1
|
Rabeh N, Hajjar B, Maraka JO, Sammanasunathan AF, Khan M, Alkhaaldi SMI, Mansour S, Almheiri RT, Hamdan H, Abd-Elrahman KS. Targeting mGluR group III for the treatment of neurodegenerative diseases. Biomed Pharmacother 2023; 168:115733. [PMID: 37862967 DOI: 10.1016/j.biopha.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Glutamate, an excitatory neurotransmitter, is essential for neuronal function, and it acts on ionotropic or metabotropic glutamate receptors (mGluRs). A disturbance in glutamatergic signaling is a hallmark of many neurodegenerative diseases. Developing disease-modifying treatments for neurodegenerative diseases targeting glutamate receptors is a promising avenue. The understudied group III mGluR 4, 6-8 are commonly found in the presynaptic membrane, and their activation inhibits glutamate release. Thus, targeted mGluRs therapies could aid in treating neurodegenerative diseases. This review describes group III mGluRs and their pharmacological ligands in the context of amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's diseases. Attempts to evaluate the efficacy of these drugs in clinical trials are also discussed. Despite a growing list of group III mGluR-specific pharmacological ligands, research on the use of these drugs in neurodegenerative diseases is limited, except for Parkinson's disease. Future efforts should focus on delineating the contribution of group III mGluR to neurodegeneration and developing novel ligands with superior efficacy and a favorable side effect profile for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Rabeh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Baraa Hajjar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jude O Maraka
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Ashwin F Sammanasunathan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Mohammed Khan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Samy Mansour
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Rashed T Almheiri
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pharmacology and Therapeutics, College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
2
|
Zarcone TJ. Neuroscience and Actometry: an example of the benefits of the precise measurement of behavior. Brain Res Bull 2022; 185:86-90. [PMID: 35472566 DOI: 10.1016/j.brainresbull.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE Assess the impact the force-plate actometer, invented by Stephen C. Fowler, has had on behavioral neuroscience so far and what may be possible for future progress. METHODS The web service Scopus was queried on April 28, 2021 for articles that cited the Journal of Neuroscience Methods paper titled "A force-plate actometer for quantitating rodent behaviors: illustrative data on locomotion, rotation, spatial patterning, stereotypies, and tremor" resulting in 134 articles. Articles were coded by the author for type (e.g., research, review, book chapter), phenomenon (e.g., stress, addiction), intervention (e.g., pharmacological), and measure (e.g., distance traveled, tremor). CONCLUSIONS Of the 134 citations, 116 were research articles, 10 were review articles, 7 were book chapters and one was an advertisement. The force-plate actometer has been used to study a variety of phenomena and its measurement capabilities were expanded. While primarily used for rats and mice, other species have been used.
Collapse
Affiliation(s)
- Troy J Zarcone
- National Institute on Drug Abuse, 301 North Stonestreet Ave, Bethesda, MD 20892.
| |
Collapse
|
3
|
Kosmowska B, Ossowska K, Wardas J. Pramipexole Reduces zif-268 mRNA Expression in Brain Structures involved in the Generation of Harmaline-Induced Tremor. Neurochem Res 2020; 45:1518-1525. [PMID: 32172399 PMCID: PMC7297825 DOI: 10.1007/s11064-020-03010-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 11/25/2022]
Abstract
Essential tremor is one of the most common neurological disorders, however, it is not sufficiently controlled with currently available pharmacotherapy. Our recent study has shown that pramipexole, a drug efficient in inhibiting parkinsonian tremor, reduced the harmaline-induced tremor in rats, generally accepted to be a model of essential tremor. The aim of the present study was to investigate brain targets for the tremorolytic effect of pramipexole by determination of the early activity-dependent gene zif-268 mRNA expression. Tremor in rats was induced by harmaline administered at a dose of 15 mg/kg ip. Pramipexole was administered at a low dose of 0.1 mg/kg sc. Tremor was measured by Force Plate Actimeters where four force transducers located below the corners of the plate tracked the animal's position on a Cartesian plane. The zif-268 mRNA expression was analyzed by in situ hybridization in brain slices. Harmaline induced tremor and increased zif-268 mRNA levels in the inferior olive, cerebellar cortex, ventroanterior/ventrolateral thalamic nuclei and motor cortex. Pramipexole reversed both the harmaline-induced tremor and the increase in zif-268 mRNA expression in the inferior olive, cerebellar cortex and motor cortex. Moreover, the tremor intensity correlated positively with zif-268 mRNA expression in the above structures. The present results seem to suggest that the tremorolytic effect of pramipexole is related to the modulation of the harmaline-increased neuronal activity in the tremor network which includes the inferior olive, cerebellar cortex and motor cortex. Potential mechanisms underlying the above pramipexole action are discussed.
