1
|
Park H, Ryu H, Zhang S, Kim S, Chung C. Mitogen-activated protein kinase dependent presynaptic potentiation in the lateral habenula mediates depressive-like behaviors in rats. Neuropsychopharmacology 2024:10.1038/s41386-024-02025-8. [PMID: 39528624 DOI: 10.1038/s41386-024-02025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Emerging evidence suggests that the enhanced activity of lateral habenula (LHb) is involved in depressive disorders. This abnormal potentiation of LHb neurons was shown to originate from presynaptic alterations; however, the mechanisms underlying this presynaptic enhancement and physiological consequences are yet to be elucidated. Previously, we reported that presynaptic transmission in the LHb is temporally rhythmic, showing greater activity in the afternoon than in the morning. Here, we used a learned helpless rodent model of depression to show that exposure to a stressor or incubation with the stress hormone, corticosterone, abolished the presynaptic temporal variation in the LHb. In addition, selective inhibition of mitogen-activated protein kinase (MAPK) kinase (MAPKK, MEK) activity in the LHb restored the presynaptic alteration even after stress exposure. Moreover, we observed a slight increase in phosphorylated synapsin I after stress exposure. Finally, we found that a blockade of MAPK signaling before stress exposure successfully prevented the depression-like behaviors, including behavioral despair and helplessness, in an acute learned helpless animal model of depression. Our study delineates the cellular and molecular mechanisms responsible for the abnormal presynaptic enhancement of the LHb in depression, which may mediate depressive behaviors.
Collapse
Affiliation(s)
- Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sungmin Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea.
| |
Collapse
|
2
|
Deng MY, Cheng J, Gao N, Li XY, Liu H, Wang YX. Dexamethasone attenuates neuropathic pain through spinal microglial expression of dynorphin A via the cAMP/PKA/p38 MAPK/CREB signaling pathway. Brain Behav Immun 2024; 119:36-50. [PMID: 38555991 DOI: 10.1016/j.bbi.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
This study aimed to elucidate the opioid mechanisms underlying dexamethasone-induced pain antihypersensitive effects in neuropathic rats. Dexamethasone (subcutaneous and intrathecal) and membrane-impermeable Dex-BSA (intrathecal) administration dose-dependently inhibited mechanical allodynia and thermal hyperalgesia in neuropathic rats. Dexamethasone and Dex-BSA treatments increased expression of dynorphin A in the spinal cords and primary cultured microglia. Dexamethasone specifically enhanced dynorphin A expression in microglia but not astrocytes or neurons. Intrathecal injection of the microglial metabolic inhibitor minocycline blocked dexamethasone-stimulated spinal dynorphin A expression; intrathecal minocycline, the glucocorticoid receptor antagonist Dex-21-mesylate, dynorphin A antiserum, and κ-opioid receptor antagonist GNTI completely blocked dexamethasone-induced mechanical antiallodynia and thermal antihyperalgesia. Additionally, dexamethasone elevated spinal intracellular cAMP levels, leading to enhanced phosphorylation of PKA, p38 MAPK and CREB. The specific adenylate cyclase inhibitor DDA, PKA inhibitor H89, p38 MAPK inhibitor SB203580 and CREB inhibitor KG-501 completely blocked dexamethasone-induced anti-neuropathic pain and increased microglial dynorphin A exprression. In conclusion, this study reveal that dexamethasone mitigateds neuropathic pain through upregulation of dynorphin A in spinal microglia, likely involving the membrane glucocorticoid receptor/cAMP/PKA/p38 MAPK/CREB signaling pathway.
Collapse
Affiliation(s)
- Meng-Yan Deng
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou 450001, China; King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Jing Cheng
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou 450001, China
| | - Na Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou 450001, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Hao Liu
- School of Basic Medical Science, School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China.
| |
Collapse
|
3
|
Chen Y, Fei X, Liu G, Li X, Huang L, Yang LZ, Li Y, Xu B, Fang W. P-Glycoprotein Exacerbates Brain Injury Following Experimental Cerebral Ischemia by Promoting Proinflammatory Microglia Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6916819. [PMID: 38144707 PMCID: PMC10748718 DOI: 10.1155/2023/6916819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/02/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Microglia are activated following cerebral ischemic insult. P-glycoprotein (P-gp) is an efflux transporter on microvascular endothelial cells and upregulated after cerebral ischemia. This study evaluated the effects and possible mechanisms of P-gp on microglial polarization/activation in mice after ischemic stroke. P-gp-specific siRNA and adeno-associated virus (p-AAV) were used to silence and overexpress P-gp, respectively. Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) were performed in mice and cerebral microvascular endothelial cells (bEnd.3) in vitro, respectively. OGD/R-injured bEnd.3 cells were cocultured with mouse microglial cells (BV2) in Transwell. Influences on acute ischemic stroke outcome, the expression of inflammatory cytokines, and chemokines and chemokines receptors, microglial polarization, glucocorticoid receptor (GR) nuclear translocation, and GR-mediated mRNA decay (GMD) activation were evaluated via reverse transcription real-time polymerase chain reaction, western blot, or immunofluorescence. Silencing P-gp markedly alleviated experimental ischemia injury as indicated by reduced cerebral infarct size, improved neurological deficits, and reduced the expression of interleukin-6 (IL-6) and IL-12 expression. Silencing P-gp also mitigated proinflammatory microglial polarization and the expression of C-C motif chemokine ligand 2 (CCL2) and its receptor CCR2 expression, whereas promoted anti-inflammatory microglia polarization. Additionally, P-gp silencing promoted GR nuclear translocation and the expression of GMD relative proteins in endothelial cells. Conversely, overexpressing P-gp via p-AAV transfection offset all these effects. Furthermore, silencing endothelial GR counteracted all effects mediated by silencing or overexpressing P-gp. Elevated P-gp expression aggravated inflammatory response and brain damage after ischemic stroke by augmenting proinflammatory microglial polarization in association with increased endothelial CCL2 release due to GMD inhibition by P-gp.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Xuan Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Lele Zixin Yang
- Penn State University, University Park, State College, PA 16802, USA
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
4
|
Tafelski S, Wandrey JD, Shaqura M, Hong X, Beyer A, Schäfer M, Mousa SA. Translation of Experimental Findings from Animal to Human Biology: Identification of Neuronal Mineralocorticoid and Glucocorticoid Receptors in a Sectioned Main Nerve Trunk of the Leg. Cells 2023; 12:1785. [PMID: 37443819 PMCID: PMC10340435 DOI: 10.3390/cells12131785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The activation of the mineralocorticoid (MR) and glucocorticoid (GR) receptors on peripheral sensory neurons seems to modify pain perception through both direct non-genomic and indirect genomic pathways. These distinct subpopulations of sensory neurons are not known for peripheral human nerves. Therefore, we examined MR and GR on subpopulations of sensory neurons in sectioned human and rat peripheral nerves. Real-time PCR (RT-PCR) and double immunofluorescence confocal analysis of MR and GR with the neuronal markers PGP9.5, neurofilament 200 (NF200), and the potential pain signaling molecules CGRP, Nav1.8, and TRPV1 were performed in human and rat nerve tissue. We evaluated mechanical hyperalgesia after intrathecal administration of GR and MR agonists. We isolated MR- and GR-specific mRNA from human peripheral nerves using RT-PCR. Our double immunofluorescence analysis showed that the majority of GR colocalized with NF200 positive, myelinated, mechanoreceptive A-fibers and, to a lesser extent, with peripheral peptidergic CGRP-immunoreactive sensory nerve fibers in humans and rats. However, the majority of MR colocalized with CGRP in rat as well as human nerve tissue. Importantly, there was an abundant colocalization of MR with the pain signaling molecules TRPV1, CGRP, and Nav1.8 in human as well as rat nerve tissue. The intrathecal application of the GR agonist reduced, and intrathecal administration of an MR agonist increased, mechanical hyperalgesia in rats. Altogether, these findings support a translational approach in mammals that aims to explain the modulation of sensory information through MR and GR activation. Our findings show a significant overlap between humans and rats in MR and GR expression in peripheral sensory neurons.
