1
|
Dettori I, Bulli I, Venturini M, Magni G, Cherchi F, Rossi F, Lee H, Pedata F, Jacobson KA, Pugliese AM, Coppi E. MRS3997, a dual adenosine A 2A/A 2B receptor agonist, reduces brain ischemic damage and alleviates neuroinflammation in rats. Neuropharmacology 2025; 262:110214. [PMID: 39522676 DOI: 10.1016/j.neuropharm.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The endogenous neuromodulator adenosine is massively released during hypoxic/ischemic insults and differentially modulates post-ischemic damage depending on the expression and recruitment of its four metabotropic receptor subtypes, namely A1, A2A, A2B and A3 receptors (A1Rs, A2ARs, A2BRs and A3Rs). We previously demonstrated, by using a model of transient middle cerebral artery occlusion (tMCAo) in rats, that selective activation of A2ARs, as well as A2BRs, ameliorates post-ischemic brain damage in contrast to neuroinflammation. In the present study, we investigated whether the multitarget nucleoside MRS3997, a full agonist at both A2ARs and A2BRs, would afford higher neuroprotection in post-ischemic damage. Chronic systemic treatment with MRS3997 reduced neurological deficit, body weight loss and infarct volume in the cortex and striatum measured 7 days after ischemia. The dual agonist counteracted neuronal loss, reduced myelin damage, and prevented morphological changes indicative of microglia and astrocyte activation. Finally, MRS3997 shifted plasma cytokine levels to an anti-inflammatory profile. These effects were preceded, at 2 days after the insult, by a reduced granulocyte infiltration in the ischemic cortex and, differently from what was observed with selective A2AR or A2BR agonism, also in striatum. In summary, we demonstrate here that MRS3997, systemically administered for 7 days after tMCAO, protects ischemic areas from neuronal and glial damage and inhibits neuroinflammation, therefore representing an attractive strategy to ameliorate post-stroke damage and neurological symptoms.
Collapse
Affiliation(s)
- Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Sesto Fiorentino, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Rossi
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Sesto Fiorentino, Florence, Italy
| | - Hobin Lee
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabe-tes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabe-tes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Cherchi F, Venturini M, Magni G, Frulloni L, Chieca M, Buonvicino D, Santalmasi C, Rossi F, De Logu F, Coppi E, Pugliese AM. Adenosine A 2B receptors differently modulate oligodendrogliogenesis and myelination depending on their cellular localization. Glia 2024; 72:1985-2000. [PMID: 39077799 DOI: 10.1002/glia.24593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs) is a key event for axonal myelination in the brain; this process fails during demyelinating pathologies. Adenosine is emerging as an important player in oligodendrogliogenesis, by activating its metabotropic receptors (A1R, A2AR, A2BR, and A3R). We previously demonstrated that the Gs-coupled A2BR reduced differentiation of primary OPC cultures by inhibiting delayed rectifier (IK) as well as transient (IA) outward K+ currents. To deepen the unclear role of this receptor subtype in neuron-OL interplay and in myelination process, we tested the effects of different A2BR ligands in a dorsal root ganglion neuron (DRGN)/OPC cocultures, a corroborated in vitro myelination assay. The A2BR agonist, BAY60-6583, significantly reduced myelin basic protein levels but simultaneously increased myelination index in DRGN/OPC cocultures analyzed by confocal microscopy. The last effect was prevented by the selective A2BR antagonists, PSB-603 and MRS1706. To clarify this unexpected data, we wondered whether A2BRs could play a functional role on DRGNs. We first demonstrated, by immunocytochemistry, that primary DRGN monoculture expressed A2BRs. Their selective activation by BAY60-6583 enhanced DRGN excitability, as demonstrated by increased action potential firing, decreased rheobase and depolarized resting membrane potential and were prevented by PSB-603. Throughout this A2BR-dependent enhancement of neuronal activity, DRGNs could release factors to facilitate myelination processes. Finally, silencing A2BR in DRGNs alone prevents the increased myelination induced by BAY60-6583 in cocultures. In conclusion, our data suggest a different role of A2BR during oligodendrogliogenesis and myelination, depending on their activation on neurons or oligodendroglial cells.
Collapse
Affiliation(s)
- Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Giada Magni
- Cnr-Istituto di Fisica Applicata "Nello Carrara", Florence, Italy
| | - Lucia Frulloni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Martina Chieca
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Clara Santalmasi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Francesca Rossi
- Cnr-Istituto di Fisica Applicata "Nello Carrara", Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
3
|
Yang XM, Yu H, Li JX, Li N, Li C, Xu DH, Zhang H, Fang TH, Wang SJ, Yan PY, Han BB. Excitotoxic Storms of Ischemic Stroke: A Non-neuronal Perspective. Mol Neurobiol 2024; 61:9562-9581. [PMID: 38662299 DOI: 10.1007/s12035-024-04184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Numerous neurological disorders share a fatal pathologic process known as glutamate excitotoxicity. Among which, ischemic stroke is the major cause of mortality and disability worldwide. For a long time, the main idea of developing anti-excitotoxic neuroprotective agents was to block glutamate receptors. Despite this, there has been little successful clinical translation to date. After decades of "neuron-centered" views, a growing number of studies have recently revealed the importance of non-neuronal cells. Glial cells, cerebral microvascular endothelial cells, blood cells, and so forth are extensively engaged in glutamate synthesis, release, reuptake, and metabolism. They also express functional glutamate receptors and can listen and respond for fast synaptic transmission. This broadens the thoughts of developing excitotoxicity antagonists. In this review, the critical contribution of non-neuronal cells in glutamate excitotoxicity during ischemic stroke will be emphasized in detail, and the latest research progress as well as corresponding therapeutic strategies will be updated at length, aiming to reconceptualize glutamate excitotoxicity in a non-neuronal perspective.
Collapse
Affiliation(s)
- Xiao-Man Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hao Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Jia-Xin Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
| | - Na Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Chong Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Dong-Han Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
| | - Hao Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
| | - Tian-He Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Shi-Jun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.
| | - Pei-Yu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China.
- Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macau, People's Republic of China.
| | - Bing-Bing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.
| |
Collapse
|
4
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
5
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
6
|
Perfilova VN, Muzyko EA, Taran AS, Shevchenko AA, Naumenko LV. Problems and prospects for finding new pharmacological agents among adenosine receptor agonists, antagonists, or their allosteric modulators for the treatment of cardiovascular diseases. BIOMEDITSINSKAIA KHIMIIA 2023; 69:353-370. [PMID: 38153051 DOI: 10.18097/pbmc20236906353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A1-adenosine receptors (A1AR) are widely distributed in the human body and mediate many different effects. They are abundantly present in the cardiovascular system, where they control angiogenesis, vascular tone, heart rate, and conduction. This makes the cardiovascular system A1AR an attractive target for the treatment of cardiovascular diseases (CVD). The review summarizes the literature data on the structure and functioning of A1AR, and analyzes their involvement in the formation of myocardial hypertrophy, ischemia-reperfusion damage, various types of heart rhythm disorders, chronic heart failure, and arterial hypertension. Special attention is paid to the role of some allosteric regulators of A1AR as potential agents for the CVD treatment.
Collapse
Affiliation(s)
- V N Perfilova
- Volgograd State Medical University, Volgograd, Russia; Volgograd Medical Research Center, Volgograd, Russia
| | - E A Muzyko
- Volgograd State Medical University, Volgograd, Russia
| | - A S Taran
- Volgograd State Medical University, Volgograd, Russia
| | | | - L V Naumenko
- Volgograd State Medical University, Volgograd, Russia
| |
Collapse
|
7
|
Vincenzi F, Pasquini S, Contri C, Cappello M, Nigro M, Travagli A, Merighi S, Gessi S, Borea PA, Varani K. Pharmacology of Adenosine Receptors: Recent Advancements. Biomolecules 2023; 13:1387. [PMID: 37759787 PMCID: PMC10527030 DOI: 10.3390/biom13091387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Adenosine receptors (ARs) are widely acknowledged pharmacological targets yet are still underutilized in clinical practice. Their ubiquitous distribution in almost all cells and tissues of the body makes them, on the one hand, excellent candidates for numerous diseases, and on the other hand, intrinsically challenging to exploit selectively and in a site-specific manner. This review endeavors to comprehensively depict the substantial advancements witnessed in recent years concerning the development of drugs that modulate ARs. Through preclinical and clinical research, it has become evident that the modulation of ARs holds promise for the treatment of numerous diseases, including central nervous system disorders, cardiovascular and metabolic conditions, inflammatory and autoimmune diseases, and cancer. The latest studies discussed herein shed light on novel mechanisms through which ARs exert control over pathophysiological states. They also introduce new ligands and innovative strategies for receptor activation, presenting compelling evidence of efficacy along with the implicated signaling pathways. Collectively, these emerging insights underscore a promising trajectory toward harnessing the therapeutic potential of these multifaceted targets.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| |
Collapse
|
8
|
Abstract
The adenosine A2A receptor (A2AR) is abundantly expressed in the brain, including both neurons and glial cells. While the expression of A2AR is relative low in glia, its levels elevate robustly in astrocytes and microglia under pathological conditions. Elevated A2AR appears to play a detrimental role in a number of disease states, by promoting neuroinflammation and astrocytic reaction to contribute to the progression of neurodegenerative and psychiatric diseases.
