1
|
Gholami-Zanjanbar M, Soleimanian F, Reyhani N, Hajizamani S, Sajadi AE, Ghofrani-Jahromi Z, Vaseghi S. Synaptophysin and GSK-3beta activity in the prefrontal cortex may underlie the effects of REM sleep deprivation and lithium on behavioral functions and memory performance in male rats. Pharmacol Biochem Behav 2024; 245:173894. [PMID: 39413852 DOI: 10.1016/j.pbb.2024.173894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/05/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Rapid-eye movement (REM) stage of sleep serves a critical role in processing cognitive and behavioral functions. Evidence shows that REM sleep deprivation (REM SD) strongly affects the mood state and cognitive abilities. However, there are many inconsistent reports. Although the exact molecular mechanisms underlying REM SD effects have not well been discovered, however, molecular factors including those affected synaptic plasticity and mood state may be involved. There are two important molecular factors that have not been well studied: synaptophysin and glycogen synthase kinase-3 beta (GSK-3beta). The present study aimed to investigate the role of synaptophysin and GSK-3beta in the modulation of memory and behavioral changes induced by REM SD and lithium (as a potent GSK-3beta inhibitor and mood stabilizer). Multiple platform apparatus was used to induce REM SD for 48 h. Lithium was injected at the dose of 50 mg/kg, intraperitoneal (i.p.). Locomotor activity, anxiety-like behavior, pain threshold, novel object recognition memory, and synaptophysin and GSK-3beta level in the prefrontal cortex were evaluated. Results showed REM SD increased locomotor activity, decreased pain threshold, impaired novel object recognition memory, decreased synaptophysin and increased GSK-3beta levels. Lithium reversed these effects. Anxiety-like behavior was unaffected. For the first time, the present study showed that GSK-3beta and synaptophysin may be involved in the modulation of behavior and cognition induced by REM SD and lithium. In conclusion, we suggested that GSK-3beta upregulation and synaptophysin downregulation may underlie the deleterious effects of REM SD, while lithium may counteract REM SD effects via restoring the level of both.
Collapse
Affiliation(s)
| | | | - Niloufar Reyhani
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shadi Hajizamani
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir-Ehsan Sajadi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Zahra Ghofrani-Jahromi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
2
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Markina AA, Kazanskaya RB, Timoshina JA, Zavialov VA, Abaimov DA, Volnova AB, Fedorova TN, Gainetdinov RR, Lopachev AV. Na +,K +-ATPase and Cardiotonic Steroids in Models of Dopaminergic System Pathologies. Biomedicines 2023; 11:1820. [PMID: 37509460 PMCID: PMC10377002 DOI: 10.3390/biomedicines11071820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, enough evidence has accumulated to assert that cardiotonic steroids, Na+,K+-ATPase ligands, play an integral role in the physiological and pathophysiological processes in the body. However, little is known about the function of these compounds in the central nervous system. Endogenous cardiotonic steroids are involved in the pathogenesis of affective disorders, including depression and bipolar disorder, which are linked to dopaminergic system dysfunction. Animal models have shown that the cardiotonic steroid ouabain induces mania-like behavior through dopamine-dependent intracellular signaling pathways. In addition, mutations in the alpha subunit of Na+,K+-ATPase lead to the development of neurological pathologies. Evidence from animal models confirms the neurological consequences of mutations in the Na+,K+-ATPase alpha subunit. This review is dedicated to discussing the role of cardiotonic steroids and Na+,K+-ATPase in dopaminergic system pathologies-both the evidence supporting their involvement and potential pathways along which they may exert their effects are evaluated. Since there is an association between affective disorders accompanied by functional alterations in the dopaminergic system and neurological disorders such as Parkinson's disease, we extend our discussion to the role of Na+,K+-ATPase and cardiotonic steroids in neurodegenerative diseases as well.
Collapse
Affiliation(s)
- Alisa A Markina
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Rogneda B Kazanskaya
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Julia A Timoshina
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
- Biological Department, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow, Russia
| | - Vladislav A Zavialov
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Denis A Abaimov
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Anna B Volnova
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Tatiana N Fedorova
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, 199034 Saint Petersburg, Russia
| | - Alexander V Lopachev
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| |
Collapse
|
4
|
Manchia M. Extending the specificity of mood stabilizers from clinical response to mortality reduction. Acta Psychiatr Scand 2023; 147:231-233. [PMID: 36782406 DOI: 10.1111/acps.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Affiliation(s)
- Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Ni RJ, Gao TH, Wang YY, Tian Y, Wei JX, Zhao LS, Ni PY, Ma XH, Li T. Chronic lithium treatment ameliorates ketamine-induced mania-like behavior via the PI3K-AKT signaling pathway. Zool Res 2022; 43:989-1004. [PMID: 36257830 PMCID: PMC9700503 DOI: 10.24272/j.issn.2095-8137.2022.278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 09/03/2023] Open
Abstract
Ketamine, a rapid-acting antidepressant drug, has been used to treat major depressive disorder and bipolar disorder (BD). Recent studies have shown that ketamine may increase the potential risk of treatment-induced mania in patients. Ketamine has also been applied to establish animal models of mania. At present, however, the underlying mechanism is still unclear. In the current study, we found that chronic lithium exposure attenuated ketamine-induced mania-like behavior and c-Fos expression in the medial prefrontal cortex (mPFC) of adult male mice. Transcriptome sequencing was performed to determine the effect of lithium administration on the transcriptome of the PFC in ketamine-treated mice, showing inactivation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. Pharmacological inhibition of AKT signaling by MK2206 (40 mg/kg), a selective AKT inhibitor, reversed ketamine-induced mania. Furthermore, selective knockdown of AKT via AAV-AKT-shRNA-EGFP in the mPFC also reversed ketamine-induced mania-like behavior. Importantly, pharmacological activation of AKT signaling by SC79 (40 mg/kg), an AKT activator, contributed to mania in low-dose ketamine-treated mice. Inhibition of PI3K signaling by LY294002 (25 mg/kg), a specific PI3K inhibitor, reversed the mania-like behavior in ketamine-treated mice. However, pharmacological inhibition of mammalian target of rapamycin (mTOR) signaling with rapamycin (10 mg/kg), a specific mTOR inhibitor, had no effect on ketamine-induced mania-like behavior. These results suggest that chronic lithium treatment ameliorates ketamine-induced mania-like behavior via the PI3K-AKT signaling pathway, which may be a novel target for the development of BD treatment.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tian-Hao Gao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi-Yan Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Tian
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin-Xue Wei
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lian-Sheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Pei-Yan Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao-Hong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310014, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510799, China. E-mail:
| |
Collapse
|
7
|
Possamai-Della T, Dal-Pont GC, Resende WR, Aguiar-Geraldo JM, Peper-Nascimento J, Quevedo J, Valvassori SS. Imipramine Can Be Effective on Depressive-Like Behaviors, but Not on Neurotrophic Factor Levels in an Animal Model for Bipolar Disorder Induced by Ouabain. Mol Neurobiol 2022; 59:7170-7181. [PMID: 36121567 DOI: 10.1007/s12035-022-03022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Despite possible risks of mania switching with the long-term use of antidepressants in patients with bipolar disorder (BD), these drugs may help in depressive episodes. Alterations in neurotrophic factor levels seem to be involved in the pathophysiology of BD. The present study aimed to evaluate the effect of acute treatment of imipramine on behavior and neurotrophic levels in rats submitted to the animal model for BD induced by ouabain. METHODS Wistar rats received a single intracerebroventricular (ICV) injection of artificial cerebrospinal fluid or ouabain (10-3 M). Following the ICV administration, the rats were treated for 14 days with saline (NaCl 0.9%, i.p.), lithium (47.5 mg/kg, i.p.), or valproate (200 mg/kg, i.p.). On the 13th and 14th days of treatment, the animals received an additional injection of saline or imipramine (10 mg/kg, i.p.). Behavior tests were evaluated 7 and 14 days after ICV injection. Adrenal gland weight and concentrations of ACTH were evaluated. Levels of neurotrophins BDNF, NGF, NT-3, and GDNF were measured in the frontal cortex and hippocampus by ELISA test. RESULTS The administration of ouabain induced mania- and depressive-like behavior in the animals 7 and 14 days after ICV, respectively. The treatment with lithium and valproate reversed the mania-like behavior. All treatments were able to reverse most of the depressive-like behaviors induced by ouabain. Moreover, ouabain increased HPA-axis parameters in serum and decreased the neurotrophin levels in the frontal cortex and hippocampus. All treatments, except imipramine, reversed these alterations. CONCLUSION It can be suggested that acute administration of imipramine alone can be effective on depressive-like symptoms but not on neurotrophic factor alterations present in BD.