Collapse
Affiliation(s)
- Sascha Tafelski
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan D. Wandrey
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Mohammed Shaqura
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Xueqi Hong
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Antje Beyer
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Michael Schäfer
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Shaaban A. Mousa
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Campus Charité Mitte and Campus Virchow Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
5
|
Aladev SD, Sokolov DK, Strokotova AV, Kazanskaya GM, Volkov AM, Politko MO, Shahmuradova AI, Kliver EE, Tsidulko AY, Aidagulova SV, Grigorieva EV. Dexamethasone effects on the expression and content of glycosylated components of mouse brain tissue. ADVANCES IN MOLECULAR ONCOLOGY 2023. [DOI: 10.17650/2313-805x-2023-10-1-25-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Introduction. Glucocorticoids are actively used in the treatment of various diseases, however their long-term use leads to numerous negative side-effects, the molecular mechanisms of which remain poorly understood.Aim. Study of the short-term (1–10 days) effects of various doses of dexamethasone (Dex) (0,1–10 mg/kg) on the expression of the glucocorticoid receptor (GR, Nr3c1), core proteins of main proteoglycans and heparan sulfate metabolism-involved genes, as well as the content of carbohydrate macromolecules of glycosaminoglycans in the brain tissue of experimental animals.Materials and methods. In the study, C57Bl/6 mice were used. The expression of GR, proteoglycan core proteins and heparan sulfate metabolism-involved genes was determined by real-time polymerase chain reaction with reverse transcription. The content and localization of GR protein molecule were studied by Western blot and immunohistochemical analysis, and the glycosaminoglycan content was determined by dot-blot analysis and Alcian Blue staining.Results. It was shown that a single Dex administration leads to fast (1–3 days) short-term activation of GR expression (+1.5 times, p <0.05), proteoglycan’s genes (syndecan-3, Sdc3; perlecan, Hspg2; phosphacan, Ptprz1; neurocan, Ncan; +2–3-fold; p <0.05) and heparan sulfate-metabolism-involved genes (Ndst1, Glce, Hs2st1, Hs6st1, Sulf1 / 2; +1.5–2-fold; p <0.05) in the mouse brain, with a return to control values by 7–10 days after Dex administration. At the same time, the effect of Dex on carbohydrate macromolecules of glycosaminoglycans was more delayed and stable, increasing the content of low-sulfated glycosaminoglycans in the brain tissue in a dose-dependent manner starting from day 1 after Dex administration. Highly-sulfated glycosaminoglycans showed more delayed response to Dex administration, and an increase in their content was observed only at higher doses (2.5 and 10 mg/kg) and only on 7–10 days after its administration, apparently, mainly due to an increase in heparan sulfate content.Conclusion. In general, the effect of a single injection of Dex on the transcriptional activity of GR, proteoglycan core proteins and heparan sulfate metabolism-involved genes were short-termed, and the genes expression quickly returned to the normal levels. However, even a single use of Dex significantly increased the content of total as well as highly sulfated glycosaminoglycans in the mouse brain tissue, which can lead to the changes in the composition and structure of the brain tissue, as well as its functional characteristics.
Collapse
Affiliation(s)
- S. D. Aladev
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - D. K. Sokolov
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - A. V. Strokotova
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - G. M. Kazanskaya
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | | | - M. O. Politko
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - A. I. Shahmuradova
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | | | - A. Y. Tsidulko
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - S. V. Aidagulova
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation; Novosibirsk State Medical University
| | - E. V. Grigorieva
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| |
Collapse
|
6
|
Shoaib RM, Ahsan MZ, Akhtar U, Ahmad KA, Ali U, Deng MY, Li XY, Wang YX. Ginsenoside Rb1, a principal effective ingredient of Panax notoginseng, produces pain antihypersensitivity by spinal microglial dynorphin A expression. Neurosci Res 2023; 188:75-87. [PMID: 36368461 DOI: 10.1016/j.neures.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Panax notoginseng (Chinese ginseng, Sanqi), one of the major ginseng species, has been traditionally used to alleviate different types of chronic pain. The raw P. notoginseng powder is commonly available in China as a non-prescription drug to treat various aliments including arthritic pain. However, strong scientific evidence is needed to illustrate its pain antihypersensitive effects, effective ingredients and mechanism of action. The oral P. notoginseng powder dose-dependently alleviated formalin-induced tonic hyperalgesia, and its total ginsenosides remarkably inhibited neuropathic pain hypersensitivity. Ginsenoside Rb1, the most abundant ginsenoside of P. notoginseng, dose-dependently produced neuropathic pain antihypersensitivity. Conversely, ginsenosides Rg1, Re and notoginseng R1, the other major saponins from P. notoginseng, failed to inhibit formalin-induced tonic pain or mechanical allodynia in neuropathic pain. Ginsenoside Rb1 metabolites ginsenosides Rg3, Compound-K and protopanaxadiol also had similar antineuropathic pain efficacy to ginsenoside Rb1. Additionally, intrathecal ginsenoside Rb1 specifically stimulated dynorphin A expression which was colocalized with microglia but not neurons or astrocytes in the spinal dorsal horn and primary cultured cells. Pretreatment with microglial metabolic inhibitor minocycline, dynorphin A antiserum and specific κ-opioid receptor antagonist GNTI completely blocked Rb1-induced mechanical antiallodynia in neuropathic pain. Furthermore, the specific glucocorticoid receptor (GR) antagonist Dex-21-mesylate (but not GPR30 estrogen receptor antagonist G15) also entirely attenuated ginsenoside Rb1-related antineuropathic pain effects. All these results, for the first time, show that P. notoginseng alleviates neuropathic pain and ginsenoside Rb1 is its principal effective ingredient. Furthermore, ginsenoside Rb1 inhibits neuropathic pain by stimulation of spinal microglial dynorphin A expression following GR activation.
Collapse
Affiliation(s)
- Rana Muhammad Shoaib
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | | | - Usman Akhtar
- Department of Pharmacy, Forman Christian College, A Chartered University, Zahoor Elahi Road, Gulberg III, Lahore, Punjab 54600, Pakistan
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Usman Ali
- Department of Pharmacology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Men-Yan Deng
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Liu J, Xie X, Qin K, Xu L, Peng J, Li X, Li X, Liu Z. Dexamethasone and potassium canrenoate alleviate hyperalgesia by competitively regulating IL-6/JAK2/STAT3 signaling pathway during inflammatory pain in vivo and in vitro. Immun Inflamm Dis 2022; 10:e721. [PMID: 36301041 PMCID: PMC9597488 DOI: 10.1002/iid3.721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Dexamethasone (Dexa) and potassium canrenoate (Cane) modulate nociceptive behavior via glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) by two mechanisms (genomic and nongenomic pathways). This study was designed to investigate the Dexa- or Cane-mediated nongenomic and genomic effects on mechanical nociception and inflammation-induced changes in interleukin-6 (IL-6) mediated signaling pathway in rats. METHODS Freund's complete adjuvant (FCA) was used to trigger an inflammation of the right hind paw in male Sprague-Dawley rats. First, the mechanical nociceptive behavioral changes were examined following intraplantar administration of GR agonist Dexa and/or MR antagonist Cane in vivo. Subsequently, the protein levels of IL-6, IL-6Rα, JAK2, pJAK2, STAT3, pSTAT3Ser727 , migration inhibitory factor, and cyclooxygenase-2 were assessed by Western blot following intraplantar injection of Dexa or Cane or the combination. Moreover, the molecular docking studies determined the interaction between Dexa, Cane, and IL-6. The competition binding assay was carried out using enzyme-linked immunosorbent assays (ELISA). RESULTS Administration of Dexa and Cane dose-dependently attenuated FCA-induced inflammatory pain. The sub-additive effect of Dexa/Cane combination was elucidated by isobologram analysis, accompanied by decrease in the spinal levels of IL-6, pJAK2, and pSTAT3Ser727 . The molecular docking study demonstrated that both Dexa and Cane displayed a firm interaction with THR138 binding site of IL-6 via a strong hydrogen bond. ELISA revealed that Dexa has a higher affinity to IL-6 than Cane. CONCLUSIONS There was no additive or negative effect of Dexa and Cane, and they modulate the IL-6/JAK2/STAT3 signaling pathway through competitive binding with IL-6 and relieves hypersensitivity during inflammatory pain.
Collapse
Affiliation(s)
- Jie Liu
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xiaolan Xie
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Kai Qin
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Le Xu
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Juxiang Peng
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xiangyu Li
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xiongjuan Li
- Department of Anesthesiology, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenGuangdongChina
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenGuangdongChina
| |
Collapse
|
8
|
Mousa SA, Dehe L, Aboryag N, Shaqura M, Beyer A, Schäfer M, Treskatsch S. Identification of glucocorticoid receptors as potential modulators of parasympathetic and sympathetic neurons within rat intracardiac ganglia. Front Neuroanat 2022; 16:902738. [PMID: 36213610 PMCID: PMC9539283 DOI: 10.3389/fnana.2022.902738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Emerging evidences indicate that glucocorticoid receptors (GR) play a regulatory role in cardiac function, particularly with regard to the autonomic nervous system. Therefore, this study aimed to demonstrate the expression and the precise anatomical location of GR in relation to the parasympathetic and sympathetic innervations of the heart. Methods The present study used tissue samples from rat heart atria to perform conventional reverse-transcriptase polymerase chain reaction (RT-PCR), Western blot, and double immunofluorescence confocal analysis of GR with the neuronal markers vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP) as well as the mineralocorticoid receptor (MR). Results Double immunofluorescence labeling revealed that GRs were co-expressed with VAChT in parasympathetic principal neuronal somata and nerve terminals innervating atrium. Also, GR colocalized with the sympathetic neuronal marker TH in a cluster of small intensely fluorescent (SIF) cells, on intracardiac nerve terminals and in the atrial myocardium. GR immunoreactivity was scarcely identified on CGRP-immunoreactive sensory nerve terminals. Approximately 20% of GR immunoreactive neuronal somata co-localized with MR. Finally, conventional RT-PCR and Western blot confirmed the presence of GR and MR in rat heart atria. Conclusion This study provides evidence for the existence of GR predominantly on cardiac parasympathetic neurons and TH-immunoreactive SIF cells suggesting a functional role of cardiac GR on cardiovascular function by modulation of the cardiac autonomic nervous system.