Collapse
Affiliation(s)
- Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, West Wenyi Road, Hangzhou, P.R. China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
9
|
Han X, Zhang L, Kong L, Tong M, Shi Z, Li XM, Zhang T, Jiang Q, Biao Y. Comprehensive metabolic profiling of diabetic retinopathy. Exp Eye Res 2023; 233:109538. [PMID: 37308049 DOI: 10.1016/j.exer.2023.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Diabetic retinopathy (DR) is an important complication of diabetes mellitus and a prevalent blind-causing ophthalmic disease. Despite years of efforts, rapid and accurate diagnosis of DR remains a challenging task. Metabolomics has been used as a diagnostic tool for disease progression and therapy monitoring. In this study, retinal tissues were collected from diabetic mice and age-matched non-diabetic mice. An unbiased metabolic profiling was performed to identify the altered metabolites and metabolic pathways in DR. 311 differential metabolites were identified between diabetic retinas and non-diabetic retinas under the criteria of variable importance in projection (VIP) > 1 and P < 0.05. These differential metabolites were highly enriched in purine metabolism, amino acid metabolism, glycerophospholipid metabolism, and pantaothenate and CoA biosynthesis. We then evaluated the sensitivity and specificity of purine metabolites as the candidate biomarkers for DR through the area under the receiver-operating characteristic curves (AUC-ROCs). Compared with other purine metabolites, adenosine, guanine, and inosine had higher sensitivity, specificity, and accuracy for DR prediction. In conclusion, this study sheds new light on the metabolic mechanism of DR, which can facilitate clinical diagnosis, therapy, and prognosis of DR in the future.
Collapse
Affiliation(s)
- Xiaoyan Han
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Lili Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Lingjie Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Ming Tong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Zehui Shi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xiu Miao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ting Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Yan Biao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.
| |
Collapse
|
10
|
Wei M, Zhang G, Huang Z, Ding X, Sun Q, Zhang Y, Zhu R, Guan H, Ji M. ATP-P2X 7R-mediated microglia senescence aggravates retinal ganglion cell injury in chronic ocular hypertension. J Neuroinflammation 2023; 20:180. [PMID: 37525172 PMCID: PMC10392012 DOI: 10.1186/s12974-023-02855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Dysfunction of microglia during aging affects normal neuronal function and results in the occurrence of neurodegenerative diseases. Retinal microglial senescence attributes to retinal ganglion cell (RGC) death in glaucoma. This study aims to examine the role of ATP-P2X7R in the mediation of microglia senescence and glaucoma progression. METHODS Forty-eight participants were enrolled, including 24 patients with primary open-angle glaucoma (POAG) and age-related cataract (ARC) and 24 patients with ARC only. We used ARC as the inclusion criteria because of the availability of aqueous humor (AH) before phacoemulsification. AH was collected and the adenosine triphosphate (ATP) concentration was measured by ATP Assay Kit. The chronic ocular hypertension (COH) mouse model was established by microbead occlusion. Microglia were ablated by feeding PLX5622 orally. Mouse bone marrow cells (BMCs) were prepared and infused into mice through the tail vein for the restoration of microglia function. Western blotting, qPCR and ELISA were performed to analyze protein and mRNA expression in the ocular tissue, respectively. Microglial phenotype and RGC survival were assessed by immunofluorescence. The mitochondrial membrane potential was measured using a JC-1 assay kit by flow cytometry. RESULTS ATP concentrations in the AH were increased in older adults and patients with POAG. The expression of P2X7R was upregulated in the retinal tissues of mice with glaucoma, and functional enrichment analysis showed that P2X7R was closely related to cell aging. Through in vivo and in vitro approaches, we showed that pathological activation of ATP-P2X7R induced accelerated microglial senescence through impairing PTEN-induced kinase 1 (PINK1)-mediated mitophagy, which led to RGC damage. Additionally, we found that replacement of senescent microglia in COH model of old mice with BMCs from young mice reversed RGC damage. CONCLUSION ATP-P2X7R induces microglia senescence by inhibiting PINK1-mediated mitophagy pathway. Specific inhibition of ATP-P2X7R may be a fundamental approach for targeted therapy of RGC injury in microglial aging-related glaucoma.
Collapse
Affiliation(s)
- Miao Wei
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China
- Dalian Medical University, Dalian, 116000, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Zeyu Huang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Xuemeng Ding
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Qing Sun
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Yujian Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Rongrong Zhu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| |
Collapse
|
11
|
Venturini M, Cherchi F, Santalmasi C, Frulloni L, Dettori I, Catarzi D, Pedata F, Colotta V, Varano F, Coppi E, Pugliese AM. Pharmacological Characterization of P626, a Novel Dual Adenosine A 2A/A 2B Receptor Antagonist, on Synaptic Plasticity and during an Ischemic-like Insult in CA1 Rat Hippocampus. Biomolecules 2023; 13:894. [PMID: 37371474 DOI: 10.3390/biom13060894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, the use of multi-target compounds has become an increasingly pursued strategy to treat complex pathologies, including cerebral ischemia. Adenosine and its receptors (A1AR, A2AAR, A2BAR, A3AR) are known to play a crucial role in synaptic transmission either in normoxic or ischemic-like conditions. Previous data demonstrate that the selective antagonism of A2AAR or A2BAR delays anoxic depolarization (AD) appearance, an unequivocal sign of neuronal injury induced by a severe oxygen-glucose deprivation (OGD) insult in the hippocampus. Furthermore, the stimulation of A2AARs or A2BARs by respective selective agonists, CGS21680 and BAY60-6583, increases pre-synaptic neurotransmitter release, as shown by the decrease in paired-pulse facilitation (PPF) at Schaffer collateral-CA1 synapses. In the present research, we investigated the effect/s of the newly synthesized dual A2AAR/A2BAR antagonist, P626, in preventing A2AAR- and/or A2BAR-mediated effects by extracellular recordings of synaptic potentials in the CA1 rat hippocampal slices. We demonstrated that P626 prevented PPF reduction induced by CGS21680 or BAY60-6583 and delayed, in a concentration-dependent manner, AD appearance during a severe OGD. In conclusion, P626 may represent a putative neuroprotective compound for stroke treatment with the possible translational advantage of reducing side effects and bypassing differences in pharmacokinetics due to combined treatment.
Collapse
Affiliation(s)
- Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Clara Santalmasi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Lucia Frulloni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Daniela Catarzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Vittoria Colotta
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Flavia Varano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| |
Collapse
|
12
|
Mota-Rojas D, Villanueva-García D, Hernández-Ávalos I, Casas-Alvarado A, Domínguez-Oliva A, Lezama-García K, Miranda-Cortés A, Martínez-Burnes J. Cardiorespiratory and Neuroprotective Effects of Caffeine in Neonate Animal Models. Animals (Basel) 2023; 13:1769. [PMID: 37889643 PMCID: PMC10252037 DOI: 10.3390/ani13111769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Caffeine is widely used to improve neonatal health in animals with low vitality. Due to its pharmacokinetics and pharmacodynamics, caffeine stimulates the cardiorespiratory system by antagonism of adenosine receptors and alteration in Ca+2 ion channel activity. Moreover, the availability of intracellular Ca+2 also has positive inotropic effects by increasing heart contractibility and by having a possible positive effect on neonate vitality. Nonetheless, since neonatal enzymatic and tissular systems are immature at birth, there is a controversy about whether caffeine is an effective therapy for newborns. This review aims to analyze the basic concepts of caffeine in neonatal animal models (rat and mouse pups, goat kids, lambs, and piglets), and it will discuss the neuroprotective effect and its physiological actions in reducing apnea in newborns.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Dina Villanueva-García
- Division of Neonatology, National Institute of Health, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico; (I.H.-Á.)
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Agatha Miranda-Cortés
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico; (I.H.-Á.)
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| |
Collapse
|
13
|
Sebastião AM, Ribeiro JA. Adjusting the brakes to adjust neuronal activity: Adenosinergic modulation of GABAergic transmission. Neuropharmacology 2023; 236:109600. [PMID: 37225084 DOI: 10.1016/j.neuropharm.2023.109600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/20/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
About 50 years elapsed from the publication of the first full paper on the neuromodulatory action of adenosine at a 'simple' synapse model, the neuromuscular junction (Ginsborg and Hirst, 1972). In that study adenosine was used as a tool to increase cyclic AMP and for the great surprise, it decreased rather than increased neurotransmitter release, and for a further surprise, its action was prevented by theophylline, at the time only known as inhibitor of phosphodiesterases. These intriguing observations opened the curiosity for immediate studies relating the action of adenine nucleotides, known to be released together with neurotransmitters, to that of adenosine (Ribeiro and Walker, 1973, 1975). Our understanding on the ways adenosine uses to modulate synapses, circuits, and brain activity, vastly expanded since then. However, except for A2A receptors, whose actions upon GABAergic neurons of the striatum are well known, most of the attention given to the neuromodulatory action of adenosine has been focusing upon excitatory synapses. Evidence is growing that GABAergic transmission is also a target for adenosinergic neuromodulation through A1 and A2A receptors. Some o these actions have specific time windows during brain development, and others are selective for specific GABAergic neurons. Both tonic and phasic GABAergic transmission can be affected, and either neurons or astrocytes can be targeted. In some cases, those effects result from a concerted action with other neuromodulators. Implications of these actions in the control of neuronal function/dysfunction will be the focus of this review.