Collapse
Affiliation(s)
- Barbara Kosmowska
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Krystyna Ossowska
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Jadwiga Wardas
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
| |
Collapse
|
4
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. An Update on the Neurochemistry of Essential Tremor. Curr Med Chem 2020; 27:1690-1710. [DOI: 10.2174/0929867325666181112094330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/03/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Background:
The pathophysiology and neurochemical mechanisms of essential
tremor (ET) are not fully understood, because only a few post-mortem studies have been reported,
and there is a lack of good experimental model for this disease.
Objective:
The main aim of this review is to update data regarding the neurochemical features
of ET. Alterations of certain catecholamine systems, the dopaminergic, serotonergic,
GABAergic, noradrenergic, and adrenergic systems have been described, and are the object of
this revision.
Methods:
For this purpose, we performed a literature review on alterations of the neurotransmitter
or neuromodulator systems (catecholamines, gammaaminobutyric acid or GABA,
excitatory amino acids, adenosine, T-type calcium channels) in ET patients (both post-mortem
or in vivo) or in experimental models resembling ET.
Results and Conclusion:
The most consistent data regarding neurochemistry of ET are related
with the GABAergic and glutamatergic systems, with a lesser contribution of adenosine
and dopaminergic and adrenergic systems, while there is not enough evidence of a definite
role of other neurotransmitter systems in ET. The improvement of harmaline-induced tremor
in rodent models achieved with T-type calcium channel antagonists, cannabinoid 1 receptor,
sphingosine-1-phosphate receptor agonists, and gap-junction blockers, suggests a potential
role of these structures in the pathogenesis of ET.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Caceres, Spain
| | - José A.G. Agúndez
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Caceres, Spain
| |
Collapse
|
5
|
Kosmowska B, Ossowska K, Konieczny J, Lenda T, Berghauzen-Maciejewska K, Wardas J. Inhibition of Excessive Glutamatergic Transmission in the Ventral Thalamic Nuclei by a Selective Adenosine A1 Receptor Agonist, 5′-Chloro-5′-Deoxy-(±)-ENBA Underlies its Tremorolytic Effect in the Harmaline-Induced Model of Essential Tremor. Neuroscience 2020; 429:106-118. [DOI: 10.1016/j.neuroscience.2019.12.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022]
|
6
|
Jankowska A, Satała G, Partyka A, Wesołowska A, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies. Curr Med Chem 2019; 26:4885-4913. [PMID: 31291870 DOI: 10.2174/0929867326666190710172002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder that affects about 1 in 100 people around the world and results in persistent emotional and cognitive impairments. Untreated schizophrenia leads to deterioration in quality of life and premature death. Although the clinical efficacy of dopamine D2 receptor antagonists against positive symptoms of schizophrenia supports the dopamine hypothesis of the disease, the resistance of negative and cognitive symptoms to these drugs implicates other systems in its pathophysiology. Many studies suggest that abnormalities in glutamate homeostasis may contribute to all three groups of schizophrenia symptoms. Scientific considerations also include disorders of gamma-aminobutyric acid-ergic and serotonergic neurotransmissions as well as the role of the immune system. The purpose of this review is to update the most recent reports on the discovery and development of non-dopaminergic agents that may reduce positive, negative, and cognitive symptoms of schizophrenia, and may be alternative to currently used antipsychotics. This review collects the chemical structures of representative compounds targeting metabotropic glutamate receptor, gamma-aminobutyric acid type A receptor, alpha 7 nicotinic acetylcholine receptor, glycine transporter type 1 and glycogen synthase kinase 3 as well as results of in vitro and in vivo studies indicating their efficacy in schizophrenia. Results of clinical trials assessing the safety and efficacy of the tested compounds have also been presented. Finally, attention has been paid to multifunctional ligands with serotonin receptor affinity or phosphodiesterase inhibitory activity as novel strategies in the search for dedicated medicines for patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