Collapse
Affiliation(s)
- Shaaban A. Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Lukas Dehe
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Noureddin Aboryag
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Mohammed Shaqura
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Antje Beyer
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
9
|
Fullerton EF, Karom MC, Streicher JM, Young LJ, Murphy AZ. Age-Induced Changes in µ-Opioid Receptor Signaling in the Midbrain Periaqueductal Gray of Male and Female Rats. J Neurosci 2022; 42:6232-6242. [PMID: 35790399 PMCID: PMC9374133 DOI: 10.1523/jneurosci.0355-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 11/21/2022] Open
Abstract
Opioids have decreased analgesic potency (but not efficacy) in aged rodents compared with adults; however, the neural mechanisms underlying this attenuated response are not yet known. The present study investigated the impact of advanced age and biological sex on opioid signaling in the ventrolateral periaqueductal gray (vlPAG) in the presence of chronic inflammatory pain. Assays measuring µ-opioid receptor (MOR) radioligand binding, GTPγS binding, receptor phosphorylation, cAMP inhibition, and regulator of G-protein signaling (RGS) protein expression were performed on vlPAG tissue from adult (2-3 months) and aged (16-18 months) male and female rats. Persistent inflammatory pain was induced by intraplantar injection of complete Freund's adjuvant (CFA). Adult males exhibited the highest MOR binding potential (BP) and highest G-protein activation (activation efficiency ratio) in comparison to aged males and females (adult and aged). No impact of advanced age or sex on MOR phosphorylation state was observed. DAMGO-induced cAMP inhibition was highest in the vlPAG of adult males compared with aged males and females (adult and aged). vlPAG levels of RGS4 and RGS9-2, critical for terminating G-protein signaling, were assessed using RNAscope. Adult rats (both males and females) exhibited lower levels of vlPAG RGS4 and RGS9-2 mRNA expression compared with aged males and females. The observed age-related reductions in vlPAG MOR BP, G-protein activation efficiency, and cAMP inhibition, along with the observed age-related increases in RGS4 and RGS9-2 vlPAG expression, provide potential mechanisms whereby the potency of opioids is decreased in the aged population.SIGNIFICANCE STATEMENT Opioids have decreased analgesic potency (but not efficacy) in aged rodents compared with adults; however, the neural mechanisms underlying this attenuated response are not yet known. In the present study, we observed age-related reductions in ventrolateral periaqueductal gray (vlPAG) µ-opioid receptor (MOR) binding potential (BP), G-protein activation efficiency, and cAMP inhibition, along with the observed age-related increases in regulator of G-protein signaling (RGS)4 and RGS9-2 vlPAG expression, providing potential mechanisms whereby the potency of opioids is decreased in the aged population. These coordinated decreases in opioid receptor signaling may explain the previously reported reduced potency of opioids to produce pain relief in females and aged rats.
Collapse
Affiliation(s)
- Evan F Fullerton
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Mary C Karom
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724
| | - Larry J Young
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
10
|
Dehe L, Mousa SA, Aboryag N, Shaqura M, Beyer A, Schäfer M, Treskatsch S. Identification of Mineralocorticoid Receptors, Aldosterone, and Its Processing Enzyme CYP11B2 on Parasympathetic and Sympathetic Neurons in Rat Intracardiac Ganglia. Front Neuroanat 2022; 15:802359. [PMID: 35087382 PMCID: PMC8786913 DOI: 10.3389/fnana.2021.802359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Recent interest has focused on the mineralocorticoid receptor (MR) and its impact on the myocardium and the performance of the heart. However, there is a lack of evidence about MR expression and its endogenous ligand aldosterone synthesis with specific regard to the intrinsic cardiac nervous system. Therefore, we looked for evidence of MR and aldosterone in sympathetic and parasympathetic neurons of intracardiac ganglia. Tissue samples from rat heart atria were subjected to conventional reverse-transcriptase polymerase chain reaction (PCR), Western blot, and double immunofluorescence confocal analysis of MR, corticosterone-inactivating enzyme 11β-hydroxysteroid-dehydrogenase-2 (11β-HSD2), aldosterone, and its processing enzyme CYP11B2 together with the neuronal markers vesicular acetylcholine transporter (VAChT) and tyrosine hydroxylase (TH). Our results demonstrated MR, 11β-HSD2, and CYP11B2 specific mRNA and protein bands in rat heart atria. Double immunofluorescence labeling revealed coexpression of MR immunoreactivity with VAChT in large diameter parasympathetic principal neurons. In addition, MR immunoreactivity was identified in TH-immunoreactive small intensely fluorescent (SIF) cells and in nearby VAChT- and TH-immunoreactive nerve terminals. Interestingly, the aldosterone and its synthesizing enzyme CYP11B2 and 11β-HSD2 colocalized in MR– immunoreactive neurons of intracardiac ganglia. Overall, this study provides first evidence for the existence of not only local expression of MR, but also of 11β-HSD2 and aldosterone with its processing enzyme CYP11B2 in the neurons of the cardiac autonomic nervous system, suggesting a possible modulatory role of the mineralocorticoid system on the endogenous neuronal activity on heart performance.
Collapse
Affiliation(s)
- Lukas Dehe
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| | - Shaaban A. Mousa
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
- *Correspondence: Shaaban A. Mousa,
| | - Noureddin Aboryag
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| | - Mohammed Shaqura
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| | - Antje Beyer
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Schäfer
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
11
|
Functional and Anatomical Characterization of Corticotropin-Releasing Factor Receptor Subtypes of the Rat Spinal Cord Involved in Somatic Pain Relief. Mol Neurobiol 2021; 58:5459-5472. [PMID: 34331656 PMCID: PMC8599353 DOI: 10.1007/s12035-021-02481-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
Corticotropin-releasing factor (CRF) orchestrates our body’s response to stressful stimuli. Pain is often stressful and counterbalanced by activation of CRF receptors along the nociceptive pathway, although the involvement of the CRF receptor subtypes 1 and/or 2 (CRF-R1 and CRF-R2, respectively) in CRF-induced analgesia remains controversial. Thus, the aim of the present study was to examine CRF-R1 and CRF-R2 expression within the spinal cord of rats with Freund’s complete adjuvant-induced unilateral inflammation of the hind paw using reverse transcriptase polymerase chain reaction, Western blot, radioligand binding, and immunofluorescence confocal analysis. Moreover, the antinociceptive effects of intrathecal (i.t.) CRF were measured by paw pressure algesiometer and their possible antagonism by selective antagonists for CRF-R1 and/or CRF-R2 as well as for opioid receptors. Our results demonstrated a preference for the expression of CRF-R2 over CRF-R1 mRNA, protein, binding sites and immunoreactivity in the dorsal horn of the rat spinal cord. Consistently, CRF as well as CRF-R2 agonists elicited potent dose-dependent antinociceptive effects which were antagonized by the i.t. CRF-R2 selective antagonist K41498, but not by the CRF-R1 selective antagonist NBI35965. In addition, i.t. applied opioid antagonist naloxone dose-dependently abolished the i.t. CRF- as well as CRF-R2 agonist-elicited inhibition of somatic pain. Importantly, double immunofluorescence confocal microscopy of the spinal dorsal horn showed CRF-R2 on enkephalin (ENK)-containing inhibitory interneurons in close opposition of incoming mu-opioid receptor-immunoreactive nociceptive neurons. CRF-R2 was, however, not seen on pre- or on postsynaptic sensory neurons of the spinal cord. Taken together, these findings suggest that i.t. CRF or CRF-R2 agonists inhibit somatic inflammatory pain predominantly through CRF-R2 receptors located on spinal enkephalinergic inhibitory interneurons which finally results in endogenous opioid-mediated pain inhibition.
