1
|
Mao LM, Young L, Chu XP, Wang JQ. Regulation of Src family kinases by muscarinic acetylcholine receptors in heterologous cells and neurons. Front Mol Neurosci 2024; 16:1340725. [PMID: 38273940 PMCID: PMC10808654 DOI: 10.3389/fnmol.2023.1340725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Five muscarinic acetylcholine (mACh) receptor subtypes are divided into two classes: the M1 class (M1, M3, and M5) and the M2 class (M2 and M4). The former is coupled to Gq proteins, while the latter is coupled to Gi/o proteins. Accumulating evidence indicates that mACh receptors play a significant role in the regulation of the Src family kinase (SFK), a subfamily of non-receptor tyrosine kinases. mACh receptors exert their roles in a subtype-dependent fashion and preferentially target Src and Fyn, two members of SFKs that are expressed in the brain and enriched at synaptic sites. While the M1 receptor positively modulates SFK activity, the M4 receptor inhibits it. By modulating SFKs, mACh receptors are actively involved in the regulation of expression and function of a variety of receptors, structural proteins, and signaling molecules. In particular, the M4 receptor and the dopamine D1 receptor are coexpressed in striatonigral projection neurons of the striatum. Gi/o-coupled M4 and Gq-coupled D1 receptors antagonistically regulate SFK activity, thereby forming a dynamic balance controlling glutamate receptor activity, excitability of neurons, and synaptic plasticity. In summary, mACh receptors play a crucial role in regulating SFK activity in heterologous cells and neurons.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Lexi Young
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - John Q. Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
2
|
Nejatie A, Yee SS, Jeter A, Saragovi HU. The cancer glycocode as a family of diagnostic biomarkers, exemplified by tumor-associated gangliosides. Front Oncol 2023; 13:1261090. [PMID: 37954075 PMCID: PMC10637394 DOI: 10.3389/fonc.2023.1261090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
One unexploited family of cancer biomarkers comprise glycoproteins, carbohydrates, and glycolipids (the Tumor Glycocode).A class of glycolipid cancer biomarkers, the tumor-marker gangliosides (TMGs) are presented here as potential diagnostics for detecting cancer, especially at early stages, as the biological function of TMGs makes them etiological. We propose that a quantitative matrix of the Cancer Biomarker Glycocode and artificial intelligence-driven algorithms will expand the menu of validated cancer biomarkers as a step to resolve some of the challenges in cancer diagnosis, and yield a combination that can identify a specific cancer, in a tissue-agnostic manner especially at early stages, to enable early intervention. Diagnosis is critical to reducing cancer mortality but many cancers lack efficient and effective diagnostic tests, especially for early stage disease. Ideal diagnostic biomarkers are etiological, samples are preferably obtained via non-invasive methods (e.g. liquid biopsy of blood or urine), and are quantitated using assays that yield high diagnostic sensitivity and specificity for efficient diagnosis, prognosis, or predicting response to therapy. Validated biomarkers with these features are rare. While the advent of proteomics and genomics has led to the identification of a multitude of proteins and nucleic acid sequences as cancer biomarkers, relatively few have been approved for clinical use. The use of multiplex arrays and artificial intelligence-driven algorithms offer the option of combining data of known biomarkers; however, for most, the sensitivity and the specificity are below acceptable criteria, and clinical validation has proven difficult. One strategic solution to this problem is to expand the biomarker families beyond those currently exploited. One unexploited family of cancer biomarkers comprise glycoproteins, carbohydrates, and glycolipids (the Tumor Glycocode). Here, we focus on a family of glycolipid cancer biomarkers, the tumor-marker gangliosides (TMGs). We discuss the diagnostic potential of TMGs for detecting cancer, especially at early stages. We include prior studies from the literature to summarize findings for ganglioside quantification, expression, detection, and biological function and its role in various cancers. We highlight the examples of TMGs exhibiting ideal properties of cancer diagnostic biomarkers, and the application of GD2 and GD3 for diagnosis of early stage cancers with high sensitivity and specificity. We propose that a quantitative matrix of the Cancer Biomarker Glycocode and artificial intelligence-driven algorithms will expand the menu of validated cancer biomarkers as a step to resolve some of the challenges in cancer diagnosis, and yield a combination that can identify a specific cancer, in a tissue-agnostic manner especially at early stages, to enable early intervention.
