for the treatment of neuropathic and inflammatory pain states. PERSPECTIVE Tandem inhibition of FAAH and COX attenuates inflammatory and neuropathic pain states, which may avoid potentially harmful side effects of other therapeutic options, such as NSAIDs or opioids.
Collapse
Affiliation(s)
- Travis W Grim
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA.
| | - Sudeshna Ghosh
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Ku-Lung Hsu
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Steven G Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|
40
|
Davis MP. Cannabinoids in pain management: CB1, CB2 and non-classic receptor ligands. Expert Opin Investig Drugs 2014; 23:1123-40. [PMID: 24836296 DOI: 10.1517/13543784.2014.918603] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Commercially available cannabinoids are subject to psychotomimetic and addiction (cannabinomimetic) adverse effects largely through activation of the cannabinoid 1 receptor (CB1r). The available commercial cannabinoids have a narrow therapeutic index. Recently developed peripherally restricted cannabinoids, regionally administered cannabinoids, bifunctional cannabinoid ligands and cannabinoid enzyme inhibitors, endocannabinoids, which do not interact with classic cannabinoid receptors (CB1r and CB2r), cannabinoid receptor antagonists and selective CB1r agonists hold promise as analgesics. AREAS COVERED This author provides a review of the current investigational cannabinoids currently in development for pain management. The author also provides their perspective on the future of the field. EXPERT OPINION Regional and peripherally restricted cannabinoids will reduce cannabinomimetic side effects. Spinal cannabinoids may increase the therapeutic index by limiting the dose necessary for response and minimize drugs exposure to supraspinal sites where cannabinomimetic side effects originate. Cannabinoid bifunctional ligands should be further explored. The combination of a CB2r agonist with a transient receptor potential vanilloid (TRPV-1) antagonist may improve the therapeutic index of the CB2r agonist. Enzyme inhibitors plus TRPV-1 blockers should be further explored. The development of analgesic tolerance with enzyme inhibitors and the pronociceptive effects of prostamides limit the benefits to cannabinoid hydrolyzing enzyme inhibitors. Most clinically productive development of cannabinoids over the next 5 years will be in the area of selective CB2r agonists. These agents will be tested in various inflammatory, osteoarthritis and neuropathic pains.
Collapse
Affiliation(s)
- Mellar P Davis
- The Cleveland Clinic Taussig Cancer Institute, The Harry R. Horvitz Center for Palliative Medicine, Department of Solid Tumor Oncology , 9500 Euclid Avenue R35, Cleveland, OH 44195 , USA +1 216 445 4622 ; +1 216 636 3179 ;
| |
Collapse
|