Collapse
|
12
|
Shoaib RM, Ahmad KA, Wang YX. Protopanaxadiol alleviates neuropathic pain by spinal microglial dynorphin A expression following glucocorticoid receptor activation. Br J Pharmacol 2021; 178:2976-2997. [PMID: 33786848 DOI: 10.1111/bph.15471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE New remedies are required for the treatment of neuropathic pain due to insufficient efficacy of available therapies. This study provides a novel approach to develop painkillers for chronic pain treatment. EXPERIMENTAL APPROACH The rat formalin pain test and spinal nerve ligation model of neuropathic pain were used to evaluate antinociception of protopanaxadiol. Primary cell cultures, immunofluorescence staining, and gene and protein expression were also performed for mechanism studies. KEY RESULTS Gavage protopanaxadiol remarkably produces pain antihypersensitive effects in neuropathic pain, bone cancer pain and inflammatory pain, with efficacy comparable with gabapentin. Long-term PPD administration does not induce antihypersensitive tolerance, but prevents and reverses the development and expression of morphine analgesic tolerance. Oral protopanaxadiol specifically stimulates spinal expression of dynorphin A in microglia but not in astrocytes or neurons. Protopanaxadiol gavage-related pain antihypersensitivity is abolished by the intrathecal pretreatment with the microglial metabolic inhibitor minocycline, dynorphin antiserum or specific κ-opioid receptor antagonist GNTI. Intrathecal pretreatment with glucocorticoid receptor)antagonists RU486 and dexamethasone-21-mesylate, but not GPR-30 antagonist G15 or mineralocorticoid receptor antagonist eplerenone, completely attenuates protopanaxadiol-induced spinal dynorphin A expression and pain antihypersensitivity in neuropathic pain. Treatment with protopanaxadiol, the glucocorticoid receptor agonist dexamethasone and membrane-impermeable glucocorticoid receptor agonist dexamethasone-BSA in cultured microglia induces remarkable dynorphin A expression, which is totally blocked by pretreatment with dexamthasone-21-mesylate. CONCLUSION AND IMPLICATIONS All the results, for the first time, indicate that protopanaxadiol produces pain antihypersensitivity in neuropathic pain probably through spinal microglial dynorphin A expression after glucocorticoid receptor activation and hypothesize that microglial membrane glucocorticoid receptor/dynorphin A pathway is a potential target to discover and develop novel painkillers in chronic pain.
Collapse
Affiliation(s)
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
13
|
Green PG, Alvarez P, Levine JD. Sexual dimorphic role of the glucocorticoid receptor in chronic muscle pain produced by early-life stress. Mol Pain 2021; 17:17448069211011313. [PMID: 33882732 PMCID: PMC8072835 DOI: 10.1177/17448069211011313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fibromyalgia and other chronic musculoskeletal pain syndromes are associated with stressful early life events, which can produce a persistent dysregulation in the hypothalamic-pituitary adrenal (HPA) stress axis function, associated with elevated plasm levels of corticosterone in adults. To determine the contribution of the HPA axis to persistent muscle hyperalgesia in adult rats that had experienced neonatal limited bedding (NLB), a form of early-life stress, we evaluated the role of glucocorticoid receptors on muscle nociceptors in adult NLB rats. In adult male and female NLB rats, mechanical nociceptive threshold in skeletal muscle was significantly lower than in adult control (neonatal standard bedding) rats. Furthermore, adult males and females that received exogenous corticosterone (via dams’ milk) during postnatal days 2–9, displayed a similar lowered mechanical nociceptive threshold. To test the hypothesis that persistent glucocorticoid receptor signaling in the adult contributes to muscle hyperalgesia in NLB rats, nociceptor expression of glucocorticoid receptor (GR) was attenuated by spinal intrathecal administration of an oligodeoxynucleotide (ODN) antisense to GR mRNA. In adult NLB rats, GR antisense markedly attenuated muscle hyperalgesia in males, but not in females. These findings indicate that increased corticosterone levels during a critical developmental period (postnatal days 2–9) produced by NLB stress induces chronic mechanical hyperalgesia in male and female rats that persists in adulthood, and that this chronic muscle hyperalgesia is mediated, at least in part, by persistent stimulation of glucocorticoid receptors on sensory neurons, in the adult male, but not female rat.
Collapse
Affiliation(s)
- Paul G Green
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA, USA.,UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Preventative and Restorative Dental Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Pedro Alvarez
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA, USA.,UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA, USA.,UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Jaszczyk A, Juszczak GR. Glucocorticoids, metabolism and brain activity. Neurosci Biobehav Rev 2021; 126:113-145. [PMID: 33727030 DOI: 10.1016/j.neubiorev.2021.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022]
Abstract
The review integrates different experimental approaches including biochemistry, c-Fos expression, microdialysis (glutamate, GABA, noradrenaline and serotonin), electrophysiology and fMRI to better understand the effect of elevated level of glucocorticoids on the brain activity and metabolism. The available data indicate that glucocorticoids alter the dynamics of neuronal activity leading to context-specific changes including both excitation and inhibition and these effects are expected to support the task-related responses. Glucocorticoids also lead to diversification of available sources of energy due to elevated levels of glucose, lactate, pyruvate, mannose and hydroxybutyrate (ketone bodies), which can be used to fuel brain, and facilitate storage and utilization of brain carbohydrate reserves formed by glycogen. However, the mismatch between carbohydrate supply and utilization that is most likely to occur in situations not requiring energy-consuming activities lead to metabolic stress due to elevated brain levels of glucose. Excessive doses of glucocorticoids also impair the production of energy (ATP) and mitochondrial oxidation. Therefore, glucocorticoids have both adaptive and maladaptive effects consistently with the concept of allostatic load and overload.
Collapse
Affiliation(s)
- Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, 36a Postepu str., Poland
| | - Grzegorz R Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, 36a Postepu str., Poland.
| |
Collapse
|
15
|
Li X, Wang W, Chen Q, Zhou Y, Wang L, Huang H. Antinociceptive effects of IL-6R vs. glucocorticoid receptors during rat hind paw inflammatory pain. Neurosci Lett 2020; 738:135356. [PMID: 32898615 DOI: 10.1016/j.neulet.2020.135356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND The glucocorticoid receptor (GR) plays a role in inflammatory pain modulation. However, the specific role played by interleukin 6 receptor (IL-6R) in these processes remains elusive. The present study aimed to investigate the extent of inflammation induced by IL-6R and GR. METHODS Male Wistar rats were treated with Freund's complete adjuvant to induce right hind paw inflammation. The levels of IL-6Rα and GR were evaluated in the spinal cord and dorsal root ganglion using Western blot and immunofluorescence assays. Subsequently, we examined the nociceptive behavioral changes following the binding of IL-6R with a GR agonist and/or antagonist, as well as the concentration levels of IL-6 and soluble IL-6R (sIL-6R) in the serum and cerebrospinal fluid. Moreover, the spinal levels of IL-6, IL-6Rα, gp130, JAK2, pJAK2, STAT3, pSTAT3, c-fos, GFAP, and Iba-1 were assessed following anti-IL-6R antibody, sgp130, and dexamethasone intrathecal administration. RESULTS Right hind paw inflammation resulted in significant upregulation of IL-6Rα expression in spinal nociceptive neurons, astrocytes, and microglia cells, as well as increased of IL-6Rα and GR colocalization. Notably, anti-IL-6R or dexamethasone attenuated the nociceptive behavior in a dose-dependent manner. Isobologram analysis indicated the sub-additive effects with a concomitant decrease in the spinal levels of IL-6, pJAK2, pSTAT3, c-fos, GFAP, and Iba-1 and increase in the sIL-6R level. CONCLUSION The enhanced mechanical sensitivity accompanying the increase of IL-6Rα and GR was attenuated by anti-IL-6R and dexamethasone application, and the sub-additive effects were regulated by the decreased activation of neurons and glial cells and modulated by IL-6/JAK2/STAT3 signaling pathway, which might be attributed to IL-6 induced trans-signaling.
Collapse
Affiliation(s)
- Xiongjuan Li
- Department of Anesthesiology, Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgangxi Road, Hai'zhu District, Guangzhou, 510260, China.
| | - Weihong Wang
- Department of Anesthesiology, Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgangxi Road, Hai'zhu District, Guangzhou, 510260, China
| | - Qionghui Chen
- Department of Anesthesiology, Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgangxi Road, Hai'zhu District, Guangzhou, 510260, China
| | - Yongchang Zhou
- Department of Anesthesiology, Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgangxi Road, Hai'zhu District, Guangzhou, 510260, China
| | - Lingzhi Wang
- Department of Anesthesiology, Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgangxi Road, Hai'zhu District, Guangzhou, 510260, China
| | - Huansen Huang
- Department of Anesthesiology, Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgangxi Road, Hai'zhu District, Guangzhou, 510260, China.
| |
Collapse
|
16
|
Ibrahim SIA, Strong JA, Qualls KA, Ulrich-Lai YM, Zhang JM. Differential Regulation of the Glucocorticoid Receptor in a Rat Model of Inflammatory Pain. Anesth Analg 2020; 131:298-306. [PMID: 31990732 DOI: 10.1213/ane.0000000000004652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Anti-inflammatory corticosteroids are a common treatment for different conditions involving chronic pain and inflammation. Clinically used steroids target the glucocorticoid receptor (GR) for its anti-inflammatory effects. We previously reported that GR in sensory neurons may play central roles in some pain models and that GR immunoreactivity signal in dorsal root ganglia (DRG) decreased after local inflammation of the DRG (a model of low back pain). In the current study, we aimed to determine if similar changes in GR signal also exist in a skin inflammation model, the complete Freund's adjuvant (CFA) model (a model of peripheral inflammatory pain), in which the terminals of the sensory neurons rather than the somata are inflamed. METHODS A low dose of CFA was injected into the hind paw to establish the peripheral inflammation model in Sprague-Dawley rats of both sexes, as confirmed by measurements of behavior and paw swelling. Immunohistochemical and western blotting techniques were used to determine the expression pattern of the GR in the inflamed hind paw and the DRGs. Plasma corticosterone levels were measured with radioimmunoassay. RESULTS The immunohistochemical staining revealed that GR is widely expressed in the normal DRG and skin tissues. Paw injection with CFA caused upregulation of the GR in the skin tissue on postinjection day 1, mostly detected in the dermis area. However, paw inflammation significantly reduced the GR signal in the L5 DRG 1 day after the injection. The GR downregulation was still evident 14 days after CFA inflammation. On day 1, western blotting confirmed this downregulation and showed that it could also be observed in the contralateral L5 DRG, as well as in the L2 DRG (a level which does not innervate the paw). Plasma corticosterone levels were elevated in both sexes on day 14 after CFA compared to day 1, suggesting autologous downregulation of the GR by corticosterone may have contributed to the downregulation observed on day 14 but not day 1. CONCLUSIONS There are distinctive patterns of GR activation under different pain conditions, depending on the anatomical location. The observed downregulation of the GR in sensory neurons may have a significant impact on the use of steroids as treatment in these conditions and on the regulatory effects of endogenous glucocorticoids.