Collapse
Affiliation(s)
- Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Translational Health Research Laboratory, Alto Vale do Rio do Peixe University, Caçador, Brazil
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence On Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
8
|
Rajkhowa B, Mehan S, Sethi P, Prajapati A, Suri M, Kumar S, Bhalla S, Narula AS, Alshammari A, Alharbi M, Alkahtani N, Alghamdi S, Kalfin R. Activating SIRT-1 Signalling with the Mitochondrial-CoQ10 Activator Solanesol Improves Neurobehavioral and Neurochemical Defects in Ouabain-Induced Experimental Model of Bipolar Disorder. Pharmaceuticals (Basel) 2022; 15:ph15080959. [PMID: 36015107 PMCID: PMC9415079 DOI: 10.3390/ph15080959] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BD) is a chronic mental illness characterized by mood fluctuations that range from depressive lows to manic highs. Several studies have linked the downregulation of SIRT-1 (silent mating type information regulation-2 homologs) signaling to the onset of BD and other neurological dysfunctions. This research aimed to look into the neuroprotective potential of Solanesol (SNL) in rats given ICV-Ouabain injections, focusing on its effect on SIRT-1 signaling activation in the brain. Ouabain, found in hypothalamic and medullary neurons, is an endogenous inhibitor of brain Na+/K+ ATPase. The inhibition of brain Na+/K+ ATPase by Ouabain may also result in changes in neurotransmission within the central nervous system. SNL is a Solanaceae family active phytoconstituent produced from the plant Nicotiana tabacum. SNL is used as a precursor for the production of CoQ10 (Coenzyme Q10), a powerful antioxidant and neuroprotective compound. In the current study, lithium (Li), an important mood stabilizer drug, was used as a control. This study looked at the neuroprotective potential of SNL at dosages of 40 and 80 mg/kg in ICV-OUA injections that caused BD-like neurobehavioral and neurochemical defects in Wistar rats. Wistar rats were placed into eight groups (n = 6) and administered 1 mM/0.5 µL ICV-OUA injections for three days. Neurochemical assessments were done in rat brain homogenates, CSF, and blood plasma samples at the end of the experiment protocol schedule. Long-term SNL and lithium administration have been shown to decrease the number of rearing and crossings and reduce time spent in the center, locomotor activities, and immobility time. Solansesol treatment gradually raises the amount of Na+/K+ ATPase, limiting the severity of behavioural symptoms. These findings also revealed that SNL increases the levels of SIRT-1 in CSF, blood plasma, and brain homogenate samples. Moreover, in rat brain homogenates and blood plasma samples, SNL modulates apoptotic markers such as Caspase-3, Bax (pro-apoptotic), and Bcl-2 (anti-apoptotic). Mitochondrial-ETC complex enzymes, including complex-I, II, IV, V, and CoQ10, were also restored following long-term SNL treatment. Furthermore, SNL lowered inflammatory cytokines (TNF-α, IL-1β) levels while restoring neurotransmitter levels (serotonin, dopamine, glutamate, and acetylcholine) and decreasing oxidative stress markers. Histological examinations also validated Solanesol’s protective effect. As a result, our findings suggest that SNL, as a SIRT-1 signalling activator, may be a promising therapeutic approach for BD-like neurological dysfunctions.
Collapse
Affiliation(s)
- Bidisha Rajkhowa
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
- Correspondence: ; Tel.: +91-8059889909
| | - Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Sonalika Bhalla
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Acharan S. Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA;
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Nora Alkahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Saeed Alghamdi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| |
Collapse
|
9
|
Wang Z, Cheng Y, Lu Y, Sun G, Pei L. Baicalin coadministration with lithium chloride enhanced neurogenesis via GSK3β pathway in corticosterone induced PC-12 cells. Biol Pharm Bull 2022; 45:605-613. [PMID: 35296580 DOI: 10.1248/bpb.b21-01046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Accumulating studies suggest that hippocampal neurogenesis plays a crucial role in the pathological mechanism of depression. As a classic antidepressant, lithium chloride can play an antidepressant role by inhibiting GSK3β and promoting neurogenesis. Correspondingly, baicalin is a compound extracted from natural plants, which shows potential antidepressant effect, however, whether baicalin exerts antidepressant effects by promoting neurogenesis still needs further investigation. In the current study, we established an in vitro depression model through corticosterone induced PC-12 cells, and explored the potential mechanism of baicalin's antidepressant effect by comparing it with lithium chloride alone and the coadministration with lithium chloride. We used CCK-8 assay, EdU staining and cell cycle analysis to evaluate the state of cell survival and cell proliferation. The protein expression levels of neurodevelopmental related factors DCX, BDNF, and the GSK3β pathway-related proteins and mRNA were detected by Western blot and Real-time PCR. The results showed that baicalin could decrease the expression level of GSK3β, while upregulate the expression level of DCX, BDNF, Cyclin D1-CDK4/6, thus promoted cell proliferation and survival in CORT induced PC-12 cells. Moreover, this effect was enhanced when baicalin and lithium chloride were coadministration. Taking the above results together, we conclude that baicalin can promote the proliferation and development of PC-12 cells by regulating GSK3β pathway, so as to reverse the depressive-like pathological changes induced by corticosterone.