Collapse
Affiliation(s)
- Ali Nejatie
- Center for Translational Research, Lady Davis Research Institute-Jewish General Hospital, Montreal, QC, Canada
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Samantha S. Yee
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, United States
| | | | - Horacio Uri Saragovi
- Center for Translational Research, Lady Davis Research Institute-Jewish General Hospital, Montreal, QC, Canada
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Ophthalmology and Vision Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Mao LM, Wang JQ. Roles of adenosine A 1 receptors in the regulation of SFK activity in the rat forebrain. Brain Behav 2021; 11:e2254. [PMID: 34156168 PMCID: PMC8413746 DOI: 10.1002/brb3.2254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine A1 receptors are widely expressed in the mammalian brain. Through interacting with Gαi/o -coupled A1 receptors, the neuromodulator adenosine modulates a variety of cellular and synaptic activities. To determine the linkage from A1 receptors to a key intracellular signaling pathway, we investigated the impact of blocking A1 receptors on a subfamily of nonreceptor tyrosine kinases, that is, the Src family kinase (SFK), in different rat brain regions in vivo. We found that pharmacological blockade of A1 receptors by a single systemic injection of the A1 selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) induced an increase in autophosphorylation of SFKs at a consensus activation site, tyrosine 416 (Y416), in the two subdivisions of the striatum, the caudate putamen and nucleus accumbens. DPCPX also increased SFK Y416 phosphorylation in the medial prefrontal cortex (mPFC) but not the hippocampus. The DPCPX-induced Y416 phosphorylation was time dependent and reversible. In immunopurified Fyn and Src proteins from the striatum, DPCPX elevated SFK Y416 phosphorylation and tyrosine kinase activity in Fyn but not in Src proteins. In the mPFC, DPCPX enhanced Y416 phosphorylation and tyrosine kinase activity in both Fyn and Src immunoprecipitates. DPCPX had no effect on expression of total Fyn and Src proteins in the striatum, mPFC, and hippocampus. These results demonstrate a tonic inhibitory linkage from A1 receptors to SFKs in the striatum and mPFC. Blocking this inhibitory tone could significantly enhance constitutive SFK Y416 phosphorylation in the rat brain in a region- and time-dependent manner.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA.,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
4
|
New Structural Perspectives in G Protein-Coupled Receptor-Mediated Src Family Kinase Activation. Int J Mol Sci 2021; 22:ijms22126489. [PMID: 34204297 PMCID: PMC8233884 DOI: 10.3390/ijms22126489] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
Src family kinases (SFKs) are key regulators of cell proliferation, differentiation, and survival. The expression of these non-receptor tyrosine kinases is strongly correlated with cancer development and tumor progression. Thus, this family of proteins serves as an attractive drug target. The activation of SFKs can occur via multiple signaling pathways, yet many of them are poorly understood. Here, we summarize the current knowledge on G protein-coupled receptor (GPCR)-mediated regulation of SFKs, which is of considerable interest because GPCRs are among the most widely used pharmaceutical targets. This type of activation can occur through a direct interaction between the two proteins or be allosterically regulated by arrestins and G proteins. We postulate that a rearrangement of binding motifs within the active conformation of arrestin-3 mediates Src regulation by comparison of available crystal structures. Therefore, we hypothesize a potentially different activation mechanism compared to arrestin-2. Furthermore, we discuss the probable direct regulation of SFK by GPCRs and investigate the intracellular domains of exemplary GPCRs with conserved polyproline binding motifs that might serve as scaffolding domains to allow such a direct interaction. Large intracellular domains in GPCRs are often understudied and, in general, not much is known of their contribution to different signaling pathways. The suggested direct interaction between a GPCR and a SFK could allow for a potential immediate allosteric regulation of SFKs by GPCRs and thereby unravel a novel mechanism of SFK signaling. This overview will help to identify new GPCR-SFK interactions, which could serve to explain biological functions or be used to modulate downstream effectors.