Collapse
Affiliation(s)
- Shaimaa I A Ibrahim
- From the Department of Anesthesiology, Pain Research Center.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology
| | | | - Katherine A Qualls
- From the Department of Anesthesiology, Pain Research Center.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology
| | - Yvonne M Ulrich-Lai
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jun-Ming Zhang
- From the Department of Anesthesiology, Pain Research Center
| |
Collapse
|
17
|
Filaretova L, Podvigina T, Yarushkina N. Physiological and Pharmacological Effects of Glucocorticoids on the Gastrointestinal Tract. Curr Pharm Des 2020; 26:2962-2970. [DOI: 10.2174/1381612826666200521142746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
The review considers the data on the physiological and pharmacological effects of glucocorticoids on
the gastric mucosa and focuses on the gastroprotective role of stress-produced glucocorticoids as well as on the
transformation of physiological gastroprotective effects of glucocorticoids to pathological proulcerogenic consequences.
The results of experimental studies on the re-evaluation of the traditional notion that stress-produced
glucocorticoids are ulcerogenic led us to the opposite conclusion suggested that these hormones play an important
role in the maintenance of the gastric mucosal integrity. Exogenous glucocorticoids may exert both gastroprotective
and proulcerogenic effects. Initially, gastroprotective effect of dexamethasone but not corticosterone, cortisol
or prednisolone can be transformed into proulcerogenic one. The most significant factor for the transformation is
the prolongation of its action rather the dose. Gastrointestinal injury can be accompanied by changes in somatic
pain sensitivity and glucocorticoids contribute to these changes playing a physiological and pathological role.
Collapse
Affiliation(s)
- Ludmila Filaretova
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Tatiana Podvigina
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Natalia Yarushkina
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| |
Collapse
|
18
|
Colciago A, Bonalume V, Melfi V, Magnaghi V. Genomic and Non-genomic Action of Neurosteroids in the Peripheral Nervous System. Front Neurosci 2020; 14:796. [PMID: 32848567 PMCID: PMC7403499 DOI: 10.3389/fnins.2020.00796] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 01/12/2023] Open
Abstract
Since the former evidence of biologic actions of neurosteroids in the central nervous system, also the peripheral nervous system (PNS) was reported as a structure affected by these substances. Indeed, neurosteroids are synthesized and active in the PNS, exerting many important actions on the different cell types of this system. PNS is a target for neurosteroids, in their native form or as metabolites. In particular, old and recent evidence indicates that the progesterone metabolite allopregnanolone possesses important functions in the PNS, thus contributing to its physiologic processes. In this review, we will survey the more recent findings on the genomic and non-genomic actions of neurosteroids in nerves, ganglia, and cells forming the PNS, focusing on the mechanisms regulating the peripheral neuron-glial crosstalk. Then, we will refer to the physiopathological significance of the neurosteroid signaling disturbances in the PNS, in to identify new molecular targets for promising pharmacotherapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
19
|
[Perioperative measures for prevention of phantom pain: an evidence-based approach to risk reduction]. Anaesthesist 2020; 69:665-671. [PMID: 32620991 DOI: 10.1007/s00101-020-00810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Prevention of phantom limb pain is one of the biggest and still largely unsolved challenges in perioperative medicine. Despite many study efforts and optimization of postoperative pain treatment over the last 30 years, a significant reduction in the incidence of phantom limb pain has not been achieved. Current studies have also shown that at least 50% of patients develop phantom pain after 6 months. A possible approach could be to combine multiple synergistic interventions and implement them as a perioperative phantom pain management strategy bundle. In addition to regional anesthesia, NMDA antagonists, gabapentinoids, antidepressants and systemic lidocaine could play a relevant role. The aim of this pharmacological intervention was the modification of the pathophysiological changes in peripheral nerves and in the central nervous system after amputation.
Collapse
|
20
|
Shaqura M, Li L, Mohamed DM, Li X, Treskatsch S, Buhrmann C, Shakibaei M, Beyer A, Mousa SA, Schäfer M. Neuronal aldosterone elicits a distinct genomic response in pain signaling molecules contributing to inflammatory pain. J Neuroinflammation 2020; 17:183. [PMID: 32532285 PMCID: PMC7291517 DOI: 10.1186/s12974-020-01864-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 11/10/2022] Open
Abstract
Background Recently, mineralocorticoid receptors (MR) were identified in peripheral nociceptive neurons, and their acute antagonism was responsible for immediate and short-lasting (non-genomic) antinociceptive effects. The same neurons were shown to produce the endogenous ligand aldosterone by the enzyme aldosterone synthase. Methods Here, we investigate whether endogenous aldosterone contributes to inflammation-induced hyperalgesia via the distinct genomic regulation of specific pain signaling molecules in an animal model of Freund’s complete adjuvant (FCA)-induced hindpaw inflammation. Results Chronic intrathecal application of MR antagonist canrenoate-K (over 4 days) attenuated nociceptive behavior in rats with FCA hindpaw inflammation suggesting a tonic activation of neuronal MR by endogenous aldosterone. Consistently, double immunofluorescence confocal microscopy showed abundant co-localization of MR with several pain signaling molecules such as TRPV1, CGRP, Nav1.8, and trkA whose enhanced expression of mRNA and proteins during inflammation was downregulated following i.t. canrenoate-K. More importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by continuous intrathecal delivery of a specific aldosterone synthase inhibitor prevented the inflammation-induced enhanced transcriptional expression of TRPV1, CGRP, Nav1.8, and trkA and subsequently attenuated nociceptive behavior. Evidence for such a genomic effect of endogenous aldosterone was supported by the demonstration of an enhanced nuclear translocation of MR in peripheral sensory dorsal root ganglia (DRG) neurons. Conclusion Taken together, chronic inhibition of local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons may contribute to long-lasting downregulation of specific pain signaling molecules and may, thus, persistently reduce inflammation-induced hyperalgesia.
Collapse
Affiliation(s)
- Mohammed Shaqura
- Department of Anaesthesiology and Intensive Care Medicine, Charité - University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Li Li
- Department of Anaesthesiology and Intensive Care Medicine, Charité - University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Doaa M Mohamed
- Department of Anaesthesiology and Intensive Care Medicine, Charité - University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.,Department of Zoology, Faculty of Science, Aswan University, Tingar, Egypt
| | - Xiongjuan Li
- Department of Anesthesiology, Second Affiliated Hospital of Guangzhou Medical University, No. 250, Hai'zhu District, Guangzhou, 510260, China
| | - Sascha Treskatsch
- Department of Anaesthesiology and Intensive Care Medicine, Charité - University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Constanze Buhrmann
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mehdi Shakibaei
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Antje Beyer
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Shaaban A Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité - University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité - University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
21
|
Aldosterone Synthase in Peripheral Sensory Neurons Contributes to Mechanical Hypersensitivity during Local Inflammation in Rats. Anesthesiology 2020; 132:867-880. [DOI: 10.1097/aln.0000000000003127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Background
Recent emerging evidence suggests that extra-adrenal synthesis of aldosterone occurs (e.g., within the failing heart and in certain brain areas). In this study, the authors investigated evidence for a local endogenous aldosterone production through its key processing enzyme aldosterone synthase within peripheral nociceptive neurons.
Methods
In male Wistar rats (n = 5 to 8 per group) with Freund’s complete adjuvant hind paw inflammation, the authors examined aldosterone, aldosterone synthase, and mineralocorticoid receptor expression in peripheral sensory neurons using quantitative reverse transcriptase–polymerase chain reaction, Western blot, immunohistochemistry, and immunoprecipitation. Moreover, the authors explored the nociceptive behavioral changes after selective mineralocorticoid receptor antagonist, canrenoate-K, or specific aldosterone synthase inhibitor application.