Collapse
Affiliation(s)
- Zhe Wang
- Hebei University of Chinese Medicine
| | | | - Ye Lu
- Hebei Province Academy of Chinese Medicine Sciences
| | - Guoqiang Sun
- Hebei Province Academy of Chinese Medicine Sciences
| | - Lin Pei
- Hebei University of Chinese Medicine.,Hebei Province Academy of Chinese Medicine Sciences
| |
Collapse
|
10
|
Çiçekli MN, Tiryaki ES, Altun A, Günaydın C. GLP-1 agonist liraglutide improves ouabain-induced mania and depressive state via GSK-3β pathway. J Recept Signal Transduct Res 2022; 42:486-494. [PMID: 35133924 DOI: 10.1080/10799893.2022.2032747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bipolar disorder (BD) is a severe mental illness characterized by aberrant mood changes between hypomania and mania or mixed states and depression. Metabolic changes also accompany disease progression and cause significant morbidity. Symptomatic treatment options are available, but asymptomatic patients and poor drug responders are significant problems. Based on the most common pharmacological agent that is used in the treatment, lithium and its main mechanisms of action, oxidative stress, and glycogen synthase kinase-3β (GSK-3β) signaling are extensively investigated. However, knowledge about the effects of compounds that positively affect oxidative stress and GSK-3β signaling, such as glucagon-like peptide-1 (GLP-1) mimetics, liraglutide, is still missing. Therefore, in this study, we aimed to investigate the effects of liraglutide on the ouabain-induced bipolar disease model in rats. After intracerebroventricular single dose ouabain administration, animals were treated with 100, 200, and 400 µg/kg liraglutide (s.c.) and valproic acid (200 mg/kg, i.p.) for 10 d. The locomotion and depressive states of animals were assessed by an open field, forced swimming test, and sucrose preference tests. Serum total antioxidant (TAS) and oxidant states (TOS) and glutathione, malonyl dialdehyde (MDA) levels in the brain tissue were determined. GSK-3β phosphorylation was evaluated by western blotting. Our results demonstrated that liraglutide attenuated ouabain-induced hyperlocomotion and depressive state. Additionally, liraglutide prevented oxidative stress after ouabain administration. Decreased GSK-3β phosphorylation due to the ouabain insult was alleviated by liraglutide treatment. These findings indicate that the manic and depressive-like behaviors are ameliorated by liraglutide, which exerted antioxidant action, possibly improving GSK-3β phosphorylation.
Collapse
Affiliation(s)
| | - Emre Soner Tiryaki
- Department of Physiology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmet Altun
- Department of Pharmacology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Caner Günaydın
- Department of Pharmacology, School of Medicine, Samsun University, Samsun, Turkey
| |
Collapse
|
11
|
Chang H, Cai X, Yang ZH, Xiao X, Li M. Regulation of TRANK1 by GSK-3 in the brain: unexpected interactions. Mol Psychiatry 2021; 26:6109-6111. [PMID: 33931729 DOI: 10.1038/s41380-021-01120-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhi-Hui Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
Kukula O, Çiçekli MN, Şafak S, Günaydın C. Role of TRPV1 channels on glycogen synthase kinase-3β and oxidative stress in ouabain-induced bipolar disease. J Recept Signal Transduct Res 2021; 42:338-348. [PMID: 34304690 DOI: 10.1080/10799893.2021.1955928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bipolar disorder (BD) is a multifactorial chronic and refractory disease characterized by manic, depressive, and mixed mood episodes. Although epidemiological, and pathophysiological studies demonstrated a strong correlation between bipolar disorder and oxidative stress, precise etiology is still missing. Recent studies suggested the possible role of transient receptor potential channels (TRP) in the BD but, current knowledge is limited. Therefore, the current study investigates the possible role of TRPV1 in the ouabain-induced model of BD. The model was created with intracerebroventricular single dose ouabain (10-3 M) administration. Animals were treated with capsaicin, capsazepine, and lithium for seven days. Mania and depressive-like states were investigated with open-field, sucrose preference, and elevated plus maze tests. Oxidative stress was assessed by measuring total antioxidant and oxidant states, spectrophotometrically. The phosphorylation Glycogen synthase kinase-3β (GSK-3β) evaluated by western blotting. Our results demonstrated that capsaicin dose-dependently inhibited the ouabain-induced hyperlocomotion and depression. Although capsazepine exacerbated behavioral impairment, it did not show a significant effect on the antioxidant and oxidant states, and the effects of capsazepine on behaviors were abolished by combination with capsaicin. Additionally, capsaicin potently prevented the ouabain-induced decrease in GSK-3β phosphorylation. In contrast, capsazepine potentiated ouabain-induced decrease in GSK-3β phosphorylation and combination with capsaicin, suppressed the effect of capsazepine on GSK-3β phosphorylation. The effects of TRPV1 activation on oxidative stress and mania-like behaviors in the ouabain-induced BD model might be regulated by GSK-3β phosphorylation.
Collapse
Affiliation(s)
- Osman Kukula
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mustafa Nusret Çiçekli
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Sinan Şafak
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Caner Günaydın
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
13
|
Khayachi A, Schorova L, Alda M, Rouleau GA, Milnerwood AJ. Posttranslational modifications & lithium's therapeutic effect-Potential biomarkers for clinical responses in psychiatric & neurodegenerative disorders. Neurosci Biobehav Rev 2021; 127:424-445. [PMID: 33971223 DOI: 10.1016/j.neubiorev.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Several neurodegenerative diseases and neuropsychiatric disorders display aberrant posttranslational modifications (PTMs) of one, or many, proteins. Lithium treatment has been used for mood stabilization for many decades, and is highly effective for large subsets of patients with diverse neurological conditions. However, the differential effectiveness and mode of action are not fully understood. In recent years, studies have shown that lithium alters several protein PTMs, altering their function, and consequently neuronal physiology. The impetus for this review is to outline the links between lithium's therapeutic mode of action and PTM homeostasis. We first provide an overview of the principal PTMs affected by lithium. We then describe several neuropsychiatric disorders in which PTMs have been implicated as pathogenic. For each of these conditions, we discuss lithium's clinical use and explore the putative mechanism of how it restores PTM homeostasis, and thereby cellular physiology. Evidence suggests that determining specific PTM patterns could be a promising strategy to develop biomarkers for disease and lithium responsiveness.