Collapse
|
5
|
Pivotal Role of Fyn Kinase in Parkinson's Disease and Levodopa-Induced Dyskinesia: a Novel Therapeutic Target? Mol Neurobiol 2020; 58:1372-1391. [PMID: 33175322 DOI: 10.1007/s12035-020-02201-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
The exact etiology of Parkinson's disease (PD) remains obscure, although many cellular mechanisms including α-synuclein aggregation, oxidative damage, excessive neuroinflammation, and dopaminergic neuronal apoptosis are implicated in its pathogenesis. There is still no disease-modifying treatment for PD and the gold standard therapy, chronic use of levodopa is usually accompanied by severe side effects, mainly levodopa-induced dyskinesia (LID). Hence, the elucidation of the precise underlying molecular mechanisms is of paramount importance. Fyn is a tyrosine phospho-transferase of the Src family nonreceptor kinases that is highly implicated in immune regulation, cell proliferation and normal brain development. Accumulating preclinical evidence highlights the emerging role of Fyn in key aspects of PD and LID pathogenesis: it may regulate α-synuclein phosphorylation, oxidative stress-induced dopaminergic neuronal death, enhanced neuroinflammation and glutamate excitotoxicity by mediating key signaling pathways, such as BDNF/TrkB, PKCδ, MAPK, AMPK, NF-κB, Nrf2, and NMDAR axes. These findings suggest that therapeutic targeting of Fyn or Fyn-related pathways may represent a novel approach in PD treatment. Saracatinib, a nonselective Fyn inhibitor, has already been tested in clinical trials for Alzheimer's disease, and novel selective Fyn inhibitors are under investigation. In this comprehensive review, we discuss recent evidence on the role of Fyn in the pathogenesis of PD and LID and provide insights on additional Fyn-related molecular mechanisms to be explored in PD and LID pathology that could aid in the development of future Fyn-targeted therapeutic approaches.
Collapse
|
6
|
In-silico investigation of coding variants potentially affecting the functioning of the glutamatergic N-methyl-D-aspartate receptor in schizophrenia. Psychiatr Genet 2019; 29:44-50. [DOI: 10.1097/ypg.0000000000000216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Hara Y, Crimins JL, Puri R, Wang ACJ, Motley SE, Yuk F, Ramos TM, Janssen WGM, Rapp PR, Morrison JH. Estrogen Alters the Synaptic Distribution of Phospho-GluN2B in the Dorsolateral Prefrontal Cortex While Promoting Working Memory in Aged Rhesus Monkeys. Neuroscience 2019; 394:303-315. [PMID: 30482274 DOI: 10.1016/j.neuroscience.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023]
Abstract
Age- and menopause-related deficits in working memory can be partially restored with estradiol replacement in women and female nonhuman primates. Working memory is a cognitive function reliant on persistent firing of dorsolateral prefrontal cortex (dlPFC) neurons that requires the activation of GluN2B-containing glutamate NMDA receptors. We tested the hypothesis that the distribution of phospho-Tyr1472-GluN2B (pGluN2B), a predominant form of GluN2B seen at the synapse, is sensitive to aging or estradiol treatment and coupled to working memory performance. First, ovariectomized young and aged rhesus monkeys (Macaca mulatta) received long-term cyclic vehicle (V) or estradiol (E) treatment and were tested on the delayed response (DR) test of working memory. Then, serial section electron microscopic immunocytochemistry was performed to quantitatively assess the subcellular distribution of pGluN2B. While the densities of pGluN2B immunogold particles in dlPFC dendritic spines were not different across age or treatment groups, the percentage of gold particles located within the synaptic compartment was significantly lower in aged-E monkeys compared to young-E and aged-V monkeys. On the other hand, the percentage of pGluN2B gold particles in the spine cytoplasm was decreased with E treatment in young, but increased with E in aged monkeys. In aged monkeys, DR average accuracy inversely correlated with the percentage of synaptic pGluN2B, while it positively correlated with the percentage of cytoplasmic pGluN2B. Together, E replacement may promote cognitive health in aged monkeys, in part, by decreasing the relative representation of synaptic pGluN2B and potentially protecting the dlPFC from calcium toxicity.