Collapse
Affiliation(s)
- Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| | - Joaquim Alexandre Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
14
|
Weese-Myers ME, Cryan MT, Witt CE, Caldwell KCN, Modi B, Ross AE. Dynamic and Rapid Detection of Guanosine during Ischemia. ACS Chem Neurosci 2023; 14:1646-1658. [PMID: 37040534 PMCID: PMC10265669 DOI: 10.1021/acschemneuro.3c00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Guanosine acts in both neuroprotective and neurosignaling pathways in the central nervous system; in this paper, we present the first fast voltammetric measurements of endogenous guanosine release during pre- and post-ischemic conditions. We discuss the metric of our measurements via analysis of event concentration, duration, and interevent time of rapid guanosine release. We observe changes across all three metrics from our normoxic to ischemic conditions. Pharmacological studies were performed to confirm that guanosine release is a calcium-dependent process and that the signaling observed is purinergic. Finally, we show the validity of our ischemic model via staining and fluorescent imaging. Overall, this paper sets the tone for rapid monitoring of guanosine and provides a platform to investigate the extent to which guanosine accumulates at the site of brain injury, i.e., ischemia.
Collapse
Affiliation(s)
- Moriah E. Weese-Myers
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
- Co-first author
| | - Michael T. Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
- Co-first author
| | - Colby E. Witt
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Kaejaren C. N. Caldwell
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Bindu Modi
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172
| |
Collapse
|
15
|
Pinna A, Parekh P, Morelli M. Serotonin 5-HT 1A receptors and their interactions with adenosine A 2A receptors in Parkinson's disease and dyskinesia. Neuropharmacology 2023; 226:109411. [PMID: 36608814 DOI: 10.1016/j.neuropharm.2023.109411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
The dopamine neuronal loss that characterizes Parkinson's Disease (PD) is associated to changes in neurotransmitters, such as serotonin and adenosine, which contribute to the symptomatology of PD and to the onset of dyskinetic movements associated to levodopa treatment. The present review describes the role played by serotonin 5-HT1A receptors and the adenosine A2A receptors on dyskinetic movements induced by chronic levodopa in PD. The focus is on preclinical and clinical results showing the interaction between serotonin 5-HT1A receptors and other receptors such as 5-HT1B receptors and adenosine A2A receptors. 5-HT1A/1B receptor agonists and A2A receptor antagonists, administered in combination, contrast dyskinetic movements induced by chronic levodopa without impairing motor behaviour, suggesting that this drug combination might be a useful therapeutic approach for counteracting the PD motor deficits and dyskinesia associated with chronic levodopa treatment. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| | - Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy
| | - Micaela Morelli
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy; Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| |
Collapse
|
16
|
Schädlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B. The role of the ATP-adenosine axis in ischemic stroke. Semin Immunopathol 2023:10.1007/s00281-023-00987-3. [PMID: 36917241 DOI: 10.1007/s00281-023-00987-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
In ischemic stroke, the primary neuronal injury caused by the disruption of energy supply is further exacerbated by secondary sterile inflammation. The inflammatory cascade is largely initiated by the purine adenosine triphosphate (ATP) which is extensively released to the interstitial space during brain ischemia and functions as an extracellular danger signaling molecule. By engaging P2 receptors, extracellular ATP activates microglia leading to cytokine and chemokine production and subsequent immune cell recruitment from the periphery which further amplifies post-stroke inflammation. The ectonucleotidases CD39 and CD73 shape and balance the inflammatory environment by stepwise degrading extracellular ATP to adenosine which itself has neuroprotective and anti-inflammatory signaling properties. The neuroprotective effects of adenosine are mainly mediated through A1 receptors and inhibition of glutamatergic excitotoxicity, while the anti-inflammatory capacities of adenosine have been primarily attributed to A2A receptor activation on infiltrating immune cells in the subacute phase after stroke. In this review, we summarize the current state of knowledge on the ATP-adenosine axis in ischemic stroke, discuss contradictory results, and point out potential pitfalls towards translating therapeutic approaches from rodent stroke models to human patients.
Collapse
Affiliation(s)
- Ines Sophie Schädlich
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Joschi Stabernack
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
17
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
18
|
Zhou M, Wu J, Chang H, Fang Y, Zhang D, Guo Y. Adenosine signaling mediate pain transmission in the central nervous system. Purinergic Signal 2023; 19:245-254. [PMID: 35000074 PMCID: PMC9984632 DOI: 10.1007/s11302-021-09826-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Pain is a common clinical symptom that seriously affects the quality of life in a variety of patient populations. In recent years, research on the role of adenosine signaling in pain modulation has made great progress. Adenosine is a purine nucleoside and a neuromodulator, and regulates multiple physiological and pathophysiological functions through the activation of four G protein-coupled receptors, which are classified as A1, A2A, A2B, and A3 adenosine receptors (ARs). Adenosine and its receptors that are widespread in the central nervous system (CNS) play an important role in the processing of nociceptive sensory signals in different pain models. A1Rs have the highest affinity to adenosine, and the role in analgesia has been well investigated. The roles of A2ARs and A2BRs in the modulation of pain are controversial because they have both analgesic and pronociceptive effects. The analgesic effects of A3Rs are primarily manifested in neuropathic pain. In this article, we have reviewed the recent studies on ARs in the modulation of neuropathic pain, inflammatory pain, postoperative pain, and visceral pain in the CNS. Furthermore, we have outlined the pathways through which ARs contribute to pain regulation, thereby shedding light on how this mechanism can be targeted to provide effective pain relief.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jinrong Wu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China. .,College of Chinese Medical, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
19
|
Di Virgilio F, Vultaggio-Poma V, Falzoni S, Giuliani AL. Extracellular ATP: A powerful inflammatory mediator in the central nervous system. Neuropharmacology 2023; 224:109333. [PMID: 36400278 DOI: 10.1016/j.neuropharm.2022.109333] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Nucleotides play a crucial role in extracellular signaling across species boundaries. All the three kingdoms of life (Bacteria, Archea and Eukariota) are responsive to extracellular ATP (eATP) and many release this and other nucleotides. Thus, eATP fulfills different functions, many related to danger-sensing or avoidance reactions. Basically all living organisms have evolved sensors for eATP and other nucleotides with very different affinity and selectivity, thus conferring a remarkable plasticity to this signaling system. Likewise, different intracellular transduction systems were associated during evolution to different receptors for eATP. In mammalian evolution, control of intracellular ATP (iATP) and eATP homeostasis has been closely intertwined with that of Ca2+, whether in the extracellular milieu or in the cytoplasm, establishing an inverse reciprocal relationship, i.e. high extracellular Ca2+ levels are associated to negligible eATP, while low intracellular Ca2+ levels are associated to high eATP concentrations. This inverse relationship is crucial for the messenger functions of both molecules. Extracellular ATP is sensed by specific plasma membrane receptors of widely different affinity named P2 receptors (P2Rs) of which 17 subtypes are known. This confers a remarkable plasticity to P2R signaling. The central nervous system (CNS) is a privileged site for purinergic signaling as all brain cell types express P2Rs. Accruing evidence suggests that eATP, in addition to participating in synaptic transmission, also plays a crucial homeostatic role by fine tuning microglia, astroglia and oligodendroglia responses. Drugs modulating the eATP concentration in the CNS are likely to be the new frontier in the therapy of neuroinflammation. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy.
| | | | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
20
|
Lohr C. Role of P2Y receptors in astrocyte physiology and pathophysiology. Neuropharmacology 2023; 223:109311. [PMID: 36328064 DOI: 10.1016/j.neuropharm.2022.109311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Astrocytes are active constituents of the brain that manage ion homeostasis and metabolic support of neurons and directly tune synaptic transmission and plasticity. Astrocytes express all known P2Y receptors. These regulate a multitude of physiological functions such as cell proliferation, Ca2+ signalling, gliotransmitter release and neurovascular coupling. In addition, P2Y receptors are fundamental in the transition of astrocytes into reactive astrocytes, as occurring in many brain disorders such as neurodegenerative diseases, neuroinflammation and epilepsy. This review summarizes the current literature addressing the function of P2Y receptors in astrocytes in the healthy brain as well as in brain diseases.