7
|
Fulton MG, Loch MT, Cuoco CA, Rodriguez AL, Days E, Vinson PN, Kozek KA, Weaver CD, Blobaum AL, Conn PJ, Niswender CM, Lindsley CW. Challenges in the Discovery and Optimization of mGlu 2/4 Heterodimer Positive Allosteric Modulators. LETT DRUG DES DISCOV 2019; 16:1387-1394. [PMID: 32201485 PMCID: PMC7059629 DOI: 10.2174/1570180815666181017131349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 11/22/2022]
Abstract
Background: This article describes the challenges in the discovery and optimization of mGlu2/4 heterodimer Positive Allosteric Modulators (PAMs). Methods: Initial forays based on VU0155041, a PAM of both the mGlu4 homodimer and the mGlu2/4 heterodimer, led to flat, intractable SAR that precluded advancement. Screening of a collection of 1,152 FDA approved drugs led to the discovery that febuxostat, an approved xanthine oxidase inhibitor, was a moderately potent PAM of the mGlu2/4 heterodimer (EC50 = 3.4 μM), but was peripherally restricted (rat Kp = 0.03). Optimization of this hit led to PAMs with improved potency (EC50s <800 nM) and improved CNS penetration (rat Kp >2, an ~100-fold increase). Results: However, these new amide analogs of febuxostat proved to be either GIRK1/2 and GIRK1/4 activators (primary carboxamide congeners) or mGlu2 PAMs (secondary and tertiary amides) and not selective mGlu2/4 heterodimer PAMs. Conclusion: These results required the team to develop a new screening cascade paradigm, and exemplified the challenges in developing allosteric ligands for heterodimeric receptors.
Collapse
Affiliation(s)
- Mark Gallant Fulton
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew Thomas Loch
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Caroline Anne Cuoco
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Alice Lambert Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Emily Days
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Paige Newton Vinson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Krystian Andrezej Kozek
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Charles David Weaver
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna Louise Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Peter Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Colleen Marie Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Craig William Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Savoldi R, Polari D, Pinheiro-da-Silva J, Silva PF, Lobao-Soares B, Yonamine M, Freire FAM, Luchiari AC. Behavioral Changes Over Time Following Ayahuasca Exposure in Zebrafish. Front Behav Neurosci 2017; 11:139. [PMID: 28804451 PMCID: PMC5532431 DOI: 10.3389/fnbeh.2017.00139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/14/2017] [Indexed: 11/30/2022] Open
Abstract
The combined infusion of Banisteriopsis caapi stem and Psychotria viridis leaves, known as ayahuasca, has been used for centuries by indigenous tribes. The infusion is rich in N, N-dimethyltryptamine (DMT) and monoamine oxidase inhibitors, with properties similar to those of serotonin. Despite substantial progress in the development of new drugs to treat anxiety and depression, current treatments have several limitations. Alternative drugs, such as ayahuasca, may shed light on these disorders. Here, we present time-course behavioral changes induced by ayahuasca in zebrafish, as first step toward establishing an ideal concentration for pre-clinical evaluations. We exposed adult zebrafish to five concentrations of the ayahuasca infusion: 0 (control), 0.1, 0.5, 1, and 3 ml/L (n = 14 each group), and behavior was recorded for 60 min. We evaluated swimming speed, distance traveled, freezing and bottom dwelling every min for 60 min. Swimming speed and distance traveled decreased with an increase in ayahuasca concentration while freezing increased with 1 and 3 ml/L. Bottom dwelling increased with 1 and 3 ml/L, but declined with 0.1 ml/L. Our data suggest that small amounts of ayahuasca do not affect locomotion and reduce anxiety-like behavior in zebrafish, while increased doses of the drug lead to crescent anxiogenic effects. We conclude that the temporal analysis of zebrafish behavior is a sensitive method for the study of ayahuasca-induced functional changes in the vertebrate brain.