Collapse
Affiliation(s)
- Yuko Hara
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Johanna L Crimins
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rishi Puri
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Athena C J Wang
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Sarah E Motley
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; California National Primate Research Center, Davis, CA 95616, United States
| | - Frank Yuk
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Tiffany M Ramos
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - William G M Janssen
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Peter R Rapp
- National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD 21224, United States
| | - John H Morrison
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; California National Primate Research Center, Davis, CA 95616, United States; Department of Neurology, School of Medicine, University of California, Davis, CA 95616, United States.
| |
Collapse
|
8
|
Jin DZ, Mao LM, Wang JQ. Amphetamine activates non-receptor tyrosine kinase Fyn and stimulates ERK phosphorylation in the rat striatum in vivo. Eur J Pharmacol 2018; 843:45-54. [PMID: 30419241 DOI: 10.1016/j.ejphar.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
The psychostimulant amphetamine (AMPH) has an impact on a variety of cellular activities in striatal neurons, although underlying signaling mechanisms are incompletely understood. The Src family kinase (SFK) is among key signaling molecules enriched in striatal neurons and is involved in the regulation of a set of discrete downstream targets. Given the likelihood that AMPH may regulate SFKs, we investigated and characterized the effect of AMPH on SFK phosphorylation and enzymatic activity in rat striatal neurons in vivo. We found that AMPH elevated SFK Y416 phosphorylation in striatal slices and the adult rat striatum. This elevation was concentration- and time-dependent and occurred in all subdivisions of the striatum, including the caudate putamen and nucleus accumbens (core and shell). The dopamine D1 receptor antagonist SCH23390 blocked the effect of AMPH. Between Fyn and Src, AMPH elevated phosphorylation of immunoprecipitated Fyn but not Src and increased Fyn kinase activity in the striatum. In parallel with SFKs, striatal ERK phosphorylation was increased by AMPH. This increase in ERK phosphorylation was reduced by the SFK inhibitor PP2. These results demonstrate that AMPH is able to activate SFKs (mainly Fyn) in striatal neurons via a D1 receptor-dependent mechanism. Activated SFKs participate in processing the concomitant ERK response to AMPH.
Collapse
Affiliation(s)
- Dao-Zhong Jin
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| | - Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
9
|
Ba M, Yu G, Yang H, Wang Y, Yu L, Kong M. Tat-Src reduced NR2B tyrosine phosphorylation and its interaction with NR2B in levodopa-induced dyskinetic rats model. Behav Brain Res 2018; 356:41-45. [PMID: 30130562 DOI: 10.1016/j.bbr.2018.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022]
Abstract
Augmented function of N-methyl-d-aspartate receptor subunit 2B (NR2B) and Src protein tyrosine kinase have been demonstrated to get involved in the pathological mechanisms of dyskinesia. In view of functional interactions between NR2B and Src, we investigated the effects of uncoupling NR2B and Src interactions on dyskinesia by using the Src-derived interfering peptide (Tat-Src). In the present study, valid 6-hydroxydopamine-lesioned parkinsonian rats were treated with levodopa intraperitoneally for 22 days to induce dyskinetic rats model. On day 23, dyskinetic rats received either Tat-Src or Tat-sSrc or vehicle with each levodopa dose. The data showed that in dyskinetic rats model intraperitoneal microinjection of Tat-Src improved dyskinetic behaviors and decreased NR2B tyrosine phosphorylation and the interactions of Src with NR2B induced by chronic levodopa treatment. Besides, Tat-Src also attenuated S-nitrosylation (SNO-Src) and the autophosphorylation (p-Src) of Src, which catalyzed NR2B phosphorylation. These findings suggest that targeting NR2B/Src complexes can be one potential treatment for dyskinesia in Parkinson's disease.