Collapse
Affiliation(s)
- A Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - L Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - A J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
14
|
Sinha P, Cree SL, Miller AL, Pearson JF, Kennedy MA. Transcriptional analysis of sodium valproate in a serotonergic cell line reveals gene regulation through both HDAC inhibition-dependent and independent mechanisms. THE PHARMACOGENOMICS JOURNAL 2021; 21:359-375. [PMID: 33649518 DOI: 10.1038/s41397-021-00215-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
Sodium valproate (VPA) is a histone deacetylase (HDAC) inhibitor, widely prescribed in the treatment of bipolar disorder, and yet the precise modes of therapeutic action for this drug are not fully understood. After exposure of the rat serotonergic cell line RN46A to VPA, RNA-sequencing (RNA-Seq) analysis showed widespread changes in gene expression. Analysis by four bioinformatic pipelines revealed as many as 230 genes were significantly upregulated and 72 genes were significantly downregulated. A subset of 23 differentially expressed genes was selected for validation using the nCounter® platform, and of these we obtained robust validation for ADAM23, LSP1, MAOB, MMP13, PAK3, SERPINB2, SNAP91, WNT6, and ZCCHC12. We investigated the effect of lithium on this subset and found four genes, CDKN1C, LSP1, SERPINB2, and WNT6 co-regulated by lithium and VPA. We also explored the effects of other HDAC inhibitors and the VPA analogue valpromide on the subset of 23 selected genes. Expression of eight of these genes, CDKN1C, MAOB, MMP13, NGFR, SHANK3, VGF, WNT6 and ZCCHC12, was modified by HDAC inhibition, whereas others did not appear to respond to several HDAC inhibitors tested. These results suggest VPA may regulate genes through both HDAC-dependent and independent mechanisms. Understanding the broader gene regulatory effects of VPA in this serotonergic cell model should provide insights into how this drug works and whether other HDAC inhibitor compounds may have similar gene regulatory effects, as well as highlighting molecular processes that may underlie regulation of mood.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - Simone L Cree
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - Allison L Miller
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand
| | - John F Pearson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand.,Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand. .,Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
15
|
Valvassori SS, Dal-Pont GC, Varela RB, Resende WR, Gava FF, Mina FG, Budni J, Quevedo J. Ouabain induces memory impairment and alter the BDNF signaling pathway in an animal model of bipolar disorder: Cognitive and neurochemical alterations in BD model. J Affect Disord 2021; 282:1195-1202. [PMID: 33601696 DOI: 10.1016/j.jad.2020.12.190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/16/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The present study aims to evaluate the effects of ouabain on memory and neurotrophic parameters in the brains of rats. METHODS Wistar rats received an intracerebroventricular (ICV) injection of ouabain or artificial cerebrospinal fluid (aCSF). Seven and 14 days after ICV administration, the animals were subjected to the open-field and splash tests. Furthermore, the pro-BDNF, BDNF, TrkB, and CREB were assessed in the frontal cortex and hippocampus of the rats, in both seven and 14 days after ICV injection. The memory of the animals was tested by novel object recognition test (NOR) and inhibitory avoidance task (IA), only 14 days after ICV administration. RESULTS Ouabain increased locomotion and exploration in the animals seven days after its administration; however, 14 days after ICV, these behavioral parameters return to the basal level. Seven days after ouabain administration increased grooming behavior in the splash test; on the other hand, seven days after ouabain injection decreased the grooming behavior, which is considered an anhedonic response. Besides, ouabain decreased recognition index in the NOR and decreased aversive memory in the IA, when compared to the control group. The levels of pro-BDNF and BDNF decreased in the frontal cortex seven days after ouabain; but its receptor (TrkB) and CREB decreased seven and 14 days after ouabain, in both cerebral structures evaluated. CONCLUSION Ouabain-induced animal model of BD is an excellent model to assess memory alteration, observed in bipolar patients. Besides, the memory impairment induced by ouabain seems to be related to BDNF signaling pathway alterations.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Roger B Varela
- Queensland Brain Institute, The Universty of Queensland, St Lucia, QLD 4072, Australia
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Franciele G Mina
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Josiane Budni
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States
| |
Collapse
|
16
|
Pierone BC, Pereira CA, Garcez ML, Kaster MP. Stress and signaling pathways regulating autophagy: From behavioral models to psychiatric disorders. Exp Neurol 2020; 334:113485. [PMID: 32987001 DOI: 10.1016/j.expneurol.2020.113485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/21/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023]
Abstract
Autophagy is a process of degradation and recycling of cytoplasmatic components by the lysosomes. In the central nervous system (CNS), autophagy is involved in cell surveillance, neuroinflammation, and neuroplasticity. Neuropsychiatric conditions are associated with functional disturbances at molecular and cellular levels, causing significant impairments in cell homeostasis. Additionally, emerging evidence supports that dysfunctions in autophagy contribute to the pathophysiology of neurological diseases. However, the studies on autophagy in psychiatric disorders are highly heterogeneous and have several limitations, mainly to assess causality and determine the autophagy flux in animals and human samples. Besides, the role of this mechanism in non-neuronal cells in the CNS is only recently being explored. Thus, this review summarizes and discusses the changes in the autophagy pathway in animal models of psychiatric disorders and the limitations underlying the significant findings. Moreover, we compared these findings with clinical studies. Understanding the involvement of autophagy in psychiatric conditions, and the limitation of our current models may contribute to the development of more effective research approaches and possibly pharmacological therapies.
Collapse
Affiliation(s)
- Bruna C Pierone
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Caibe A Pereira
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Michelle L Garcez
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
17
|
Camerini L, Ardais AP, Xavier J, Bastos CR, Oliveira S, Soares MSP, de Mattos BDS, Ávila AA, do Couto CAT, Spanevello RM, Pochmann D, Moritz CEJ, Porciúncula LO, Figueiró F, Kaster MP, Ghisleni G. Inosine prevents hyperlocomotion in a ketamine-induced model of mania in rats. Brain Res 2020; 1733:146721. [PMID: 32045593 DOI: 10.1016/j.brainres.2020.146721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/08/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
Bipolar Disorder is a disorder characterized by alternating episodes of depression, mania or hypomania, or even mixed episodes. The treatment consists on the use of mood stabilizers, which imply serious adverse effects. Therefore, it is necessary to identify new therapeutic targets to prevent or avoid new episodes. Evidence shows that individuals in manic episodes present a purinergic system dysfunction. In this scenario, inosine is a purine nucleoside known to act as an agonist of A1 and A2A adenosine receptors. Thus, we aimed to elucidate the preventive effect of inosine on locomotor activity, changes in purine levels, and adenosine receptors density in a ketamine-induced model of mania in rats. Inosine pretreatment (25 mg/kg, oral route) prevented the hyperlocomotion induced by ketamine (25 mg/kg, intraperitoneal route) in the open-field test; however, there was no difference in hippocampal density of A1 and A2A receptors, where ketamine, as well as inosine, were not able to promote changes in immunocontent of the adenosine receptors. Likewise, no effects of inosine pretreatments or ketamine treatment were observed for purine and metabolic residue levels evaluated. In this sense, we suggest further investigation of signaling pathways involving purinergic receptors, using pharmacological strategies to better elucidate the action mechanisms of inosine on bipolar disorder. Despite the limitations, inosine administration could be a promising candidate for bipolar disorder treatment, especially by attenuating maniac phase symptoms, once it was able to prevent the hyperlocomotion induced by ketamine in rats.