Collapse
Affiliation(s)
- Christian Lohr
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Germany.
| |
Collapse
|
21
|
Glial roles in sterile inflammation after ischemic stroke. Neurosci Res 2023; 187:67-71. [PMID: 36206952 DOI: 10.1016/j.neures.2022.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Stroke is a leading cause of death and disability worldwide, but there are a limited number of therapies that improve patients' functional recovery. The complicated mechanisms of post-stroke neuroinflammation, which is responsible for secondary ischemic neuronal damage, have been clarified by extensive research. Activation of microglia and astrocytes due to ischemic insults is implicated in the production of pro-inflammatory factors, formation of the glial scar, and breakdown of the blood-brain barrier. This leads to the infiltration of leukocytes, which are activated by damage-associated molecular patterns (DAMPs) to produce pro-inflammatory factors and induce additional neuronal damage. In this review, we focus on the glial mechanisms underlying sterile post-ischemic inflammation after stroke.
Collapse
|
22
|
Boakes JC, Harborne SPD, Ngo JTS, Pliotas C, Goldman A. Novel variants provide differential stabilisation of human equilibrative nucleoside transporter 1 states. Front Mol Biosci 2022; 9:970391. [DOI: 10.3389/fmolb.2022.970391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Human equilibrative nucleoside transporters represent a major pharmaceutical target for cardiac, cancer and viral therapies. Understanding the molecular basis for transport is crucial for the development of improved therapeutics through structure-based drug design. ENTs have been proposed to utilise an alternating access mechanism of action, similar to that of the major facilitator superfamily. However, ENTs lack functionally-essential features of that superfamily, suggesting that they may use a different transport mechanism. Understanding the molecular basis of their transport requires insight into diverse conformational states. Differences between intermediate states may be discrete and mediated by subtle gating interactions, such as salt bridges. We identified four variants of human equilibrative nucleoside transporter isoform 1 (hENT1) at the large intracellular loop (ICL6) and transmembrane helix 7 (TM7) that stabilise the apo-state (∆Tm 0.7–1.5°C). Furthermore, we showed that variants K263A (ICL6) and I282V (TM7) specifically stabilise the inhibitor-bound state of hENT1 (∆∆Tm 5.0 ± 1.7°C and 3.0 ± 1.8°C), supporting the role of ICL6 in hENT1 gating. Finally, we showed that, in comparison with wild type, variant T336A is destabilised by nitrobenzylthioinosine (∆∆Tm -4.7 ± 1.1°C) and binds it seven times worse. This residue may help determine inhibitor and substrate sensitivity. Residue K263 is not present in the solved structures, highlighting the need for further structural data that include the loop regions.
Collapse
|
23
|
Coppi E, Gibb AJ. Selective block of adenosine A 2A receptors prevents ischaemic-like effects induced by oxygen and glucose deprivation in rat medium spiny neurons. Br J Pharmacol 2022; 179:4844-4856. [PMID: 35817954 PMCID: PMC9796695 DOI: 10.1111/bph.15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/20/2022] [Accepted: 06/26/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Ischaemia is known to cause massive neuronal depolarization, termed anoxic depolarization (AD), due to energy failure and loss of membrane ion gradients. The neuromodulator adenosine accumulates extracellularly during ischaemia and activates four metabotropic receptors: A1 , A2A , A2B and A3 . Striatal medium spiny neurons (MSNs) express high levels of A2A receptors and are particularly vulnerable to ischaemic insults. A2A Receptor blockade reduces acute striatal post-ischaemic damage but the cellular mechanisms involved are still unknown. EXPERIMENTAL APPROACH We performed patch-clamp recordings of MSNs in rat striatal slices subjected to oxygen and glucose deprivation (OGD) to investigate the effects of A2A receptor ligands or ion channel blockers on AD and OGD-induced ionic imbalance, measured as a positive shift in Erev of ramp currents. KEY RESULTS Our data indicate that the A2A receptor antagonist SCH58261 (10 μM) significantly attenuated ionic imbalance and AD appearance in MSNs exposed to OGD. The K+ channel blocker Ba2+ (2 mM) or the Na+ channel blocker tetrodotoxin (1 μM) exacerbated and attenuated, respectively, OGD-induced changes. Spontaneous excitatory post-synaptic current (sEPSC) analysis in MSNs revealed that the A2A receptor agonist CGS21680 (1 μM) prevented OGD-induced decrease of sEPSCs within the first 5 min of the insult, an effect shared by the K+ channel blocker Ba2+ , indicating facilitated glutamate release. CONCLUSION AND IMPLICATIONS Adenosine, released during striatal OGD, activates A2A receptors that may exacerbate OGD-induced damage through K+ channel inhibition. Our results could help to develop A2A receptor-selective therapeutic tools for the treatment of brain ischaemia.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child HealthUniversity of FlorenceFlorenceItaly
| | - Alasdair J. Gibb
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
24
|
Clarence DD, Paudel KR, Manandhar B, Singh SK, Devkota HP, Panneerselvam J, Gupta V, Chitranshi N, Verma N, Saad S, Gupta G, Hansbro PM, Oliver BG, Madheswaran T, Dua K, Chellappan DK. Unravelling the Therapeutic Potential of Nano-Delivered Functional Foods in Chronic Respiratory Diseases. Nutrients 2022; 14:3828. [PMID: 36145202 PMCID: PMC9503475 DOI: 10.3390/nu14183828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Dvya Delilaa Clarence
- School of Postgraduate Studies, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sachin Kumar Singh
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara 144411, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Verma
- Chitkara School of Pharmacy, Chitkara University, Atal Nagar 174103, India
| | - Sonia Saad
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2006, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
25
|
A Pattern to Link Adenosine Signaling, Circadian System, and Potential Final Common Pathway in the Pathogenesis of Major Depressive Disorder. Mol Neurobiol 2022; 59:6713-6723. [PMID: 35999325 PMCID: PMC9525429 DOI: 10.1007/s12035-022-03001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/07/2022] [Indexed: 11/18/2022]
Abstract
Several studies have reported separate roles of adenosine receptors and circadian clockwork in major depressive disorder. While less evidence exists for regulation of the circadian clock by adenosine signaling, a small number of studies have linked the adenosinergic system, the molecular circadian clock, and mood regulation. In this article, we review relevant advances and propose that adenosine receptor signaling, including canonical and other alternative downstream cellular pathways, regulates circadian gene expression, which in turn may underlie the pathogenesis of mood disorders. Moreover, we summarize the convergent point of these signaling pathways and put forward a pattern by which Homer1a expression, regulated by both cAMP-response element binding protein (CREB) and circadian clock genes, may be the final common pathogenetic mechanism in depression.
Collapse
|
26
|
Targeting G protein coupled receptors for alleviating neuropathic pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:99-117. [PMID: 36357081 DOI: 10.1016/bs.pmbts.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pain sensation is a normal physiological response to alert and prevent further tissue damage. It involves the perception of external stimuli by somatosensory neurons, then transmission of the message to various other types of neurons present in the spinal cord and brain to generate an appropriate response. Currently available analgesics exhibit very modest efficacy, and that too in only a subset of patients with chronic pain conditions, particularly neuropathic pain. The G protein-coupled receptors (GPCRs) are expressed on presynaptic, postsynaptic terminals, and soma of somatosensory neurons, which binds to various types of ligands to modulate neuronal activity and thus pain sensation in both directions. Fundamentally, neuropathic pain arises due to aberrant neuronal plasticity, which includes the sensitization of peripheral primary afferents (dorsal root ganglia and trigeminal ganglia) and the sensitization of central nociceptive neurons in the spinal cord or trigeminal nucleus or brain stem and cortex. Owing to the expression profiles of GPCRs in somatosensory neurons and other neuroanatomical regions involved in pain processing and transmission, this article shall focus only on four families of GPCRs: 1- Opioid receptors, 2-Cannabinoid receptors, 3-Adenosine receptors, and 4-Chemokine receptors.
Collapse
|
27
|
Saggu S, Chen Y, Chen L, Pizarro D, Pati S, Law WJ, McMahon L, Jiao K, Wang Q. A peptide blocking the ADORA1-neurabin interaction is anticonvulsant and inhibits epilepsy in an Alzheimer's model. JCI Insight 2022; 7:155002. [PMID: 35674133 PMCID: PMC9220929 DOI: 10.1172/jci.insight.155002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Epileptic seizures are common sequelae of stroke, acute brain injury, and chronic neurodegenerative diseases, including Alzheimer's disease (AD), and cannot be effectively controlled in approximately 40% of patients, necessitating the development of novel therapeutic agents. Activation of the A1 receptor (A1R) by endogenous adenosine is an intrinsic mechanism to self-terminate seizures and protect neurons from excitotoxicity. However, targeting A1R for neurological disorders has been hindered by side effects associated with its broad expression outside the nervous system. Here we aim to target the neural-specific A1R/neurabin/regulator of G protein signaling 4 (A1R/neurabin/RGS4) complex that dictates A1R signaling strength and response outcome in the brain. We developed a peptide that blocks the A1R-neurabin interaction to enhance A1R activity. Intracerebroventricular or i.n. administration of this peptide shows marked protection against kainate-induced seizures and neuronal death. Furthermore, in an AD mouse model with spontaneous seizures, nasal delivery of this blocking peptide reduces epileptic spike frequency. Significantly, the anticonvulsant and neuroprotective effects of this peptide are achieved through enhanced A1R function in response to endogenous adenosine in the brain, thus, avoiding side effects associated with A1R activation in peripheral tissues and organs. Our study informs potentially new anti-seizure therapy applicable to epilepsy and other neurological illness with comorbid seizures.