Collapse
Affiliation(s)
- Maowen Ba
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong 264000, PR China
| | - Guoping Yu
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong 264000, PR China
| | - Hongqi Yang
- Department of Neurology, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Ying Wang
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000, PR China
| | - Ling Yu
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000, PR China
| | - Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000, PR China.
| |
Collapse
|
10
|
He N, Mao LM, Sturich AW, Jin DZ, Wang JQ. Inhibition of basal and amphetamine-stimulated extracellular signal-regulated kinase (ERK) phosphorylation in the rat forebrain by muscarinic acetylcholine M4 receptors. Brain Res 2018; 1688:103-112. [PMID: 29577888 PMCID: PMC5903569 DOI: 10.1016/j.brainres.2018.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/05/2018] [Accepted: 03/14/2018] [Indexed: 01/06/2023]
Abstract
The mitogen-activated protein kinase (MAPK), especially its extracellular signal-regulated kinase (ERK) subfamily, is a group of kinases enriched in the mammalian brain. While ERK is central to cell signaling and neural activities, the regulation of ERK by transmitters is poorly understood. In this study, the role of acetylcholine in the regulation of ERK was investigated in adult rat striatum in vivo. We focused on muscarinic M1 and M4 receptors, two principal muscarinic acetylcholine (mACh) receptor subtypes in the striatum. A systemic injection of the M1-preferring antagonist telenzepine did not alter ERK phosphorylation in the two subdivisions of the striatum, the caudate putamen and nucleus accumbens. Similarly, telenzepine did not affect ERK phosphorylation in the medial prefrontal cortex (mPFC), hippocampus, and cerebellum. Moreover, telenzepine had no effect on the ERK phosphorylation induced by dopamine stimulation with the psychostimulant amphetamine. In contrast to telenzepine, the M4-preferring antagonist tropicamide consistently increased ERK phosphorylation in the striatum and mPFC. This increase was rapid and transient. Tropicamide and amphetamine when coadministered at subthreshold doses induced a significant increase in ERK phosphorylation. These results demonstrate that mACh receptors exert a subtype-specific modulation of ERK in striatal and mPFC neurons. While the M1 receptor antagonist has no effect on ERK phosphorylation, M4 receptors inhibit constitutive and dopamine-stimulated ERK phosphorylation in these dopamine-innervated brain regions.
Collapse
Affiliation(s)
- Nan He
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, MO 64108, USA
| | - Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, MO 64108, USA
| | - Adrian W Sturich
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Dao-Zhong Jin
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
11
|
Mao LM, Faris HJ, Wang JQ. Muscarinic Acetylcholine Receptors Inhibit Fyn Activity in the Rat Striatum In Vivo. J Mol Neurosci 2018; 64:523-532. [PMID: 29532369 PMCID: PMC5930050 DOI: 10.1007/s12031-018-1053-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/28/2018] [Indexed: 12/19/2022]
Abstract
The Src family kinase (SFK) is a subfamily of non-receptor tyrosine kinases. SFK members, Src and especially Fyn, are expressed in the striatum. These SFK members are involved in the regulation of neuronal and synaptic activities and are linked to the pathogenesis of a variety of neuropsychiatric and neurodegenerative disorders. Given the fact that muscarinic acetylcholine (mACh) receptors are highly expressed in striatal neurons and are critical for the regulation of striatal function, we investigated the role of mACh receptors in the regulation of SFKs in the adult rat striatum in vivo. We found that pharmacological blockade of mACh receptors by systemic administration of the mACh antagonist scopolamine induced a marked increase in phosphorylation of SFKs in the striatum of male and female rats. This scopolamine-induced increase in SFK phosphorylation occurred in the two subdivisions of the striatum (caudate putamen and nucleus accumbens) and was time-dependent and reversible. Another mACh antagonist atropine was also effective in stimulating SFK phosphorylation. Coadministration of subthreshold doses of scopolamine and a dopamine D1 receptor agonist SKF81297 enhanced striatal SFK phosphorylation. Between Fyn and Src proteins immunoprecipitated from striatal tissue, scopolamine selectively increased phosphorylation of Fyn. The increase in Fyn phosphorylation was accompanied by an increase in Fyn kinase activity in response to scopolamine. These results reveal a significant role of mACh receptors in the regulation of SFKs (mainly Fyn) in striatal neurons. Under normal conditions, endogenous mACh receptors appear to exert an inhibitory effect on Fyn activity.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Hunter J Faris