Collapse
Affiliation(s)
- Laísa Camerini
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Rio Grande do Sul, Brazil
| | - Ana Paula Ardais
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Rio Grande do Sul, Brazil
| | - Janaína Xavier
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Rio Grande do Sul, Brazil
| | - Clarissa Ribeiro Bastos
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Rio Grande do Sul, Brazil
| | - Sílvia Oliveira
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Rio Grande do Sul, Brazil
| | - Mayara Sandrielly Pereira Soares
- Postgraduate Program in Biochemistry and Bioprospecting, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Bruna da Silveira de Mattos
- Postgraduate Program in Biochemistry and Bioprospecting, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Anita Almeida Ávila
- Postgraduate Program in Biochemistry and Bioprospecting, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Carlus Augustu Tavares do Couto
- Postgraduate Program in Biochemistry and Bioprospecting, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Postgraduate Program in Biochemistry and Bioprospecting, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Daniela Pochmann
- Postgraduate Program in Bioscience and Rehabilitation of Methodist University Center
| | - Cesar Eduardo Jacinto Moritz
- Postgraduate Program in Human Movement Sciences, School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Fabrício Figueiró
- Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Manuella Pinto Kaster
- Departament of Biochemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Gabriele Ghisleni
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
18
|
Varela RB, Resende WR, Dal-Pont GC, Gava FF, Tye SJ, Quevedo J, Valvassori SS. HDAC inhibitors reverse mania-like behavior and modulate epigenetic regulatory enzymes in an animal model of mania induced by Ouabain. Pharmacol Biochem Behav 2020; 193:172917. [PMID: 32222371 DOI: 10.1016/j.pbb.2020.172917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The etiology of bipolar disorder (BD) is multifactorial, involving both environmental and genetic factors. Current pharmacological treatment is associated with several side effects, which are the main reason patients discontinue treatment. Epigenetic alterations have been studied for their role in the pathophysiology of BD, as they bridge the gap between gene and environment. OBJECTIVE Evaluate the effects of histone deacetylase inhibitors on behavior and epigenetic enzymes activity in a rat model of mania induced by ouabain. METHODS Adult male rats were subjected to a single intracerebroventricular injection of ouabain (10-3 M) followed by 7 days of valproate (200 mg/kg) or sodium butyrate (600 mg/kg) administration. Locomotor and exploratory activities were evaluated in the open-field test. Histone deacetylase, DNA methyltransferase, and histone acetyltransferase activity were assessed in the frontal cortex, hippocampus, and striatum. RESULTS Ouabain induced hyperactivity in rats, which was reversed by valproate and sodium butyrate treatment. Ouabain did not alter the activity of any of the enzymes evaluated. However, valproate and sodium butyrate decreased the activity of histone deacetylase and DNA methyltransferase. Moreover, there was a positive correlation between these two enzymes. CONCLUSION These results suggest that targeting epigenetic mechanisms may play an important role in mania-like behavior management.
Collapse
Affiliation(s)
- Roger B Varela
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) -, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth) -, Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences -, Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) -, Criciúma, SC, Brazil.
| |
Collapse
|
19
|
Blanchet PJ, Lévesque D. Time for a New Slate in Tardive Dyskinesia Research. Mov Disord 2020; 35:752-755. [PMID: 32067258 DOI: 10.1002/mds.28003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Pierre J Blanchet
- Department of Stomatology, Faculty of Dental Medicine, University of Montreal, Montreal, QC, Canada.,Department of Medicine, University of Montreal Hospital Centre (CHU Montreal), Montreal, QC, Canada
| | - Daniel Lévesque
- Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
20
|
Blaustein MP, Hamlyn JM. Ouabain, endogenous ouabain and ouabain-like factors: The Na + pump/ouabain receptor, its linkage to NCX, and its myriad functions. Cell Calcium 2020; 86:102159. [PMID: 31986323 DOI: 10.1016/j.ceca.2020.102159] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
In this brief review we discuss some aspects of the Na+ pump and its roles in mediating the effects of ouabain and endogenous ouabain (EO): i) in regulating the cytosolic Ca2+ concentration ([Ca2+]CYT) via Na/Ca exchange (NCX), and ii) in activating a number of protein kinase (PK) signaling cascades that control a myriad of cell functions. Importantly, [Ca2+]CYT and the other signaling pathways intersect at numerous points because of the influence of Ca2+ and calmodulin in modulating some steps in those other pathways. While both mechanisms operate in virtually all cells and tissues, this article focuses primarily on their functions in the cardiovascular system, the central nervous system (CNS) and the kidneys.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Dal-Pont GC, Jório MTS, Resende WR, Gava FF, Aguiar-Geraldo JM, Possamai-Della T, Peper-Nascimento J, Quevedo J, Valvassori SS. Effects of lithium and valproate on behavioral parameters and neurotrophic factor levels in an animal model of mania induced by paradoxical sleep deprivation. J Psychiatr Res 2019; 119:76-83. [PMID: 31574363 DOI: 10.1016/j.jpsychires.2019.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
The present study aimed to evaluate the effects of treatment with lithium (Li) and valproate (VPA) on behaviors and brain BDNF, NGF, NT-3, NT-4 and GDNF levels in mice submitted to paradoxical sleep deprivation (PSD), which induces an animal model of mania. Male C57BL/6J mice received an intraperitoneal (i.p.) injection of saline solution (NaCl 0.09%, 1 ml/kg), Li (47.3 mg/kg, 1 ml/kg) or VPA (200 mg/kg, 1 ml/kg) once a day for seven days. Animals were randomly distributed into six groups (n = 10 per group): (1) Control + Sal; (2) Control + Li; (3) Control + VPA; (4) PSD + Sal; (5) PSD + Li; or (6) PSD + VPA. Animals were submitted to 36 h of PSD, and then, they were submitted to the open field test. The frontal cortex and hippocampus were dissected from the brain. The manic-like behaviors in the mice were analyzed. Treatment with Li and VPA reversed the behavioral alterations induced by PSD. PSD decreased BDNF, NGF, and GDNF levels in the frontal cortex and hippocampus of mice. The administration of Li and VPA protected the brain against the damage induced by PSD. However, PSD and the administration of Li and VPA did not affect the levels of NT-3 and NT-4 in either brain structure evaluated. In conclusion, the PSD protocol induced manic-like behavior in rats and induced alterations in neurotrophic factor levels. It seems that neurotrophic factors and sleep are essential targets to treat BD.