Collapse
Affiliation(s)
- Shalini Saggu
- Departments of Cell, Developmental and Integrative Biology
| | - Yunjia Chen
- Departments of Cell, Developmental and Integrative Biology
| | - Liping Chen
- Departments of Cell, Developmental and Integrative Biology
| | | | | | - Wen Jing Law
- Departments of Cell, Developmental and Integrative Biology
| | - Lori McMahon
- Departments of Cell, Developmental and Integrative Biology
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Alabama, USA
| | - Qin Wang
- Departments of Cell, Developmental and Integrative Biology
| |
Collapse
|
28
|
Li Y, Wang D, Li Z, Ouyang Z. PSB0788 ameliorates maternal inflammation-induced periventricular leukomalacia-like injury. Bioengineered 2022; 13:10224-10234. [PMID: 35436416 PMCID: PMC9161964 DOI: 10.1080/21655979.2022.2061296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Studies have shown that periventricular leukomalacia (PVL) is a distinctive form of cerebral white matter injury that pertains to myelination disturbances. Maternal inflammation is a main cause of white matter injury. Intrauterine inflammation cellular will be propagated to the developing brain by the entire maternal-placental-fetal axis, and triggers neural immune injury. As a low-affinity receptor, adenosine A2B receptor (A2BAR) requires high concentrations of adenosine to be significantly activated in pathological conditions. We hypothesized that in the maternal inflammation-induced PVL model, a selective A2BAR antagonist PSB0788 had the potential to prevent the injury. In this work, a total of 18 SD pregnant rats were divided into three groups, and treated with intraperitoneal injection of phosphate buffered saline (PBS), lipopolysaccharide (LPS), or LPS+PSB0788. Placental infection was determined by H&E staining and the inflammatory condition was determined by ELISA. Change of MBP, NG2 and CC-1 in the brain of the rats' offspring were detected by western blot and immunohistochemistry. Furthermore, LPS-induced maternal inflammation reduced the expression of MBP, which related to the decrease in the numbers of OPCs and mature oligodendrocytes in neonate rats. After treatment with PSB0788, the levels of MBP proteins increased in the rats' offspring, improved the remyelination. In conclusion, our study shows that the selective A2BAR antagonist PSB0788 plays an important role in promoting the normal development of OPCs in vivo by the maternal inflammation-induced PVL model. Future studies will focus on the mechanism of PSB0788 in this model.
Collapse
Affiliation(s)
- Yilu Li
- School of Chemistry and Chemical Engineering, South China University of Technology, scDFG Guangzhou, Guangdong, China
| | - Dan Wang
- Department of clinical medicine, Bengbu Medical College, Bengbu, Anhui, China,Department of clinical medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhuoyang Li
- School of Chemistry and Chemical Engineering, South China University of Technology, scDFG Guangzhou, Guangdong, China,South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, Guangdong, China
| | - Zhi Ouyang
- South China University of Technology Hospital, South China University of Technology, Guangzhou, Guangdong, China,CONTACT Zhi Ouyang South China University of Technology Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Coppi E, Cherchi F, Venturini M, Lucarini E, Corradetti R, Di Cesare Mannelli L, Ghelardini C, Pedata F, Pugliese AM. Therapeutic Potential of Highly Selective A 3 Adenosine Receptor Ligands in the Central and Peripheral Nervous System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061890. [PMID: 35335254 PMCID: PMC8952202 DOI: 10.3390/molecules27061890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022]
Abstract
Ligands of the Gi protein-coupled adenosine A3 receptor (A3R) are receiving increasing interest as attractive therapeutic tools for the treatment of a number of pathological conditions of the central and peripheral nervous systems (CNS and PNS, respectively). Their safe pharmacological profiles emerging from clinical trials on different pathologies (e.g., rheumatoid arthritis, psoriasis and fatty liver diseases) confer a realistic translational potential to these compounds, thus encouraging the investigation of highly selective agonists and antagonists of A3R. The present review summarizes information on the effect of latest-generation A3R ligands, not yet available in commerce, obtained by using different in vitro and in vivo models of various PNS- or CNS-related disorders. This review places particular focus on brain ischemia insults and colitis, where the prototypical A3R agonist, Cl-IB-MECA, and antagonist, MRS1523, have been used in research studies as reference compounds to explore the effects of latest-generation ligands on this receptor. The advantages and weaknesses of these compounds in terms of therapeutic potential are discussed.
Collapse
|
30
|
Microglia Modulate Cortical Spreading Depolarizations After Ischemic Stroke: A Narrative Review. Neurocrit Care 2022; 37:133-138. [PMID: 35288861 PMCID: PMC9259539 DOI: 10.1007/s12028-022-01469-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/08/2022] [Indexed: 01/06/2023]
Abstract
Cortical spreading depolarizations (CSDs) are characterized by waves of diminished electroencephalography activity that propagate across the cortex with subsequent loss of ionic homeostasis. CSDs have been found in many pathological conditions, including migraine, traumatic brain injury, and ischemic stroke. Because of CSD-associated ionic and metabolic disturbances at the peri-infarct area after ischemic stroke, it is thought that CSDs exacerbate tissue infarction and worsen clinical outcomes. Microglia, the main innate immune cells in the brain, are among the first responders to brain tissue damage. Recent studies demonstrated that microglia play a critical role in CSD initiation and propagation. In this article, we discuss the significance of CSD in the setting of ischemic stroke and how microglia may modulate peri-infarct CSDs, also known as iso-electric depolarizations. Finally, we discuss the significance of microglial Ca2+ and how it might be used as a potential therapeutic target for patients with ischemic stroke.
Collapse
|
31
|
Chen ZH, Han YY, Shang YJ, Zhuang SY, Huang JN, Wu BY, Li CH. Cordycepin Ameliorates Synaptic Dysfunction and Dendrite Morphology Damage of Hippocampal CA1 via A1R in Cerebral Ischemia. Front Cell Neurosci 2022; 15:783478. [PMID: 35002628 PMCID: PMC8740211 DOI: 10.3389/fncel.2021.783478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023] Open
Abstract
Cordycepin exerted significant neuroprotective effects and protected against cerebral ischemic damage. Learning and memory impairments after cerebral ischemia are common. Cordycepin has been proved to improve memory impairments induced by cerebral ischemia, but its underlying mechanism has not been revealed yet. The plasticity of synaptic structure and function is considered to be one of the neural mechanisms of learning and memory. Therefore, we investigated how cordycepin benefits dendritic morphology and synaptic transmission after cerebral ischemia and traced the related molecular mechanisms. The effects of cordycepin on the protection against ischemia were studied by using global cerebral ischemia (GCI) and oxygen-glucose deprivation (OGD) models. Behavioral long-term potentiation (LTP) and synaptic transmission were observed with electrophysiological recordings. The dendritic morphology and histological assessment were assessed by Golgi staining and hematoxylin-eosin (HE) staining, respectively. Adenosine A1 receptors (A1R) and adenosine A2A receptors (A2AR) were evaluated with western blotting. The results showed that cordycepin reduced the GCI-induced dendritic morphology scathing and behavioral LTP impairment in the hippocampal CA1 area, improved the learning and memory abilities, and up-regulated the level of A1R but not A2AR. In the in vitro experiments, cordycepin pre-perfusion could alleviate the hippocampal slices injury and synaptic transmission cripple induced by OGD, accompanied by increased adenosine content. In addition, the protective effect of cordycepin on OGD-induced synaptic transmission damage was eliminated by using an A1R antagonist instead of A2AR. These findings revealed that cordycepin alleviated synaptic dysfunction and dendritic injury in ischemic models by modulating A1R, which provides new insights into the pharmacological mechanisms of cordycepin for ameliorating cognitive impairment induced by cerebral ischemia.
Collapse
Affiliation(s)
- Zhao-Hui Chen
- School of Life Science, South China Normal University, Guangzhou, China
| | - Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou, China.,Panyu Central Hospital, Guangzhou, China
| | - Ying-Jie Shang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Si-Yi Zhuang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Jun-Ni Huang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Bao-Yan Wu
- Ministry of Education (MOE) Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
32
|
Davidson JO, Gonzalez F, Gressens P, Gunn AJ. Update on mechanisms of the pathophysiology of neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101267. [PMID: 34274259 DOI: 10.1016/j.siny.2021.101267] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Therapeutic hypothermia is now well established to significantly improve survival without disability after neonatal encephalopathy (NE). To further improve outcomes, we need to better understand the mechanisms of brain injury. The central finding, which offers the potential for neuroprotective and neurorestorative interventions, is that brain damage after perinatal hypoxia-ischemia evolves slowly over time. Although brain cells may die during profound hypoxia-ischemia, even after surprisingly severe insults many cells show transient recovery of oxidative metabolism during a "latent" phase characterized by actively suppressed neural metabolism and activity. Critically, after moderate to severe hypoxia-ischemia, this transient recovery is followed after ~6 h by a phase of secondary deterioration, with delayed seizures, failure of mitochondrial function, cytotoxic edema, and cell death over ~72 h. This is followed by a tertiary phase of remodeling and recovery. This review discusses the mechanisms of injury that occur during the primary, latent, secondary and tertiary phases of injury and potential treatments that target one or more of these phases. By analogy with therapeutic hypothermia, treatment as early as possible in the latent phase is likely to have the greatest potential to prevent injury ("neuroprotection"). In the secondary phase of injury, anticonvulsants can attenuate seizures, but show limited neuroprotection. Encouragingly, there is now increasing preclinical evidence that late, neurorestorative interventions have potential to improve long-term outcomes.