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
12
|
Phamluong K, Darcq E, Wu S, Sakhai SA, Ron D. Fyn Signaling Is Compartmentalized to Dopamine D1 Receptor Expressing Neurons in the Dorsal Medial Striatum. Front Mol Neurosci 2017; 10:273. [PMID: 28912680 PMCID: PMC5583218 DOI: 10.3389/fnmol.2017.00273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/11/2017] [Indexed: 01/24/2023] Open
Abstract
The tyrosine kinase Fyn plays an important role in synaptic plasticity, learning, and memory. Here we report that Fyn is activated in response to 15 min D1 receptor (D1R) but not D2 receptor (D2R) stimulation specifically in the dorsomedial striatum (DMS) of mice but not in the other substriatal regions, the dorsolateral striatum (DLS), and the nucleus accumbens (NAc). Once activated Fyn phosphorylates its substrate GluN2B, and we show that GluN2B is phosphorylated only in the DMS but not in the other striatal regions. Striatal neurons are divided into D1R expressing medium spiny neurons (MSNs) and D2R expressing MSNs. Thus, to explore the cell-type specificity of this signaling pathway in the DMS, we developed a Cre-dependent Flip Excision (FLEX) approach to knockdown Fyn in D1R MSNs or D2R MSNs, and proved that the D1R-dependent Fyn activation is localized to DMS D1R MSNs. Importantly, we provide evidence to suggest that the differential association of Fyn and GluN2B with the scaffolding RACK1 is due to the differential localization of Fyn in lipid rafts.Our data further suggest that the differential cholesterol content in the three striatal regions may determine the region specificity of this signaling pathway. Together, our data show that the D1R-dependent Fyn/GluN2B pathway is selectively activated in D1R expressing MSNs in the DMS, and that the brain region specificity of pathway depends on the molecular and cellular compartmentalization of Fyn and GluN2B.
Collapse
Affiliation(s)
- Khanhky Phamluong
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| | - Emmanuel Darcq
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| | - Su Wu
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| | - Samuel A Sakhai
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| | - Dorit Ron
- Department of Neurology, University of California San FranciscoSan Francisco, CA, United States
| |
Collapse
|
13
|
Sanz-Blasco S, Bordone MP, Damianich A, Gomez G, Bernardi MA, Isaja L, Taravini IR, Hanger DP, Avale ME, Gershanik OS, Ferrario JE. The Kinase Fyn As a Novel Intermediate in L-DOPA-Induced Dyskinesia in Parkinson's Disease. Mol Neurobiol 2017; 55:5125-5136. [PMID: 28840468 DOI: 10.1007/s12035-017-0748-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022]
Abstract
Dopamine replacement therapy with L-DOPA is the treatment of choice for Parkinson's disease; however, its long-term use is frequently associated with L-DOPA-induced dyskinesia (LID). Many molecules have been implicated in the development of LID, and several of these have been proposed as potential therapeutic targets. However, to date, none of these molecules have demonstrated full clinical efficacy, either because they lie downstream of dopaminergic signaling, or due to adverse side effects. Therefore, discovering new strategies to reduce LID in Parkinson's disease remains a major challenge. Here, we have explored the tyrosine kinase Fyn, as a novel intermediate molecule in the development of LID. Fyn, a member of the Src kinase family, is located in the postsynaptic density, where it regulates phosphorylation of the NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor in response to dopamine D1 receptor stimulation. We have used Fyn knockout and wild-type mice, lesioned with 6-hydroxydopamine and chronically treated with L-DOPA, to investigate the role of Fyn in the induction of LID. We found that mice lacking Fyn displayed reduced LID, ΔFosB accumulation and NR2B phosphorylation compared to wild-type control mice. Pre-administration of saracatinib (AZD0530), an inhibitor of Fyn activity, also significantly reduced LID in dyskinetic wild-type mice. These results support that Fyn has a critical role in the molecular pathways affected during the development of LID and identify Fyn as a novel potential therapeutic target for the management of dyskinesia in Parkinson's disease.