Collapse
Affiliation(s)
- Robson Savoldi
- Luchiari Lab, Physiology, Federal University of Rio Grande do NorteNatal, Brazil
| | - Daniel Polari
- Luchiari Lab, Physiology, Federal University of Rio Grande do NorteNatal, Brazil
| | | | - Priscila F Silva
- Luchiari Lab, Physiology, Federal University of Rio Grande do NorteNatal, Brazil
| | - Bruno Lobao-Soares
- Biophysics and Pharmacology, Federal University of Rio Grande do NorteNatal, Brazil
| | - Mauricio Yonamine
- Clinical and Toxicological Analysis, University of São PauloSão Paulo, Brazil
| | - Fulvio A M Freire
- Aquatic Fauna Lab, Botany and Zoology, Federal University of Rio Grande do NorteNatal, Brazil
| | - Ana C Luchiari
- Luchiari Lab, Physiology, Federal University of Rio Grande do NorteNatal, Brazil
| |
Collapse
|
9
|
Kosmowska B, Ossowska K, Głowacka U, Wardas J. Tremorolytic effect of 5'-chloro-5'-deoxy-(±)-ENBA, a potent and selective adenosine A1 receptor agonist, evaluated in the harmaline-induced model in rats. CNS Neurosci Ther 2017; 23:438-446. [PMID: 28371468 DOI: 10.1111/cns.12692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 01/19/2023] Open
Abstract
AIM The aim of this study was to examine the role of adenosine A1 receptors in the harmaline-induced tremor in rats using 5'-chloro-5'-deoxy-(±)-ENBA (5'Cl5'd-(±)-ENBA), a brain-penetrant, potent, and selective adenosine A1 receptor agonist. METHODS Harmaline was injected at a dose of 15 mg/kg ip and tremor was measured automatically in force-plate actimeters by an increased averaged power in the frequency band of 9-15 Hz (AP2) and by tremor index (a difference in power between AP2 and averaged power in the frequency band of 0-8 Hz). The zif-268 mRNA expression was additionally analyzed by in situ hybridization in several brain structures. RESULTS 5'Cl5'd-(±)-ENBA (0.05-0.5 mg/kg ip) dose dependently reduced the harmaline-induced tremor and this effect was reversed by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective antagonist of adenosine A1 receptors (1 mg/kg ip). Harmaline increased the zif-268 mRNA expression in the inferior olive, cerebellar cortex, ventroanterior/ventrolateral thalamic nuclei, and motor cortex. 5'Cl5'd-(±)-ENBA reversed these increases in all the above structures. DPCPX reduced the effect of 5'Cl5'd-(±)-ENBA on zif-268 mRNA in the motor cortex. CONCLUSION This study suggests that adenosine A1 receptors may be a potential target for the treatment of essential tremor.
Collapse
Affiliation(s)
- Barbara Kosmowska
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Krystyna Ossowska
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Urszula Głowacka
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Jadwiga Wardas
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
10
|
Development of a mechanism-based pharmacokinetic/pharmacodynamic model to characterize the thermoregulatory effects of serotonergic drugs in mice. Acta Pharm Sin B 2016; 6:492-503. [PMID: 27709018 PMCID: PMC5045556 DOI: 10.1016/j.apsb.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 01/01/2023] Open
Abstract
We have shown recently that concurrent harmaline, a monoamine oxidase-A inhibitor (MAOI), potentiates serotonin (5-HT) receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT)-induced hyperthermia. The objective of this study was to develop an integrated pharmacokinetic/pharmacodynamic (PK/PD) model to characterize and predict the thermoregulatory effects of such serotonergic drugs in mice. Physiological thermoregulation was described by a mechanism-based indirect-response model with adaptive feedback control. Harmaline-induced hypothermia and 5-MeO-DMT–elicited hyperthermia were attributable to the loss of heat through the activation of 5-HT1A receptor and thermogenesis via the stimulation of 5-HT2A receptor, respectively. Thus serotonergic 5-MeO-DMT–induced hyperthermia was readily distinguished from handling/injection stress-provoked hyperthermic effects. This PK/PD model was able to simultaneously describe all experimental data including the impact of drug-metabolizing enzyme status on 5-MeO-DMT and harmaline PK properties, and drug- and stress-induced simple hypo/hyperthermic and complex biphasic effects. Furthermore, the modeling results revealed a 4-fold decrease of apparent SC50 value (1.88–0.496 µmol/L) for 5-MeO-DMT when harmaline was co-administered, providing a quantitative assessment for the impact of concurrent MAOI harmaline on 5-MeO-DMT–induced hyperthermia. In addition, the hyperpyrexia caused by toxic dose combinations of harmaline and 5-MeO-DMT were linked to the increased systemic exposure to harmaline rather than 5-MeO-DMT, although the body temperature profiles were mispredicted by the model. The results indicate that current PK/PD model may be used as a new conceptual framework to define the impact of serotonergic agents and stress factors on thermoregulation.