Collapse
Affiliation(s)
- Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Marco T S Jório
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
22
|
Intracerebroventricular injection of ouabain causes mania-like behavior in mice through D2 receptor activation. Sci Rep 2019; 9:15627. [PMID: 31666560 PMCID: PMC6821712 DOI: 10.1038/s41598-019-52058-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/11/2019] [Indexed: 01/07/2023] Open
Abstract
Intracerebroventricular (ICV) administration of ouabain, an inhibitor of the Na, K-ATPase, is an approach used to study the physiological functions of the Na, K-ATPase and cardiotonic steroids in the central nervous system, known to cause mania-like hyperactivity in rats. We describe a mouse model of ouabain-induced mania-like behavior. ICV administration of 0.5 µl of 50 µM (25 pmol, 14.6 ng) ouabain into each lateral brain ventricle results in increased locomotor activity, stereotypical behavior, and decreased anxiety level an hour at minimum. Fast-scan cyclic voltammetry showed that administration of 50 µM ouabain causes a drastic drop in dopamine uptake rate, confirmed by elevated concentrations of dopamine metabolites detected in the striatum 1 h after administration. Ouabain administration also caused activation of Akt, deactivation of GSK3β and activation of ERK1/2 in the striatum of ouabain-treated mice. All of the abovementioned effects are attenuated by haloperidol (70 µg/kg intraperitoneally). Observed effects were not associated with neurotoxicity, since no dystrophic neuron changes in brain structures were demonstrated by histological analysis. This newly developed mouse model of ouabain-induced mania-like behavior could provide a perspective tool for studying the interactions between the Na,K-ATPase and the dopaminergic system.
Collapse
|
23
|
Valvassori SS, Dal-Pont GC, Resende WR, Varela RB, Lopes-Borges J, Cararo JH, Quevedo J. Validation of the animal model of bipolar disorder induced by Ouabain: face, construct and predictive perspectives. Transl Psychiatry 2019; 9:158. [PMID: 31164628 PMCID: PMC6548776 DOI: 10.1038/s41398-019-0494-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
A particular challenge in the development of a bipolar disorder (BD) model in animals is the complicated clinical course of the condition, characterized by manic, depressive and mixed mood episodes. Ouabain (OUA) is an inhibitor of Na+/K+-ATPase enzyme. Intracerebroventricular (ICV) injection of this drug in rats has been regarded a proper model to study BD by mimic specific manic symptoms, which are reversed by lithium (Li), an important mood stabilizer drug. However, further validation of this experimental approach is required to characterize it as an animal model of BD, including depressive-like behaviors. The present study aimed to assess manic- and depressive-like behaviors, potential alteration in the hypothalamic-pituitary-adrenal (HPA) system and oxidative stress parameters after a single OUA ICV administration in adult male Wistar rats. Moreover, we evaluated Li effects in this experimental setting. Data show that OUA ICV administration could constitute a suitable model for BD since the injection of the drug triggered manic- and depressive-like behaviors in the same animal. Additionally, the OUA model mimics significant physiological and neurochemical alterations detected in BD patients, including an increase in oxidative stress and change in HPA axis. Our findings suggest that decreased Na+/K+-ATPase activity detected in bipolar patients may be linked to increased secretion of glucocorticoid hormones and oxidative damage, leading to the marked behavioral swings. The Li administration mitigated these pathological changes in the rats. The proposed OUA model is regarded as suitable to simulate BD by complying with all validities required to a proper animal model of the psychiatric disorder.
Collapse
Affiliation(s)
- Samira S. Valvassori
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Gustavo C. Dal-Pont
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Wilson R. Resende
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Roger B. Varela
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Jéssica Lopes-Borges
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - José Henrique Cararo
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - João Quevedo
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil ,0000 0000 9206 2401grid.267308.8Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX USA ,0000 0000 9206 2401grid.267308.8Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX USA ,0000 0001 2291 4776grid.240145.6Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX USA
| |
Collapse
|
24
|
Dal-Pont GC, Resende WR, Bianchini G, Gava FF, Peterle BR, Trajano KS, Varela RB, Quevedo J, Valvassori SS. Tamoxifen has an anti-manic effect but not protect the brain against oxidative stress in an animal model of mania induced by ouabain. J Psychiatr Res 2019; 113:181-189. [PMID: 30981159 DOI: 10.1016/j.jpsychires.2019.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 11/18/2022]
Abstract
Studies have suggested the involvement of oxidative stress in the physiopathology of bipolar disorder. Preclinical data have shown that PKC inhibitors may act as mood-stabilizing agents and protect the brain in animal models of mania. The present study aimed to evaluate the effects of Lithium (Li) or tamoxifen (TMX) on behavioral changes and oxidative stress parameters in an animal model of mania induced by ouabain (OUA). Wistar rats received a single intracerebroventricular (ICV) injection of OUA or artificial cerebrospinal fluid (ACSF). From the day following ICV injection, the rats were treated for seven days with intraperitoneal injections of saline, Li or TMX twice a day. On the 7th day after OUA injection, locomotor activity was measured using the open-field test, and the oxidative stress parameters were evaluated in the hippocampus and frontal cortex of rats. The results showed that OUA induced hyperactivity in rats, which is considered a manic-like behavior. Also, OUA increased lipid peroxidation and oxidative damage to proteins, as well as causing alterations to antioxidant enzymes in the frontal cortex and hippocampus of rats. The Li or TMX treatment reversed the manic-like behavior induced by OUA. Besides, Li, but not TMX, reversed the oxidative damage caused by OUA. These results suggest that the manic-like effects induced by OUA and the antimanic effects of TMX seem not to be related to the oxidative stress.