Collapse
Affiliation(s)
- Sara Sanz-Blasco
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina.,Instituto de Investigaciones Farmacológicas (ININFA), CONICET - Universidad de Buenos Aires, Buenos Aires, C1113AAD, Argentina
| | - Melina P Bordone
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina.,Instituto de Investigaciones Farmacológicas (ININFA), CONICET - Universidad de Buenos Aires, Buenos Aires, C1113AAD, Argentina
| | - Ana Damianich
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina.,Instituto de Investigaciones Farmacológicas (ININFA), CONICET - Universidad de Buenos Aires, Buenos Aires, C1113AAD, Argentina.,Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), "Dr. Héctor N. Torres", CONICET, Buenos Aires, C1428ADN, Argentina
| | - Gimena Gomez
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina.,Instituto de Investigaciones Farmacológicas (ININFA), CONICET - Universidad de Buenos Aires, Buenos Aires, C1113AAD, Argentina
| | - M Alejandra Bernardi
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina.,Instituto de Investigaciones Farmacológicas (ININFA), CONICET - Universidad de Buenos Aires, Buenos Aires, C1113AAD, Argentina
| | - Luciana Isaja
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina.,Instituto de Investigaciones Farmacológicas (ININFA), CONICET - Universidad de Buenos Aires, Buenos Aires, C1113AAD, Argentina
| | - Irene R Taravini
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina.,Instituto de Investigaciones Farmacológicas (ININFA), CONICET - Universidad de Buenos Aires, Buenos Aires, C1113AAD, Argentina.,Facultad de Bromatología, Universidad Nacional de Entre Ríos, Gualeguaychu, 2820, Entre Ríos, Argentina
| | - Diane P Hanger
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London , London, SE5 9NU, UK
| | - M Elena Avale
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), "Dr. Héctor N. Torres", CONICET, Buenos Aires, C1428ADN, Argentina
| | - Oscar S Gershanik
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina. .,Instituto de Investigaciones Farmacológicas (ININFA), CONICET - Universidad de Buenos Aires, Buenos Aires, C1113AAD, Argentina.
| | - Juan E Ferrario
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina. .,Instituto de Investigaciones Farmacológicas (ININFA), CONICET - Universidad de Buenos Aires, Buenos Aires, C1113AAD, Argentina.
| |
Collapse
|
14
|
Mao LM, Wang JQ. Antagonism of Dopamine D2 Receptors Alters Phosphorylation of Fyn in the Rat Medial Prefrontal Cortex. J Mol Neurosci 2017; 61:524-530. [PMID: 28176147 DOI: 10.1007/s12031-017-0894-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023]
Abstract
Several Src family kinase (SFK) members are expressed in the mammalian brain and serve as key kinases in the regulation of a variety of cellular and synaptic events. These SFKs may be subject to the modulation by dopamine, although this topic has been investigated incompletely. In this study, we explored whether dopamine D2 receptors (D2Rs) regulate SFKs in adult rat brains in vivo. We investigated the role of D2Rs in two forebrain areas, the medial prefrontal cortex (mPFC) and hippocampus, since dopamine plays a pivotal role in regulating activity of mPFC and hippocampal neurons and D2Rs are expressed in these regions. We found that a systemic injection of a D2R selective antagonist eticlopride elevated phosphorylation of SFKs at a conserved autophosphorylation site, an event correlated with activation of SFKs, in the mPFC. Similarly, antagonism of D2Rs by haloperidol increased SFK phosphorylation. In contrast, eticlopride and haloperidol did not alter SFK phosphorylation in the hippocampus. The effect of eticlopride was time-dependent and relatively delayed. Among two common SFK members enriched at synaptic sites, eticlopride selectively altered phosphorylation of Fyn but not Src. Our data suggest that D2Rs exert an inhibitory effect on the activity-related phosphorylation of Fyn in the mPFC under normal conditions.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA. .,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