Collapse
|
11
|
Jiang XL, Shen HW, Yu AM. Modification of 5-methoxy-N,N-dimethyltryptamine-induced hyperactivity by monoamine oxidase A inhibitor harmaline in mice and the underlying serotonergic mechanisms. Pharmacol Rep 2016; 68:608-15. [PMID: 26977821 DOI: 10.1016/j.pharep.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are indolealkylamine (IAA) drugs often abused together. Our recent studies have revealed the significant effects of co-administered harmaline, a monoamine oxidase inhibitor (MAOI), on 5-MeO-DMT pharmacokinetics and thermoregulation. This study was to delineate the impact of harmaline and 5-MeO-DMT on home-cage activity in mouse models, as well as the contribution of serotonin (5-HT) receptors. METHODS Home-cage activities of individual animals were monitored automatically in the home cages following implantation of telemetry transmitters and administration of various doses of IAA drugs and 5-HT receptor antagonists. Area under the effect curve (AUEC) of mouse activity values were calculated by trapezoidal rule. RESULTS High dose of harmaline (15mg/kg, ip) alone caused an early-phase (0-45min) hypoactivity in mice that was fully attenuated by 5-HT1A receptor antagonist WAY-100635, whereas a late-phase (45-180min) hyperactivity that was reduced by 5-HT2A receptor antagonist MDL-100907. 5-MeO-DMT (10 and 20mg/kg, ip) alone induced biphasic effects, an early-phase (0-45min) hypoactivity that was completely attenuated by WAY-100635, and a late-phase (45-180min) hyperactivity that was fully suppressed by MDL-100907. Interestingly, co-administration of MAOI harmaline (2-15mg/kg) with a subthreshold dose of 5-MeO-DMT (2mg/kg) induced excessive hyperactivities at late phase (45-180min) that could be abolished by either WAY-100635 or MDL-100907. CONCLUSIONS Co-administration of MAOI with 5-MeO-DMT provokes excessive late-phase hyperactivity, which involves the activation of both 5-HT1A and 5-HT2A receptors.
Collapse
Affiliation(s)
- Xi-Ling Jiang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Hong-Wu Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
12
|
Kosmowska B, Wardas J, Głowacka U, Ananthan S, Ossowska K. Pramipexole at a Low Dose Induces Beneficial Effect in the Harmaline-induced Model of Essential Tremor in Rats. CNS Neurosci Ther 2015; 22:53-62. [PMID: 26459182 DOI: 10.1111/cns.12467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 01/18/2023] Open
Abstract
AIMS The aim of the study was to examine the effects of preferential agonists of dopamine D3 receptors: pramipexole and 7-OH-DPAT on the harmaline-induced tremor in rats (a model of essential tremor, ET). To study receptor mechanisms of these drugs, rats were pretreated with dopamine D3 receptor antagonists--SB-277011-A and SR-21502, an antagonist of presynaptic D2/D3 receptors--amisulpride, or a nonselective antagonist of D2-like receptors, haloperidol, at a postsynaptic dose. METHODS For tremor measurement, fully automated force plate actimeters were used and data were analyzed using fast Fourier transform. RESULTS Harmaline (15 mg/kg ip)-triggered tremor was manifested by an increase in the power within 9-15 Hz band (AP2). Pramipexole administered at a low (0.1 mg/kg sc), but not higher doses (0.3 and 1 mg/kg sc), and 7-OH-DPAT (0.1, 0.3, and 1 mg/kg sc) reversed the harmaline-increased AP2. None of the examined dopamine antagonists: SB-277011-A (10 mg/kg ip), SR-21502 (15 mg/kg ip), haloperidol (0.5 mg/kg ip), or amisulpride (1 mg/kg ip) influenced the above effect of dopamine agonists. CONCLUSION The present study indicates that pramipexole reduces the harmaline-induced tremor, which may suggest its beneficial effects in ET patients. However, mechanisms underlying its action are still unclear and need further examination.