Collapse
Affiliation(s)
- Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Fernando Gonzalez
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| | | | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
33
|
Uncovering the Mechanisms of Adenosine Receptor-Mediated Pain Control: Focus on the A 3 Receptor Subtype. Int J Mol Sci 2021; 22:ijms22157952. [PMID: 34360719 PMCID: PMC8347395 DOI: 10.3390/ijms22157952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Agonists of the Gi protein-coupled A3 adenosine receptor (A3AR) have shown important pain-relieving properties in preclinical settings of several pain models. Active as a monotherapy against chronic pain, A3AR agonists can also be used in combination with classic opioid analgesics. Their safe pharmacological profile, as shown by clinical trials for other pathologies, i.e., rheumatoid arthritis, psoriasis and fatty liver diseases, confers a realistic translational potential, thus encouraging research studies on the molecular mechanisms underpinning their antinociceptive actions. A number of pathways, involving central and peripheral mechanisms, have been proposed. Recent evidence showed that the prototypical A3AR agonist Cl-IB-MECA and the new, highly selective, A3AR agonist MRS5980 inhibit neuronal (N-type) voltage-dependent Ca2+ currents in dorsal root ganglia, a known pain-related mechanism. Other proposed pathways involve reduced cytokine production, immune cell-mediated responses, as well as reduced microglia and astrocyte activation in the spinal cord. The aim of this review is to summarize up-to-date information on A3AR in the context of pain, including cellular and molecular mechanisms underlying this effect. Based on their safety profile shown in clinical trials for other pathologies, A3AR agonists are proposed as novel, promising non-narcotic agents for pain control.
Collapse
|
34
|
Role of Purinergic Signalling in Endothelial Dysfunction and Thrombo-Inflammation in Ischaemic Stroke and Cerebral Small Vessel Disease. Biomolecules 2021; 11:biom11070994. [PMID: 34356618 PMCID: PMC8301873 DOI: 10.3390/biom11070994] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
The cerebral endothelium is an active interface between blood and the central nervous system. In addition to being a physical barrier between the blood and the brain, the endothelium also actively regulates metabolic homeostasis, vascular tone and permeability, coagulation, and movement of immune cells. Being part of the blood–brain barrier, endothelial cells of the brain have specialized morphology, physiology, and phenotypes due to their unique microenvironment. Known cardiovascular risk factors facilitate cerebral endothelial dysfunction, leading to impaired vasodilation, an aggravated inflammatory response, as well as increased oxidative stress and vascular proliferation. This culminates in the thrombo-inflammatory response, an underlying cause of ischemic stroke and cerebral small vessel disease (CSVD). These events are further exacerbated when blood flow is returned to the brain after a period of ischemia, a phenomenon termed ischemia-reperfusion injury. Purinergic signaling is an endogenous molecular pathway in which the enzymes CD39 and CD73 catabolize extracellular adenosine triphosphate (eATP) to adenosine. After ischemia and CSVD, eATP is released from dying neurons as a damage molecule, triggering thrombosis and inflammation. In contrast, adenosine is anti-thrombotic, protects against oxidative stress, and suppresses the immune response. Evidently, therapies that promote adenosine generation or boost CD39 activity at the site of endothelial injury have promising benefits in the context of atherothrombotic stroke and can be extended to current CSVD known pathomechanisms. Here, we have reviewed the rationale and benefits of CD39 and CD39 therapies to treat endothelial dysfunction in the brain.
Collapse
|
35
|
Kim KJ, Diaz JR, Presa JL, Muller PR, Brands MW, Khan MB, Hess DC, Althammer F, Stern JE, Filosa JA. Decreased parenchymal arteriolar tone uncouples vessel-to-neuronal communication in a mouse model of vascular cognitive impairment. GeroScience 2021; 43:1405-1422. [PMID: 33410092 PMCID: PMC8190257 DOI: 10.1007/s11357-020-00305-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/22/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic hypoperfusion is a key contributor to cognitive decline and neurodegenerative conditions, but the cellular mechanisms remain ill-defined. Using a multidisciplinary approach, we sought to elucidate chronic hypoperfusion-evoked functional changes at the neurovascular unit. We used bilateral common carotid artery stenosis (BCAS), a well-established model of vascular cognitive impairment, combined with an ex vivo preparation that allows pressurization of parenchymal arterioles in a brain slice. Our results demonstrate that mild (~ 30%), chronic hypoperfusion significantly altered the functional integrity of the cortical neurovascular unit. Although pial cerebral perfusion recovered over time, parenchymal arterioles progressively lost tone, exhibiting significant reductions by day 28 post-surgery. We provide supportive evidence for reduced adenosine 1 receptor-mediated vasoconstriction as a potential mechanism in the adaptive response underlying the reduced baseline tone in parenchymal arterioles. In addition, we show that in response to the neuromodulator adenosine, the action potential frequency of cortical pyramidal neurons was significantly reduced in all groups. However, a significant decrease in adenosine-induced hyperpolarization was observed in BCAS 14 days. At the microvascular level, constriction-induced inhibition of pyramidal neurons was significantly compromised in BCAS mice. Collectively, these results suggest that BCAS uncouples vessel-to-neuron communication-vasculo-neuronal coupling-a potential early event in cognitive decline.
Collapse
Affiliation(s)
- Ki Jung Kim
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Juan Ramiro Diaz
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Jessica L Presa
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - P Robinson Muller
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Michael W Brands
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Mohammad B Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Javier E Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jessica A Filosa
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
36
|
Franco R, Lillo A, Rivas-Santisteban R, Reyes-Resina I, Navarro G. Microglial Adenosine Receptors: From Preconditioning to Modulating the M1/M2 Balance in Activated Cells. Cells 2021; 10:1124. [PMID: 34066933 PMCID: PMC8148598 DOI: 10.3390/cells10051124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal survival depends on the glia, that is, on the astroglial and microglial support. Neurons die and microglia are activated not only in neurodegenerative diseases but also in physiological aging. Activated microglia, once considered harmful, express two main phenotypes: the pro-inflammatory or M1, and the neuroprotective or M2. When neuroinflammation, i.e., microglial activation occurs, it is important to achieve a good M1/M2 balance, i.e., at some point M1 microglia must be skewed into M2 cells to impede chronic inflammation and to afford neuronal survival. G protein-coupled receptors in general and adenosine receptors in particular are potential targets for increasing the number of M2 cells. This article describes the mechanisms underlying microglial activation and analyzes whether these cells exposed to a first damaging event may be ready to be preconditioned to better react to exposure to more damaging events. Adenosine receptors are relevant due to their participation in preconditioning. They can also be overexpressed in activated microglial cells. The potential of adenosine receptors and complexes formed by adenosine receptors and cannabinoids as therapeutic targets to provide microglia-mediated neuroprotection is here discussed.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Rafael Rivas-Santisteban
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
37
|
Pereira-Figueiredo D, Nascimento AA, Cunha-Rodrigues MC, Brito R, Calaza KC. Caffeine and Its Neuroprotective Role in Ischemic Events: A Mechanism Dependent on Adenosine Receptors. Cell Mol Neurobiol 2021; 42:1693-1725. [PMID: 33730305 DOI: 10.1007/s10571-021-01077-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Ischemia is characterized by a transient, insufficient, or permanent interruption of blood flow to a tissue, which leads to an inadequate glucose and oxygen supply. The nervous tissue is highly active, and it closely depends on glucose and oxygen to satisfy its metabolic demand. Therefore, ischemic conditions promote cell death and lead to a secondary wave of cell damage that progressively spreads to the neighborhood areas, called penumbra. Brain ischemia is one of the main causes of deaths and summed with retinal ischemia comprises one of the principal reasons of disability. Although several studies have been performed to investigate the mechanisms of damage to find protective/preventive interventions, an effective treatment does not exist yet. Adenosine is a well-described neuromodulator in the central nervous system (CNS), and acts through four subtypes of G-protein-coupled receptors. Adenosine receptors, especially A1 and A2A receptors, are the main targets of caffeine in daily consumption doses. Accordingly, caffeine has been greatly studied in the context of CNS pathologies. In fact, adenosine system, as well as caffeine, is involved in neuroprotection effects in different pathological situations. Therefore, the present review focuses on the role of adenosine/caffeine in CNS, brain and retina, ischemic events.