15
|
Zamzow DR, Elias V, Acosta VA, Escobedo E, Magnusson KR. Higher levels of phosphorylated Y1472 on GluN2B subunits in the frontal cortex of aged mice are associated with good spatial reference memory, but not cognitive flexibility. AGE (DORDRECHT, NETHERLANDS) 2016; 38:50. [PMID: 27094400 PMCID: PMC5005925 DOI: 10.1007/s11357-016-9913-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
The N-methyl-D-aspartate receptor (NMDAr) is particularly vulnerable to aging. The GluN2B subunit of the NMDAr, compared to other NMDAr subunits, suffers the greatest losses of expression in the aging brain, especially in the frontal cortex. While expression levels of GluN2B mRNA and protein in the aged brain are well documented, there has been little investigation into age-related posttranslational modifications of the subunit. In this study, we explored some of the mechanisms that may promote differences in the NMDAr complex in the frontal cortex of aged animals. Two ages of mice, 3 and 24 months, were behaviorally tested in the Morris water maze. The frontal cortex and hippocampus from each mouse were subjected to differential centrifugation followed by solubilization in Triton X-100. Proteins from Triton-insoluble membranes, Triton-soluble membranes, and intracellular membranes/cytosol were examined by Western blot. Higher levels of GluN2B tyrosine 1472 phosphorylation in frontal cortex synaptic fractions of old mice were associated with better reference learning but poorer cognitive flexibility. Levels of GluN2B phosphotyrosine 1336 remained steady, but there were greater levels of the calpain-induced 115 kDa GluN2B cleavage product on extrasynaptic membranes in these old good learners. There was an age-related increase in calpain activity, but it was not associated with better learning. These data highlight a unique aging change for aged mice with good spatial learning that might be detrimental to cognitive flexibility. This study also suggests that higher levels of truncated GluN2B on extrasynaptic membranes are not deleterious to spatial memory in aged mice.
Collapse
Affiliation(s)
| | - Val Elias
- Oregon State University, Corvallis, OR, USA
| | | | | | | |
Collapse
|
16
|
Mao LM, Wang JQ. Dopamine D2 receptors are involved in the regulation of Fyn and metabotropic glutamate receptor 5 phosphorylation in the rat striatum in vivo. J Neurosci Res 2016; 94:329-38. [PMID: 26777117 DOI: 10.1002/jnr.23713] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
Fyn, a major Src family kinase (SFK) member that is densely expressed in striatal neurons, is actively involved in the regulation of cellular and synaptic activities in local neurons. This SFK member is likely regulated by dopamine signaling through a receptor mechanism involving dopamine D2 receptors (D2Rs). This study characterizes the D2R-dependent regulation of Fyn in the rat striatum in vivo. Moreover, we explore whether D2Rs regulate metabotropic glutamate receptor 5 (mGluR5) in its tyrosine phosphorylation and whether the D2R-SFK pathway modulates trafficking of mGluR5. We found that blockade of D2Rs by systemic administration of a D2R antagonist, eticlopride, substantially increased SFK phosphorylation in the striatum. This increase was a transient and reversible event. The eticlopride-induced SFK phosphorylation occurred predominantly in immunopurified Fyn but not in another SFK member, Src. Eticlopride also elevated tyrosine phosphorylation of mGluR5. In parallel, eticlopride enhanced synaptic delivery of active Fyn and mGluR5. Pretreatment with an SFK inhibitor blocked the eticlopride-induced tyrosine phosphorylation and synaptic trafficking of mGluR5. These results indicate that D2Rs inhibit SFK (mainly Fyn) phosphorylation in the striatum. D2Rs also inhibit tyrosine phosphorylation and synaptic recruitment of mGluR5 through a signaling mechanism likely involving Fyn.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri.,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| |
Collapse
|