Results
In rats with Freund’s complete adjuvant–induced hind paw inflammation subcutaneous and intrathecal application of mineralocorticoid receptor antagonist, canrenoate-K, rapidly and dose-dependently attenuated nociceptive behavior (94 and 48% reduction in mean paw pressure thresholds, respectively), suggesting a tonic activation of neuronal mineralocorticoid receptors by an endogenous ligand. Indeed, aldosterone immunoreactivity was abundant in peptidergic nociceptive neurons of dorsal root ganglia and colocalized predominantly with its processing enzyme aldosterone synthase and mineralocorticoid receptors. Moreover, aldosterone and its synthesizing enzyme were significantly upregulated in peripheral sensory neurons under inflammatory conditions. The membrane mineralocorticoid receptor consistently coimmunoprecipitated with endogenous aldosterone, confirming a functional link between mineralocorticoid receptors and its endogenous ligand. Importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by a specific aldosterone synthase inhibitor attenuated nociceptive behavior after hind paw inflammation (a 32% reduction in paw pressure thresholds; inflammation, 47 ± 2 [mean ± SD] vs. inflammation + aldosterone synthase inhibitor, 62 ± 2).
Conclusions
Local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons contributes to ongoing mechanical hypersensitivity during local inflammation via intrinsic activation of neuronal mineralocorticoid receptors.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
22
|
Silkis IG. The Possible Mechanism of the Appearance of Nightmares in Post-Traumatic Stress Disorder and Approaches to Their Prevention. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Butkevich IP, Mikhailenko VA, Vershinina EA, Barr GA. Differences Between the Prenatal Effects of Fluoxetine or Buspirone Alone or in Combination on Pain and Affective Behaviors in Prenatally Stressed Male and Female Rats. Front Behav Neurosci 2019; 13:125. [PMID: 31244623 PMCID: PMC6579839 DOI: 10.3389/fnbeh.2019.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023] Open
Abstract
The selective serotonin reuptake inhibitor fluoxetine and the 5-HT1A receptor agonist buspirone are used to treat depression and anxiety. Previously we demonstrated that chronic stress during pregnancy (prenatal stress) in rats, used as a model of maternal depression risk, increased inflammatory pain and depressive-like behavior in the offspring; buspirone injected to pregnant dams was protective. Clinically, the addition of buspirone to fluoxetine increases the latter’s efficacy in treating depression in patients. Here, we investigated the influence of repeated prenatal injections of fluoxetine, buspirone or their combination on pain- and depressive-like behaviors in prenatally stressed young male and female rats. Prenatal stress augmented depressive-like behavior and both thermal and inflammatory pain (formalin test), replicating our prior findings, and increased basal levels of corticosterone in the blood plasma. Both drugs and their combination reduced the effects of prenatal stress on thermal pain and depressive-like behavior independently of sex. The combination of fluoxetine and buspirone, compared with fluoxetine, was more antinociceptive in the hot plate test in both sexes, and when compared with buspirone, was more antinociceptive only in males. A detailed study of the time-course of formalin-induced pain showed a nuanced effect of these drugs that was sex-dependent. The combination of the two drugs was less effective in females than males during the initial acute phase of nociceptive behavior in flexing + shaking behaviors, whereas that combination was more effective than fluoxetine alone in the first acute phase of licking behavior in females. The antinociceptive effect of buspirone dominated that of the drug combination and of fluoxetine alone, especially during the interphase of the formalin test in both sexes for both flexing + shaking and licking, suggesting a more effective prenatal action of buspirone on the development of a descending serotonergic inhibitory system modulating pain in the spinal cord dorsal horn neurons. Our results indicate that inflammatory pain-like responses integrated at the spinal level in males were more vulnerable to prenatal stress than females. In licking, the antinociceptive effect of fluoxetine and drug combination in the interphase was more in males than females. The data underscore the importance of considering sexual dimorphism when using drug therapy.
Collapse
Affiliation(s)
- Irina P Butkevich
- Laboratory of Ontogenesis of the Nervous System, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.,Department of Normal Physiology, State Pediatric Medical University, St. Petersburg, Russia
| | - Viktor A Mikhailenko
- Laboratory of Ontogenesis of the Nervous System, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena A Vershinina
- Department of Information Technologies and Mathematical Modeling, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
24
|
Tafelski S, Mohamed D, Shaqura M, Assaf C, Beyer A, Treskatsch S, Schäfer M, Mousa SA. Identification of mineralocorticoid and glucocorticoid receptors on peripheral nociceptors: Translation of experimental findings from animal to human biology. Brain Res 2019; 1712:180-187. [DOI: 10.1016/j.brainres.2019.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
|
25
|
Johnstone WM, Honeycutt JL, Deck CA, Borski RJ. Nongenomic glucocorticoid effects and their mechanisms of action in vertebrates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:51-96. [PMID: 31122395 DOI: 10.1016/bs.ircmb.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glucocorticoids (GC) act on multiple organ systems to regulate a variety of physiological processes in vertebrates. Due to their immunosuppressive and anti-inflammatory actions, glucocorticoids are an attractive target for pharmaceutical development. Accordingly, they are one of the most widely prescribed classes of therapeutics. Through the classical mechanism of steroid action, glucocorticoids are thought to mainly affect gene transcription, both in a stimulatory and suppressive fashion, regulating de novo protein synthesis that subsequently leads to the physiological response. However, over the past three decades multiple lines of evidence demonstrate that glucocorticoids may work through rapid, nonclassical mechanisms that do not require alterations in gene transcription or translation. This review assimilates evidence across the vertebrate taxa on the diversity of nongenomic actions of glucocorticoids and the membrane-associated cellular mechanisms that may underlie rapid glucocorticoid responses to include potential binding sites characterized to date.
Collapse
Affiliation(s)
- William M Johnstone
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Jamie L Honeycutt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Courtney A Deck
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Russell J Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
26
|
Balogh M, Zádor F, Zádori ZS, Shaqura M, Király K, Mohammadzadeh A, Varga B, Lázár B, Mousa SA, Hosztafi S, Riba P, Benyhe S, Gyires K, Schäfer M, Fürst S, Al-Khrasani M. Efficacy-Based Perspective to Overcome Reduced Opioid Analgesia of Advanced Painful Diabetic Neuropathy in Rats. Front Pharmacol 2019; 10:347. [PMID: 31024314 PMCID: PMC6465774 DOI: 10.3389/fphar.2019.00347] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Reduction of the opioid analgesia in diabetic neuropathic pain (DNP) results from μ-opioid receptor (MOR) reserve reduction. Herein, we examined the antinociceptive and antiallodynic actions of a novel opioid agonist 14-O-methymorphine-6-O-sulfate (14-O-MeM6SU), fentanyl and morphine in rats with streptozocin-evoked DNP of 9–12 weeks following their systemic administration. The antinociceptive dose-response curve of morphine but not of 14-O-MeM6SU or fentanyl showed a significant right-shift in diabetic compared to non-diabetic rats. Only 14-O-MeM6SU produced antiallodynic effects in doses matching antinociceptive doses obtained in non-diabetic rats. Co-administered naloxone methiodide (NAL-M), a peripherally acting opioid receptor antagonist failed to alter the antiallodynic effect of test compounds, indicating the contribution of central opioid receptors. Reduction in spinal MOR binding sites and loss in MOR immunoreactivity of nerve terminals in the spinal cord and dorsal root ganglia in diabetic rats were observed. G-protein coupling assay revealed low efficacy character for morphine and high efficacy character for 14-O-MeM6SU or fentanyl at spinal or supraspinal levels (Emax values). Furthermore, at the spinal level only 14-O-MeM6SU showed equal efficacy in G-protein activation in tissues of diabetic- and non-diabetic animals. Altogether, the reduction of spinal opioid receptors concomitant with reduced analgesic effect of morphine may be circumvented by using high efficacy opioids, which provide superior analgesia over morphine. In conclusion, the reduction in the analgesic action of opioids in DNP might be a consequence of MOR reduction, particularly in the spinal cord. Therefore, developing opioids of high efficacy might provide analgesia exceeding that of currently available opioids.
Collapse
Affiliation(s)
- Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mohammed Shaqura
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Berlin, Germany
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Bence Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Bernadette Lázár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Shaaban A Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Berlin, Germany
| | - Sándor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Berlin, Germany
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
27
|
Local infiltration anaesthesia versus sciatic nerve and adductor canal block for fast-track knee arthroplasty. Eur J Anaesthesiol 2019; 36:255-263. [DOI: 10.1097/eja.0000000000000929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Harris C, Weiss GL, Di S, Tasker JG. Cell signaling dependence of rapid glucocorticoid-induced endocannabinoid synthesis in hypothalamic neuroendocrine cells. Neurobiol Stress 2019; 10:100158. [PMID: 31193551 PMCID: PMC6535624 DOI: 10.1016/j.ynstr.2019.100158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoids induce a rapid synthesis of endocannabinoid in hypothalamic neuroendocrine cells by activation of a putative membrane receptor. Somato-dendritically released endocannabinoid acts as a retrograde messenger to suppress excitatory synaptic inputs to corticotropin-releasing hormone-, oxytocin-, and vasopressin-secreting cells. The non-genomic signaling mechanism responsible for rapid endocannabinoid synthesis by glucocorticoids has yet to be fully characterized. Here we manipulated cell signaling molecules pharmacologically using an intracellular approach to elucidate the signaling pathway activated by the membrane glucocorticoid receptor in hypothalamic neuroendocrine cells. We found that rapid glucocorticoid-induced endocannabinoid synthesis in magnocellular neuroendocrine cells requires the sequential activation of multiple kinases, phospholipase C, and intracellular calcium mobilization. While there remain gaps in our understanding, our findings reveal many of the critical players in the rapid glucocorticoid signaling that culminates in the retrograde endocannabinoid modulation of excitatory synaptic transmission.