Collapse
Affiliation(s)
- D Pereira-Figueiredo
- Neurobiology of the Retina Laboratory, Biomedical Sciences Program, Biomedical Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - A A Nascimento
- Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - M C Cunha-Rodrigues
- Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - R Brito
- Laboratory of Neuronal Physiology and Pathology, Cellular and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - K C Calaza
- Neurobiology of the Retina Laboratory, Biomedical Sciences Program, Biomedical Institute, Fluminense Federal University, Niterói, RJ, Brazil. .,Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil. .,Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
38
|
Ferrari D, la Sala A, Milani D, Celeghini C, Casciano F. Purinergic Signaling in Controlling Macrophage and T Cell Functions During Atherosclerosis Development. Front Immunol 2021; 11:617804. [PMID: 33664731 PMCID: PMC7921745 DOI: 10.3389/fimmu.2020.617804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a hardening and narrowing of arteries causing a reduction of blood flow. It is a leading cause of death in industrialized countries as it causes heart attacks, strokes, and peripheral vascular disease. Pathogenesis of the atherosclerotic lesion (atheroma) relies on the accumulation of cholesterol-containing low-density lipoproteins (LDL) and on changes of artery endothelium that becomes adhesive for monocytes and lymphocytes. Immunomediated inflammatory response stimulated by lipoprotein oxidation, cytokine secretion and release of pro-inflammatory mediators, worsens the pathological context by amplifying tissue damage to the arterial lining and increasing flow-limiting stenosis. Formation of thrombi upon rupture of the endothelium and the fibrous cup may also occur, triggering thrombosis often threatening the patient’s life. Purinergic signaling, i.e., cell responses induced by stimulation of P2 and P1 membrane receptors for the extracellular nucleotides (ATP, ADP, UTP, and UDP) and nucleosides (adenosine), has been implicated in modulating the immunological response in atherosclerotic cardiovascular disease. In this review we will describe advancements in the understanding of purinergic modulation of the two main immune cells involved in atherogenesis, i.e., monocytes/macrophages and T lymphocytes, highlighting modulation of pro- and anti-atherosclerotic mediated responses of purinergic signaling in these cells and providing new insights to point out their potential clinical significance.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
| | - Andrea la Sala
- Certification Unit, Health Directorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Daniela Milani
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
39
|
Dettori I, Gaviano L, Ugolini F, Lana D, Bulli I, Magni G, Rossi F, Giovannini MG, Pedata F. Protective Effect of Adenosine A 2B Receptor Agonist, BAY60-6583, Against Transient Focal Brain Ischemia in Rat. Front Pharmacol 2021; 11:588757. [PMID: 33643036 PMCID: PMC7905306 DOI: 10.3389/fphar.2020.588757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is a multifactorial pathology characterized first by an acute injury, due to excitotoxicity, followed by a secondary brain injury that develops hours to days after ischemia. During ischemia, adenosine acts as an endogenous neuroprotectant. Few studies have investigated the role of A2B receptor in brain ischemia because of the low potency of adenosine for it and the few selective ligands developed so far. A2B receptors are scarcely but widely distributed in the brain on neurons, glial and endothelial cells and on hematopoietic cells, lymphocytes and neutrophils, where they exert mainly anti-inflammatory effects, inhibiting vascular adhesion and inflammatory cells migration. Aim of this work was to verify whether chronic administration of the A2B agonist, BAY60-6583 (0.1 mg/kg i.p., twice/day), starting 4 h after focal ischemia induced by transient (1 h) Middle Cerebral Artery occlusion (tMCAo) in the rat, was protective after the ischemic insult. BAY60-6583 improved the neurological deficit up to 7 days after tMCAo. Seven days after ischemia BAY60-6583 reduced significantly the ischemic brain damage in cortex and striatum, counteracted ischemia-induced neuronal death, reduced microglia activation and astrocytes alteration. Moreover, it decreased the expression of TNF-α and increased that of IL-10 in peripheral plasma. Two days after ischemia BAY60-6583 reduced blood cell infiltration in the ischemic cortex. The present study indicates that A2B receptors stimulation can attenuate the neuroinflammation that develops after ischemia, suggesting that A2B receptors may represent a new interesting pharmacological target to protect from degeneration after brain ischemia.
Collapse
Affiliation(s)
- Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Gaviano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Francesca Rossi
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
40
|
Coppi E, Dettori I, Cherchi F, Bulli I, Venturini M, Pedata F, Pugliese AM. New Insight into the Role of Adenosine in Demyelination, Stroke and Neuropathic Pain. Front Pharmacol 2021; 11:625662. [PMID: 33584309 PMCID: PMC7878385 DOI: 10.3389/fphar.2020.625662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
H3K27 demethylase KDM6B aggravates ischemic brain injury through demethylation of IRF4 and Notch2-dependent SOX9 activation. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:622-633. [PMID: 33981480 PMCID: PMC8076647 DOI: 10.1016/j.omtn.2021.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/17/2021] [Indexed: 01/03/2023]
Abstract
Lysine demethylase 6B (KDM6B) is a histone H3 lysine 27 (H3K27) demethylase that serves as a key mediator of gene transcription. Although KDM6B has been reported to modulate neuroinflammation after ischemic stroke, its role in ischemic brain injury is yet to be well elucidated. Therefore, this study aimed to thoroughly demonstrate the molecular mechanism underlying the effect of KDM6B on neurological function and astrocyte response in post-ischemic brain injury. Middle cerebral artery occlusion/reperfusion (MCAO) mouse models were constructed, while the oxygen-glucose deprivation/reperfusion (OGD/R) model was developed in astrocytes to mimic injury conditions. KDM6B was upregulated post-MCAO in mice and in astrocytes following the induction of OGD/R. Silencing of KDM6B resulted in suppressed neurological deficit, reduced cerebral infarction volume, attenuated neuronal cell apoptosis, and disrupted inflammation. Dual-luciferase reporter gene and chromatin immunoprecipitation-quantitative polymerase chain reaction assays revealed that KDM6B inhibited H3K27 trimethylation in the interferon regulatory factor 4 (IRF4) promoter region, resulting in the upregulation of IRF4 expression, which in turn bound to the Notch2 promoter region to induce its downstream factor SRY-related high-mobility group box 9 (SOX9). SOX9 knockdown reversed the effects of KDM6B overexpression on ischemia-triggered brain damage. Based on these findings, we concluded that KDM6B-mediated demethylation of IRF4 contributes to aggravation of ischemic brain injury through SOX9 activation.
Collapse
|
42
|
Spinozzi E, Baldassarri C, Acquaticci L, Del Bello F, Grifantini M, Cappellacci L, Riccardo P. Adenosine receptors as promising targets for the management of ocular diseases. Med Chem Res 2021; 30:353-370. [PMID: 33519168 PMCID: PMC7829661 DOI: 10.1007/s00044-021-02704-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
The ocular drug discovery arena has undergone a significant improvement in the last few years culminating in the FDA approvals of 8 new drugs. However, despite a large number of drugs, generics, and combination products available, it remains an urgent need to find breakthrough strategies and therapies for tackling ocular diseases. Targeting the adenosinergic system may represent an innovative strategy for discovering new ocular therapeutics. This review focused on the recent advance in the field and described the numerous nucleoside and non-nucleoside modulators of the four adenosine receptors (ARs) used as potential tools or clinical drug candidates.
Collapse
Affiliation(s)
- Eleonora Spinozzi
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Cecilia Baldassarri
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Laura Acquaticci
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Mario Grifantini
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Loredana Cappellacci
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Petrelli Riccardo
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
43
|
Cherchi F, Pugliese AM, Coppi E. Oligodendrocyte precursor cell maturation: role of adenosine receptors. Neural Regen Res 2021; 16:1686-1692. [PMID: 33510056 PMCID: PMC8328763 DOI: 10.4103/1673-5374.306058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain and their degeneration leads to demyelinating diseases such as multiple sclerosis. Remyelination requires the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes but, in chronic neurodegenerative disorders, remyelination fails due to adverse environment. Therefore, a strategy to prompt oligodendrocyte progenitor cell differentiation towards myelinating oligodendrocytes is required. The neuromodulator adenosine, and its receptors (A1, A2A, A2B and A3 receptors: A1R, A2AR, A2BR and A3R), are crucial mediators in remyelination processes. It is known that A1Rs facilitate oligodendrocyte progenitor cell maturation and migration whereas the A3Rs initiates apoptosis in oligodendrocyte progenitor cells. Our group of research contributed to the field by demonstrating that A2AR and A2BR inhibit oligodendrocyte progenitor cell maturation by reducing voltage-dependent K+ currents necessary for cell differentiation. The present review summarizes the possible role of adenosine receptor ligands as potential therapeutic targets in demyelinating pathologies such as multiple sclerosis.