Collapse
Affiliation(s)
- Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Guilherme Bianchini
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Bruna R Peterle
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Kerolen S Trajano
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Roger B Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
25
|
Valvassori SS, Gava FF, Dal-Pont GC, Simões HL, Damiani-Neves M, Andersen ML, Boeck CR, Quevedo J. Effects of lithium and valproate on ERK/JNK signaling pathway in an animal model of mania induced by amphetamine. Heliyon 2019; 5:e01541. [PMID: 31193305 PMCID: PMC6525279 DOI: 10.1016/j.heliyon.2019.e01541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Bipolar disorder (BD) is a severe and chronic psychiatric disorder, characterized by recurrent mood episodes of depression and mania. Some studies have indicated that there are ERK and JNK pathways alterations in the brain from bipolar patients. The animal model of mania induced by dextroamphetamine (d-AMPH) has been considered an excellent model to study intracellular alterations related to BD. The present study aimed to evaluate the effects of lithium (Li) and valproate (VPA) on the behavioral and ERK1/2/JNK1/2 signaling pathway in an animal model of mania induced by d-AMPH. Wistar rats were first given d-AMPH or saline (Sal) for 14 days, and then, between the 8th and 14th days, the rats were treated with Li, VPA, or Sal. The open-field test was used to evaluate the locomotion and exploration behaviors of rats. The levels of phosphorylated ERK1/2 and JNK1/2 were assessed in the hippocampus and frontal cortex of the rats. Li and VPA reversed the increased of locomotion and exploration induced by d-AMPH. The treatment with VPA or AMPH per se decreased the levels of pERK1 in the hippocampus. The treatment with VPA in the animals submitted to the administration of d-AMPH decreased the levels of ERK1, JNK-1, and JNK-2 phosphorylated in the hippocampus of the animals. The treatment with Li decreased the JNK-1 phosphorylated in the hippocampus of the animals submitted to the animal model of mania induced by d-AMPH. Although the association of VPA plus amphetamine alters some proteins involved in the JNK pathway in the hippocampus, these alterations were very random and seemed that were not related to the d-AMPH-induced manic-like behavior. These results suggest that the manic-like effects induced by d-AMPH and the antimanic effects of mood stabilizers, Li and VPA, are not related to the alteration on ERK1/2 and JNK1/2 pathways.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Henio Leonardo Simões
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Marcela Damiani-Neves
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Monica Levy Andersen
- Master's Degree in Health and Life Sciences, Postgraduate Program in Nanosciences, Franciscan University, Santa Maria, RS, Brazil
| | | | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
26
|
Alten B, Yesiltepe M, Bayraktar E, Tas ST, Gocmen AY, Kursungoz C, Martinez A, Sara Y. High-fructose corn syrup consumption in adolescent rats causes bipolar-like behavioural phenotype with hyperexcitability in hippocampal CA3-CA1 synapses. Br J Pharmacol 2018; 175:4450-4463. [PMID: 30221753 DOI: 10.1111/bph.14500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/03/2018] [Accepted: 08/26/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Children and adolescents are the top consumers of high-fructose corn syrup (HFCS) sweetened beverages. Even though the cardiometabolic consequences of HFCS consumption in adolescents are well known, the neuropsychiatric consequences have yet to be determined. EXPERIMENTAL APPROACH Adolescent rats were fed for a month with 11% weight/volume carbohydrate containing HFCS solution, which is similar to the sugar-sweetened beverages of human consumption. The metabolic, behavioural and electrophysiological characteristics of HFCS-fed rats were determined. Furthermore, the effects of TDZD-8, a highly specific GSK-3B inhibitor, on the HFCS-induced alterations were further explored. KEY RESULTS HFCS-fed adolescent rats displayed bipolar-like behavioural phenotype with hyperexcitability in hippocampal CA3-CA1 synapses. This hyperexcitability was associated with increased presynaptic release probability and increased readily available pool of AMPA receptors to be incorporated into the postsynaptic membrane, due to decreased expression of the neuron-specific α3-subunit of Na+ /K+ -ATPase and an increased ser845 -phosphorylation of GluA1 subunits (AMPA receptor subunit) respectively. TDZD-8 treatment was found to restore behavioural and electrophysiological disturbances associated with HFCS consumption by inhibition of GSK-3B, the most probable mechanism of action of lithium for its mood-stabilizing effects. CONCLUSION AND IMPLICATIONS This study shows that HFCS consumption in adolescent rats led to a bipolar-like behavioural phenotype with neuronal hyperexcitability, which is known to be one of the earliest endophenotypic manifestations of bipolar disorder. Inhibition of GSK-3B with TDZD-8 attenuated hyperexcitability and restored HFCS-induced behavioural alterations.
Collapse
Affiliation(s)
- Baris Alten
- Medical Pharmacology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Metin Yesiltepe
- Medical Pharmacology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Erva Bayraktar
- Medical Pharmacology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sadik Taskin Tas
- Medical Pharmacology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ayse Yesim Gocmen
- Medical Pharmacology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Canan Kursungoz
- Materials Science and Nanotechnology Department, Bilkent University, Ankara, Turkey.,National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Ana Martinez
- Centro de Investigaciones Biologicas - CSIC, Madrid, Spain
| | - Yildirim Sara
- Medical Pharmacology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
27
|
Na +, K +-ATPase inhibition causes hyperactivity and impulsivity in mice via dopamine D2 receptor-mediated mechanism. Neurosci Res 2018; 146:54-64. [PMID: 30296459 DOI: 10.1016/j.neures.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 11/20/2022]
Abstract
Hyperactivity and impulsivity are common symptoms in several psychiatric disorders. Although dysfunction of Na+, K+-ATPase has been reported to be associated with the psychiatric disorders, it is not clear whether inhibition of Na+, K+-ATPase causes behavioral effects, including hyperactivity and impulsivity, in mice. Here, we evaluated the effect of intracerebroventricular (icv) injection of ouabain, an inhibitor of Na+, K+-ATPase, on hyperactivity and impulsivity in mice. At seven days after icv injection, ouabain-injected mice displayed the increase in the distance traveled in the open field arena in the open field test and the increase in the number of head-dipping behavior in the cliff avoidance test. Chlorpromazine or haloperidol, typical antipsychotics, reduced the hyperactivity and impulsivity in ouabain-injected mice. On the other hand, neither lithium carbonate nor valproate, established mood-stabilizing drugs, improved hyperactivity and impulsivity in our mouse model. Furthermore, ouabain-injected mice exhibited the increase in the number of c-fos-positive cells in the nucleus accumbens and the prefrontal cortex but not in the ventral tegmental area, which was reduced by haloperidol. These results suggest that the dysfunction of Na+, K+-ATPase causes hyperactivity and impulsivity via hyperactivation of dopamine D2 receptor-mediated signaling pathway, causing disturbed neuronal circuits in mice.