Collapse
Affiliation(s)
- Christina Harris
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Grant L Weiss
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Shi Di
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
29
|
Li J, Perese F, Rubin LE, Carlyle D. Effective Pain Management After Total Hip Arthroplasty in a Sickle Cell Patient Emphasizing Dexamethasone Sodium Phosphate/Methylprednisolone Acetate Administered via a Peripheral Nerve Blockade: A Case Report. A A Pract 2019; 12:171-175. [PMID: 30153113 DOI: 10.1213/xaa.0000000000000877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pain control after total hip arthroplasty in sickle cell patients is challenging yet essential to prevent sickle cell crises or protracted hospital stays. We present a case of effective analgesia that lasted for weeks in a young opioid-tolerant female. This was achieved by the administration of glucocorticoids with different durations of action, dexamethasone sodium phosphate/methylprednisolone acetate, via a femoral/lateral femoral cutaneous nerve block placed preoperatively. Postoperatively, the patient's opioid demand was unchanged from her preoperative baseline. She met all the discharge requirements, including physical therapy targets, on postoperative day 2 and did not have any complications during the hospitalization.
Collapse
Affiliation(s)
- Jinlei Li
- From the Departments of Anesthesiology
| | | | - Lee E Rubin
- Orthopaedics & Rehabilitation, Yale University, New Haven Connecticut
| | | |
Collapse
|
30
|
Schnabl K, Westermeier J, Li Y, Klingenspor M. Opposing Actions of Adrenocorticotropic Hormone and Glucocorticoids on UCP1-Mediated Respiration in Brown Adipocytes. Front Physiol 2019; 9:1931. [PMID: 30705635 PMCID: PMC6344423 DOI: 10.3389/fphys.2018.01931] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022] Open
Abstract
Brown fat is a potential target in the treatment of metabolic disorders as recruitment and activation of this thermogenic organ increases energy expenditure and promotes satiation. A large variety of G-protein coupled receptors, known as classical drug targets in pharmacotherapy, is expressed in brown adipocytes. In the present study, we analyzed transcriptome data for the expression of these receptors to identify potential pathways for the recruitment and activation of thermogenic capacity in brown fat. Our analysis revealed 12 Gs-coupled receptors abundantly expressed in murine brown fat. We screened ligands for these receptors in brown adipocytes for their ability to stimulate UCP1-mediated respiration and Ucp1 gene expression. Adrenocorticotropic hormone (ACTH), a ligand for the melanocortin 2 receptor (MC2R), turned out to be the most potent activator of UCP1 whereas its capability to stimulate Ucp1 gene expression was comparably low. Adrenocorticotropic hormone is the glandotropic hormone of the endocrine hypothalamus–pituitary–adrenal-axis stimulating the release of glucocorticoids in response to stress. In primary brown adipocytes ACTH acutely increased the cellular respiration rate similar to isoproterenol, a β-adrenergic receptor agonist. The effect of ACTH on brown adipocyte respiration was mediated via the MC2R as confirmed by using an antagonist. Inhibitor-based studies revealed that ACTH-induced respiration was dependent on protein kinase A and lipolysis, compatible with a rise of intracellular cAMP in response to ACTH. Furthermore, it is dependent on UCP1, as cells from UCP1-knockout mice did not respond. Taken together, ACTH is a non-adrenergic activator of murine brown adipocytes, initiating the canonical adenylyl cyclase–cAMP–protein kinase A-lipolysis-UCP1 pathway, and thus a potential target for the recruitment and activation of thermogenic capacity. Based on these findings in primary cell culture, the physiological significance might be that cold-induced ACTH in concert with norepinephrine released from sympathetic nerves contributes to BAT thermogenesis. Notably, dexamethasone attenuated isoproterenol-induced respiration. This effect increased gradually with the duration of pretreatment. In vivo, glucocorticoid release triggered by ACTH might oppose beta-adrenergic stimulation of metabolic fuel combustion in BAT and limit stress-induced hyperthermia.
Collapse
Affiliation(s)
- Katharina Schnabl
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Julia Westermeier
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Yongguo Li
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
31
|
Schäfer M, Mousa SA, Shaqura M, Tafelski S. [Background and current use of adjuvants for regional anesthesia : From research to evidence-based patient treatment]. Anaesthesist 2019; 68:3-14. [PMID: 30645692 DOI: 10.1007/s00101-018-0522-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of the local anaesthetic effect by blocking sodium ion channels was a milestone in anaesthesia but was soon limited by sometimes life-threatening toxic effects of the local anaesthetics. By developing novel local anaesthetics and also by adding so-called adjuvants, attempts have been made to limit these life-threatening events. This article focuses on the historic background and the current state of the use of these adjuvants for regional anaesthesia. Adding epinephrine, clonidine or dexmedetomidine, but only as a single dose, results in a faster onset, longer duration of action and increased intensity of neuronal blockade of regional anaesthesia. The benefits of adding sodium bicarbonate, on the other hand, are relatively minor and, therefore, clinically negligible. Although increasing evidence in the literature suggests an improvement and prolongation of the analgesic effect after axonal administration of opioids, which can also be given continuously, systemic effects are not fully ruled out due to the increased incidence of central side effects. The partial local anaesthetic effects of opioids cannot always be distinguished from opioid receptor-specific effects. Mechanistic studies postulate a functional coupling of opioid receptors in injured rather than in intact peripheral nerves. Recent studies have identified glucocorticoid and mineralocorticoid receptors predominantly on peripheral nociceptive nerve fibers. This is consistent with numerous clinical reports of a marked prolongation of the local anaesthetic effect. In addition to the known genomic effects of steroids that occur via a change in gene expression of pain-sustaining protein structures, faster non-genomic effects are also discussed, which occur via a change in intracellular signaling pathways. In summary, new insights into mechanisms and novel results from clinical trials will help the anaesthesiologist in the decision to use adjuvants for regional anaesthesia which, however, requires to weigh the individual patient's benefits against the risks.
Collapse
Affiliation(s)
- M Schäfer
- Klinik für Anästhesiologie mit S. op. Intensivmedizin, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Deutschland.
| | - S A Mousa
- Klinik für Anästhesiologie mit S. op. Intensivmedizin, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Deutschland
| | - M Shaqura
- Klinik für Anästhesiologie mit S. op. Intensivmedizin, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Deutschland
| | - S Tafelski
- Klinik für Anästhesiologie mit S. op. Intensivmedizin, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Deutschland
| |
Collapse
|
32
|
Ibrahim A, Aly M, Farrag W, Gad EL‐Rab N, Said H, Saad A. Ultrasound‐guided adductor canal block after arthroscopic anterior cruciate ligament reconstruction: Effect of adding dexamethasone to bupivacaine, a randomized controlled trial. Eur J Pain 2018; 23:135-141. [DOI: 10.1002/ejp.1292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 11/10/2022]
Affiliation(s)
- A.S. Ibrahim
- Anesthesia Department Faculty of Medicine Assiut University Assiut Egypt
| | - M.G. Aly
- Anesthesia Department Faculty of Medicine Assiut University Assiut Egypt
| | - W.S. Farrag
- Anesthesia Department Faculty of Medicine Assiut University Assiut Egypt
| | - N.A. Gad EL‐Rab
- Anesthesia Department Faculty of Medicine Assiut University Assiut Egypt
| | - H.G. Said
- Orthopedic Department Faculty of Medicine Assiut University Assiut Egypt
| | - A.H. Saad
- Anesthesia Department Faculty of Medicine Assiut University Assiut Egypt
| |
Collapse
|
33
|
Anterior Cutaneous Nerve Entrapment Syndrome in Children: A Prospective Observational Study. Clin J Pain 2018; 34:670-673. [DOI: 10.1097/ajp.0000000000000573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Pro- versus Antinociceptive Nongenomic Effects of Neuronal Mineralocorticoid versus Glucocorticoid Receptors during Rat Hind Paw Inflammation. Anesthesiology 2018; 128:796-809. [DOI: 10.1097/aln.0000000000002087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Background
In naive rats, corticosteroids activate neuronal membrane–bound glucocorticoid and mineralocorticoid receptors in spinal cord and periphery to modulate nociceptive behavior by nongenomic mechanisms. Here we investigated inflammation-induced changes in neuronal versus glial glucocorticoid and mineralocorticoid receptors and their ligand-mediated nongenomic impact on mechanical nociception in rats.