Collapse
Affiliation(s)
- Barbara Kosmowska
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Jadwiga Wardas
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Urszula Głowacka
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | - Krystyna Ossowska
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
13
|
Jiang XL, Shen HW, Yu AM. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors. Neuropharmacology 2015; 89:342-51. [PMID: 25446678 DOI: 10.1016/j.neuropharm.2014.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity.
Collapse
Affiliation(s)
- Xi-Ling Jiang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214-8033, USA
| | | | | |
Collapse
|
14
|
Ossowska K, Głowacka U, Kosmowska B, Wardas J. Apomorphine enhances harmaline-induced tremor in rats. Pharmacol Rep 2015; 67:435-41. [DOI: 10.1016/j.pharep.2014.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/08/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
|
15
|
Jalan-Sakrikar N, Field JR, Klar R, Mattmann M, Gregory KJ, Zamorano R, Engers DW, Bollinger SR, Weaver CD, Days EL, Lewis LM, Utley TJ, Hurtado M, Rigault D, Acher F, Walker AG, Melancon BJ, Wood MR, Lindsley C, Conn PJ, Xiang Z, Hopkins CR, Niswender CM. Identification of positive allosteric modulators VU0155094 (ML397) and VU0422288 (ML396) reveals new insights into the biology of metabotropic glutamate receptor 7. ACS Chem Neurosci 2014; 5:1221-37. [PMID: 25225882 PMCID: PMC4306484 DOI: 10.1021/cn500153z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/15/2014] [Indexed: 11/29/2022] Open
Abstract
Metabotropic glutamate receptor 7 (mGlu7) is a member of the group III mGlu receptors (mGlus), encompassed by mGlu4, mGlu6, mGlu7, and mGlu8. mGlu7 is highly expressed in the presynaptic active zones of both excitatory and inhibitory synapses, and activation of the receptor regulates the release of both glutamate and GABA. mGlu7 is thought to be a relevant therapeutic target for a number of neurological and psychiatric disorders, and polymorphisms in the GRM7 gene have been linked to autism, depression, ADHD, and schizophrenia. Here we report two new pan-group III mGlu positive allosteric modulators, VU0155094 and VU0422288, which show differential activity at the various group III mGlus. Additionally, both compounds show probe dependence when assessed in the presence of distinct orthosteric agonists. By pairing studies of these nonselective compounds with a synapse in the hippocampus that expresses only mGlu7, we have validated activity of these compounds in a native tissue setting. These studies provide proof-of-concept evidence that mGlu7 activity can be modulated by positive allosteric modulation, paving the way for future therapeutics development.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Julie R. Field
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Rebecca Klar
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Margrith
E. Mattmann
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical
Sciences, Parkville, VIC 3052, Australia
| | - Rocio Zamorano
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Darren W. Engers
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Sean R. Bollinger
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - C. David Weaver
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Emily L. Days
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - L. Michelle Lewis
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Thomas J. Utley
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Miguel Hurtado
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | | | | | - Adam G. Walker
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Bruce J. Melancon
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Michael R. Wood
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Craig
W. Lindsley
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - P. Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Zixiu Xiang
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Corey R. Hopkins
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Colleen M. Niswender
- Department of Pharmacology and Vanderbilt Center
for Neuroscience Drug Discovery, Department of Pharmacology and
Vanderbilt Institute of Chemical Biology, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|