Collapse
|
28
|
Wang YC, Yu YH, Tsai ML, Huang ACW. Motor function in an animal model with ouabain-induced bipolar disorder and comorbid anxiety behavior. Psychiatry Res 2018; 268:508-513. [PMID: 30165326 DOI: 10.1016/j.psychres.2018.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 04/10/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022]
Abstract
In a clinical setting, anxiety disorder is highly correlated with bipolar I disorder in humans. However, the comorbidity of anxiety behavior and bipolar disorder still remains unclear in an animal model. This study utilized an ouabain-induced animal mode to examine anxiety and mania in an open field test. In the present study, 5 µl of artificial cerebrospinal fluid (aCSF) or ouabain (10-5, 10-4, and 10-3 M) were administered into the left ventricle. The animals' motor functions and anxiety behaviors were measured for 15 min. The results showed that 10-3 M ouabain significantly increased the animal's total distance traveled, average speed, and maximum speed compared to the control group. The time spent inside (i.e., how much time rats spent in the center of the square) and the inside-outside times of the central square (i.e., how many times rats ran across the center square) of the higher-concentration groups (10-4 M and 10-3 M) were significantly decreased. Therefore, a high concentration of ouabain may induce hyperactivity. The 10-4 M and 10-3 M ouabain groups exhibited more anxiety behaviors. The study is the first model to examine comorbid anxiety behaviors and bipolar disorder in an animal model. The study provides some insights for comorbid anxiety and bipolar disorder in clinics.
Collapse
Affiliation(s)
- Ying-Chou Wang
- Department of Clinical Psychology, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ying Hao Yu
- Department of Psychology, Fo Guang University, Yilan County 26247, Taiwan
| | - Meng-Li Tsai
- Department of Biomechatronic Engineering, National Ilan University, Ilan, Taiwan
| | | |
Collapse
|
29
|
Cunha MP, Pazini FL, Lieberknecht V, Rodrigues ALS. Subchronic administration of creatine produces antidepressant-like effect by modulating hippocampal signaling pathway mediated by FNDC5/BDNF/Akt in mice. J Psychiatr Res 2018; 104:78-87. [PMID: 30005372 DOI: 10.1016/j.jpsychires.2018.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/18/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022]
Abstract
Creatine has been shown to play a significant role in the pathophysiology and treatment of major depressive disorder (MDD) in preclinical and clinical studies. However, the biological mechanisms underlying its antidepressant effect is still not fully elucidated. This study investigated the effect of creatine (p.o.) administered for 21 days in the behavior of mice submitted to tail suspension test (TST), a predictive test of antidepressant activity. Creatine reduced the immobility time in the TST (1-10 mg/kg), without affecting locomotor activity, a finding consistent with an antidepressant profile. Creatine administration increased the ubiquitous creatine kinase (uCK) and creatine kinase brain isoform (CK-B) mRNA in the hippocampus of mice. Taking into account that PGC-1α induces FNDC5/irisin expression mediating BDNF-dependent neuroplasticity, the effect of creatine administration (1 mg/kg, p. o.) on the hippocampal PGC-1α, FNDC5 and BDNF gene expression was investigated. Creatine treatment increased PGC-1α, FNDC5 and BDNF mRNA in the hippocampus as well as BDNF immunocontent. The involvement of BDNF downstream intracellular signaling pathway mediated by Akt, proapoptotic proteins BAX and BAD and antiapoptotic proteins Bcl2 and Bcl-xL was also investigated following creatine treatment. Creatine increased Akt phosphorylation (Ser 473), and Bcl2 mRNA and protein levels, and Bcl-xL mRNA, whereas BAD mRNA was decreased following creatine administration in the hippocampus. Altogether these results indicate that creatine antidepressant-like effect may be dependent on Akt activation and increased expression of the neuroprotective proteins in the hippocampus of mice. The obtained data reinforce the antidepressant property of creatine and highlight the role of these molecular targets in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Mauricio P Cunha
- Universidade Federal de Santa Catarina, Department of Biochemistry, Florianópolis, Brazil.
| | - Francis L Pazini
- Universidade Federal de Santa Catarina, Department of Biochemistry, Florianópolis, Brazil
| | - Vicente Lieberknecht
- Universidade Federal de Santa Catarina, Department of Biochemistry, Florianópolis, Brazil
| | - Ana Lúcia S Rodrigues
- Universidade Federal de Santa Catarina, Department of Biochemistry, Florianópolis, Brazil
| |
Collapse
|
30
|
Dal-Pont GC, Resende WR, Varela RB, Menegas S, Trajano KS, Peterle BR, Quevedo J, Valvassori SS. Inhibition of GSK-3β on Behavioral Changes and Oxidative Stress in an Animal Model of Mania. Mol Neurobiol 2018; 56:2379-2393. [DOI: 10.1007/s12035-018-1226-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/05/2018] [Indexed: 12/27/2022]
|
31
|
Lopachev AV, Abaimov DA, Fedorova TN, Lopacheva OM, Akkuratova NV, Akkuratov EE. Cardiotonic Steroids as Potential Endogenous Regulators in the Nervous System. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Li B, Ren J, Yang L, Li X, Sun G, Xia M. Lithium Inhibits GSK3β Activity via Two Different Signaling Pathways in Neurons After Spinal Cord Injury. Neurochem Res 2018; 43:848-856. [DOI: 10.1007/s11064-018-2488-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022]
|
33
|
Kim Y, Santos R, Gage FH, Marchetto MC. Molecular Mechanisms of Bipolar Disorder: Progress Made and Future Challenges. Front Cell Neurosci 2017; 11:30. [PMID: 28261061 PMCID: PMC5306135 DOI: 10.3389/fncel.2017.00030] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
Bipolar disorder (BD) is a chronic and progressive psychiatric illness characterized by mood oscillations, with episodes of mania and depression. The impact of BD on patients can be devastating, with up to 15% of patients committing suicide. This disorder is associated with psychiatric and medical comorbidities and patients with a high risk of drug abuse, metabolic and endocrine disorders and vascular disease. Current knowledge of the pathophysiology and molecular mechanisms causing BD is still modest. With no clear biological markers available, early diagnosis is a great challenge to clinicians without previous knowledge of the longitudinal progress of illness. Moreover, despite recommendations from evidence-based guidelines, polypharmacy is still common in clinical treatment of BD, reflecting the gap between research and clinical practice. A major challenge in BD is the development of effective drugs with low toxicity for the patients. In this review article, we focus on the progress made and future challenges we face in determining the pathophysiology and molecular pathways involved in BD, such as circadian and metabolic perturbations, mitochondrial and endoplasmic reticulum (ER) dysfunction, autophagy and glutamatergic neurotransmission; which may lead to the development of new drugs.
Collapse
Affiliation(s)
- Yeni Kim
- Laboratory of Genetics, The Salk Institute for Biological StudiesLa Jolla, CA, USA; Department of Child and Adolescent Psychiatry, National Center for Mental HealthSeoul, South Korea
| | - Renata Santos
- Laboratory of Genetics, The Salk Institute for Biological StudiesLa Jolla, CA, USA; Ecole Normale Supérieure, PSL Research University, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Paris, France
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies La Jolla, CA, USA
| | - Maria C Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies La Jolla, CA, USA
| |
Collapse
|