Methods
In Wistar rats (n = 5 to 7/group) with Freund’s complete adjuvant hind paw inflammation, we examined glucocorticoid and mineralocorticoid receptor expression in spinal cord and peripheral sensory neurons versus glial using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot, immunohistochemistry, and radioligand binding. Moreover, we explored the expression of mineralocorticoid receptors protecting enzyme 11-betahydroxysteroid dehydrogenase type 2 as well as the nociceptive behavioral changes after glucocorticoid and mineralocorticoid receptors agonist or antagonist application.
Results
Hind paw inflammation resulted in significant upregulation of glucocorticoid receptors in nociceptive neurons of spinal cord (60%) and dorsal root ganglia (15%) as well as mineralocorticoid receptors, while corticosteroid plasma concentrations remained unchanged. Mineralocorticoid (83 ± 16 fmol/mg) but not glucocorticoid (104 ± 20 fmol/mg) membrane binding sites increased twofold in dorsal root ganglia concomitant with upregulated 11-betahydroxysteroid dehydrogenase type 2 (43%). Glucocorticoid and mineralocorticoid receptor expression in spinal microglia and astrocytes was small. Importantly, glucocorticoid receptor agonist dexamethasone or mineralocorticoid receptor antagonist canrenoate-K rapidly and dose-dependently attenuated nociceptive behavior. Isobolographic analysis of the combination of both drugs showed subadditive but not synergistic or additive effects.
Conclusions
The enhanced mechanical sensitivity of inflamed hind paws accompanied with corticosteroid receptor upregulation in spinal and peripheral sensory neurons was attenuated immediately after glucocorticoid receptor agonist and mineralocorticoid receptor antagonist administration, suggesting acute nongenomic effects consistent with detected membrane-bound corticosteroid receptors.
Collapse
|
35
|
Dexamethasone Injected Perineurally is More Effective than Administered Intravenously for Peripheral Nerve Blocks. Clin J Pain 2018; 34:276-284. [DOI: 10.1097/ajp.0000000000000519] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
The peripheral corticotropin-releasing factor (CRF)-induced analgesic effect on somatic pain sensitivity in conscious rats: involving CRF, opioid and glucocorticoid receptors. Inflammopharmacology 2018; 26:305-318. [DOI: 10.1007/s10787-018-0445-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022]
|
37
|
Zwart N, Andringa D, de Leeuw WJ, Kojima H, Iida M, Houtman CJ, de Boer J, Kool J, Lamoree MH, Hamers T. Improved androgen specificity of AR-EcoScreen by CRISPR based glucocorticoid receptor knockout. Toxicol In Vitro 2017; 45:1-9. [DOI: 10.1016/j.tiv.2017.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/20/2022]
|
38
|
The Effect of Glucocorticoid and Glucocorticoid Receptor Interactions on Brain, Spinal Cord, and Glial Cell Plasticity. Neural Plast 2017; 2017:8640970. [PMID: 28928988 PMCID: PMC5591892 DOI: 10.1155/2017/8640970] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/14/2017] [Indexed: 12/15/2022] Open
Abstract
Stress, injury, and disease trigger glucocorticoid (GC) elevation. Elevated GCs bind to the ubiquitously expressed glucocorticoid receptor (GR). While GRs are in every cell in the nervous system, the expression level varies, suggesting that diverse cell types react differently to GR activation. Stress/GCs induce structural plasticity in neurons, Schwann cells, microglia, oligodendrocytes, and astrocytes as well as affect neurotransmission by changing the release and reuptake of glutamate. While general nervous system plasticity is essential for adaptation and learning and memory, stress-induced plasticity is often maladaptive and contributes to neuropsychiatric disorders and neuropathic pain. In this brief review, we describe the evidence that stress/GCs activate GR to promote cell type-specific changes in cellular plasticity throughout the nervous system.
Collapse
|
39
|
Aboryag NB, Mohamed DM, Dehe L, Shaqura M, Treskatsch S, Shakibaei M, Schäfer M, Mousa SA. Histopathological Changes in the Kidney following Congestive Heart Failure by Volume Overload in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6894040. [PMID: 28831296 PMCID: PMC5555028 DOI: 10.1155/2017/6894040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND This study investigated histopathological changes and apoptotic factors that may be involved in the renal damage caused by congestive heart failure in a rat model of infrarenal aortocaval fistula (ACF). METHODS Heart failure was induced using a modified approach of ACF in male Wistar rats. Sham-operated controls and ACF rats were characterized by their morphometric and hemodynamic parameters and investigated for their histopathological, ultrastructural, and apoptotic factor changes in the kidney. RESULTS ACF-induced heart failure is associated with histopathological signs of congestion and glomerular and tubular atrophy, as well as nuclear and cellular degeneration in the kidney. In parallel, overexpression of proapoptotic Bax protein, release of cytochrome C from the outer mitochondrial membrane into cell cytoplasm, and nuclear transfer of activated caspase 3 indicate apoptotic events. This was confirmed by electron microscopic findings of apoptotic signs in the kidney such as swollen mitochondria and degenerated nuclei in renal tubular cells. CONCLUSIONS This study provides morphological evidence of renal injury during heart failure which may be due to caspase-mediated apoptosis via overexpression of proapoptotic Bax protein, subsequent mitochondrial cytochrome C release, and final nuclear transfer of activated caspase 3, supporting the notion of a cardiorenal syndrome.
Collapse
Affiliation(s)
- Noureddin B. Aboryag
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Doaa M. Mohamed
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Lukas Dehe
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Mohammed Shaqura
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Sacha Treskatsch
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Mehdi Shakibaei
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Shaaban A. Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
40
|
Bekhbat M, Rowson SA, Neigh GN. Checks and balances: The glucocorticoid receptor and NFĸB in good times and bad. Front Neuroendocrinol 2017; 46:15-31. [PMID: 28502781 PMCID: PMC5523465 DOI: 10.1016/j.yfrne.2017.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 01/23/2023]
Abstract
Mutual regulation and balance between the endocrine and immune systems facilitate an organism's stress response and are impaired following chronic stress or prolonged immune activation. Concurrent alterations in stress physiology and immunity are increasingly recognized as contributing factors to several stress-linked neuropsychiatric disorders including depression, anxiety, and post-traumatic stress disorder. Accumulating evidence suggests that impaired balance and crosstalk between the glucocorticoid receptor (GR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) - effectors of the stress and immune axes, respectively - may play a key role in mediating the harmful effects of chronic stress on mood and behavior. Here, we first review the molecular mechanisms of GR and NFκB interactions in health, then describe potential shifts in the GR-NFκB dynamics in chronic stress conditions within the context of brain circuitry relevant to neuropsychiatric diseases. Furthermore, we discuss developmental influences and sex differences in the regulation of these two transcription factors.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Emory University, Graduate Division of Biological Sciences, Neuroscience Graduate Program, United States
| | - Sydney A Rowson
- Emory University, Graduate Division of Biological Sciences, Molecular and Systems Pharmacology Graduate Studies Program, United States
| | - Gretchen N Neigh
- Virginia Commonwealth University, Department of Anatomy & Neurobiology, United States.
| |
Collapse
|
41
|
Wei X, Sun Y, Luo F. Impaired Spinal Glucocorticoid Receptor Signaling Contributes to the Attenuating Effect of Depression on Mechanical Allodynia and Thermal Hyperalgesia in Rats with Neuropathic Pain. Front Cell Neurosci 2017; 11:145. [PMID: 28579944 PMCID: PMC5437111 DOI: 10.3389/fncel.2017.00145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
Although depression-induced altered pain perception has been described in several laboratory and clinical studies, its neurobiological mechanism in the central nervous system (CNS), particularly in the spinal dorsal horn, remains unclear. Therefore, in this study, we aimed to clarify whether nociceptive sensitivity of neuropathic pain is altered in the olfactory bulbectomy (OB) model of depression and whether glucocorticoid receptor (GR), which is involved in the etio-pathologic mechanisms of both major depression and neuropathic pain, contributes to these processes in the spinal dorsal horn of male Sprague-Dawley rats. The results showed that mechanical allodynia and thermal hyperalgesia induced by spinal nerve ligation (SNL) were attenuated in OB-SNL rats with decreased spinal GR expression and nuclear translocation, whereas non-olfactory bulbectomy (NOB)-SNL rats showed increased spinal GR nuclear translocation. In addition, decreased GR nuclear translocation with normal mechanical nociception and hypoalgesia of thermal nociception were observed in OB-Sham rats. Intrathecal injection (i.t.) of GR agonist dexamethasone (Dex; 4 μg/rat/day for 1 week) eliminated the attenuating effect of depression on nociceptive hypersensitivity in OB-SNL rats and aggravated neuropathic pain in NOB-SNL rats, which was associated with the up-regulation of brain-derived neurotrophic factor (BDNF), TrkB and NR2B expression in the spinal dorsal horn. The present study shows that depression attenuates the mechanical allodynia and thermal hyperalgesia of neuropathic pain and suggests that altered spinal GR-BDNF-TrkB signaling may be one of the reasons for depression-induced hypoalgesia.
Collapse
Affiliation(s)
- Xiao Wei
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Yuqi Sun
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China.,Department of Psychology, University of Chinese Academy of SciencesBeijing, China
| | - Fei Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China.,Department of Psychology, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|