Collapse
Affiliation(s)
- Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
44
|
Coppi E, Dettori I, Cherchi F, Bulli I, Venturini M, Lana D, Giovannini MG, Pedata F, Pugliese AM. A 2B Adenosine Receptors: When Outsiders May Become an Attractive Target to Treat Brain Ischemia or Demyelination. Int J Mol Sci 2020; 21:E9697. [PMID: 33353217 PMCID: PMC7766015 DOI: 10.3390/ijms21249697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine is a signaling molecule, which, by activating its receptors, acts as an important player after cerebral ischemia. Here, we review data in the literature describing A2BR-mediated effects in models of cerebral ischemia obtained in vivo by the occlusion of the middle cerebral artery (MCAo) or in vitro by oxygen-glucose deprivation (OGD) in hippocampal slices. Adenosine plays an apparently contradictory role in this receptor subtype depending on whether it is activated on neuro-glial cells or peripheral blood vessels and/or inflammatory cells after ischemia. Indeed, A2BRs participate in the early glutamate-mediated excitotoxicity responsible for neuronal and synaptic loss in the CA1 hippocampus. On the contrary, later after ischemia, the same receptors have a protective role in tissue damage and functional impairments, reducing inflammatory cell infiltration and neuroinflammation by central and/or peripheral mechanisms. Of note, demyelination following brain ischemia, or autoimmune neuroinflammatory reactions, are also profoundly affected by A2BRs since they are expressed by oligodendroglia where their activation inhibits cell maturation and expression of myelin-related proteins. In conclusion, data in the literature indicate the A2BRs as putative therapeutic targets for the still unmet treatment of stroke or demyelinating diseases.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| |
Collapse
|
45
|
The ligand-gated ion channel P2X7 receptor mediates NLRP3/caspase-1-mediated pyroptosis in cerebral cortical neurons of juvenile rats with sepsis. Brain Res 2020; 1748:147109. [DOI: 10.1016/j.brainres.2020.147109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
|
46
|
Barinov EF, Statinova EA, Sokhina VS, Faber TI. [Risks of progression of cerebrovascular pathology associated with the activity of the brain purinergic system]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:118-124. [PMID: 33244967 DOI: 10.17116/jnevro2020120101118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Until now, there is no understanding of the relationship between risk factors and the progression of cerebrovascular pathology. The review presents facts that confirm the involvement of various subtypes of purine P2 receptors in neuron activation, growth and myelination of axons, migration and microglia phagocytosis, astrogliosis, regulation of vascular tone, thrombosis and angiogenesis, neuroinflammation and immune responses. The data suggest the possibility of the activation of purinergic system of the brain during the development of main risk factors for cerebrovascular pathology (age, arterial hypertension, diabetes), as a stereotypical mechanism that can affect the homeostasis of the ensemble "neuron-glia-capillary". Purinergic P2 receptors may be a potential target for the development of pharmacological methods to limit the progression of cerebrovascular pathology.
Collapse
Affiliation(s)
- E F Barinov
- Gorky Donetsk National Medical University, Donetsk, Ukraina
| | - E A Statinova
- Gorky Donetsk National Medical University, Donetsk, Ukraina
| | - V S Sokhina
- Gorky Donetsk National Medical University, Donetsk, Ukraina
| | - T I Faber
- Gorky Donetsk National Medical University, Donetsk, Ukraina
| |
Collapse
|
47
|
Targeting Adenosine Receptors: A Potential Pharmacological Avenue for Acute and Chronic Pain. Int J Mol Sci 2020; 21:ijms21228710. [PMID: 33218074 PMCID: PMC7698931 DOI: 10.3390/ijms21228710] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine is a purine nucleoside, responsible for the regulation of multiple physiological and pathological cellular and tissue functions by activation of four G protein-coupled receptors (GPCR), namely A1, A2A, A2B, and A3 adenosine receptors (ARs). In recent years, extensive progress has been made to elucidate the role of adenosine in pain regulation. Most of the antinociceptive effects of adenosine are dependent upon A1AR activation located at peripheral, spinal, and supraspinal sites. The role of A2AAR and A2BAR is more controversial since their activation has both pro- and anti-nociceptive effects. A3AR agonists are emerging as promising candidates for neuropathic pain. Although their therapeutic potential has been demonstrated in diverse preclinical studies, no AR ligands have so far reached the market. To date, novel pharmacological approaches such as adenosine regulating agents and allosteric modulators have been proposed to improve efficacy and limit side effects enhancing the effect of endogenous adenosine. This review aims to provide an overview of the therapeutic potential of ligands interacting with ARs and the adenosinergic system for the treatment of acute and chronic pain.
Collapse
|
48
|
Zhao Y, Yang J, Li C, Zhou G, Wan H, Ding Z, Wan H, Zhou H. Role of the neurovascular unit in the process of cerebral ischemic injury. Pharmacol Res 2020; 160:105103. [PMID: 32739425 DOI: 10.1016/j.phrs.2020.105103] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Cerebral ischemic injury exhibits both high morbidity and mortality worldwide. Traditional research of the pathogenesis of cerebral ischemic injury has focused on separate analyses of the involved cell types. In recent years, the neurovascular unit (NVU) mechanism of cerebral ischemic injury has been proposed in modern medicine. Hence, more effective strategies for the treatment of cerebral ischemic injury may be provided through comprehensive analysis of brain cells and the extracellular matrix. However, recent studies that have investigated the function of the NVU in cerebral ischemic injury have been insufficient. In addition, the metabolism and energy conversion of the NVU depend on interactions among multiple cell types, which make it difficult to identify the unique contribution of each cell type. Therefore, in the present review, we comprehensively summarize the regulatory effects and recovery mechanisms of four major cell types (i.e., astrocytes, microglia, brain-microvascular endothelial cells, and neurons) in the NVU under cerebral ischemic injury, as well as discuss the interactions among these cell types in the NVU. Furthermore, we discuss the common signaling pathways and signaling factors that mediate cerebral ischemic injury in the NVU, which may help to provide a theoretical basis for the comprehensive elucidation of cerebral ischemic injury.
Collapse
Affiliation(s)
- Yu Zhao
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Guoying Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Haofang Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
49
|
Sowmithra S, Jain NK, Datta I. Evaluating In Vitro Neonatal Hypoxic-Ischemic Injury Using Neural Progenitors Derived from Human Embryonic Stem Cells. Stem Cells Dev 2020; 29:929-951. [DOI: 10.1089/scd.2020.0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Sowmithra Sowmithra
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Nishtha Kusum Jain
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| |
Collapse
|
50
|
Ethyl Pyruvate Increases Post-Ischemic Levels of Mitochondrial Energy Metabolites: A 13C-Labeled Cerebral Microdialysis Study. Metabolites 2020; 10:metabo10070287. [PMID: 32668656 PMCID: PMC7407637 DOI: 10.3390/metabo10070287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial dysfunction after transient cerebral ischemia can be monitored by cerebral microdialysis (CMD) using changes in the lactate and pyruvate concentrations and ratio. Other metabolites associated with mitochondrial (dys)function are, e.g., tricyclic acid (TCA) and purine metabolites. Ethyl pyruvate (EP) is a putative neuroprotectant, supposedly targeting mitochondrial energy metabolism, but its effect on cerebral energy metabolism has never been described using microdialysis. In this study we monitored the metabolic effects of EP in the endothelin-1 (ET-1) rat model using perfusion with 13C-succinate and analysis of endogenous and 13C-labeled metabolites in the dialysates by liquid chromatography-mass spectrometry (LC-MS). Adult Sprague Dawley rats (n = 27 of which n = 11 were included in the study) were subjected to the microdialysis experiments. Microdialysis probes were perfused with 13C-labeled succinate (1 mM), and striatal dialysates were collected at 30 min intervals before induction of the insult, during intracerebral application of ET-1, and during intravenous treatment with either EP (40 mg/kg) or placebo, which was administered immediately after the insult. The rats were subjected to transient cerebral ischemia by unilateral microinjection of ET-1 in the piriform cortex, causing vasoconstriction of the medial cerebral artery. Monitoring was continued for 5 h after reperfusion, and levels of endogenous and 13C-labeled energy metabolites before and after ischemia-reperfusion were compared in EP-treated and control groups. Infarct volumes were assessed after 24 h. In both the EP-treated and placebo groups, ET-1-induced vasoconstriction resulted in a transient depression of interstitial glucose and elevation of lactate in the ipsilateral striatum. In the reperfusion phase, the concentrations of labeled malate, isocitrate, and lactate as well as endogenous xanthine were significantly higher in the EP-group than in the placebo-group: (mean ± SEM) labeled malate: 39.5% ± 14.9, p = 0.008; labeled isocitrate: 134.8% ± 67.9, p = 0.047; labeled lactate: 61% ± 22.0, p = 0.007; and endogenous xanthine: 93.9% ± 28.3, p = 0.0009. In the placebo group, significantly elevated levels of uridine were observed (mean ± SEM) 32.5% ± 12.7, p = 0.01. Infarct volumes were not significantly different between EP-treated and placebo groups, p = 0.4679. CMD labeled with 13C-succinate enabled detection of ischemic induction and EP treatment effects in the ET-1 rat model of transient focal cerebral ischemia. EP administered as a single intravenous bolus in the reperfusion-phase after transient cerebral ischemia increased de novo synthesis of several key intermediate energy metabolites (13C-malate, 13C-isocitrate, and endogenous xanthine). In summary, mitochondria process 13C-succinate more effectively after EP treatment.
Collapse
|