1
|
Kuznetsova EA, Zakirjanova GF, Tsentsevitsky AN, Petrov AM. 25-Hydroxycholesterol modulates synaptic vesicle endocytosis at the mouse neuromuscular junction. Pflugers Arch 2025:10.1007/s00424-024-03058-0. [PMID: 39786596 DOI: 10.1007/s00424-024-03058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability. Here, using fluorescent dyes, the time course of endocytosis induced by intense activity of the phrenic nerve was studied at the mouse diaphragm neuromuscular junction. It was found that a significant portion of endocytic events occurs after the end of tetanic stimulation. Pitstop 2, clathrin inhibitor, and more profoundly dynole 34-2, dynamin antagonist, suppressed endocytic FM1-43 dye uptake both during and after tetanus. Furthermore, synaptic vesicles formed in the presence of the endocytic blockers released FM-dye during subsequent evoked exocytosis at a lower rate. 25-Hydroxycholesterol (25HC) is an oxysterol, ubiquitously synthetized from excessive cholesterol. In addition, its production greatly increases by activated macrophages. 25HC accelerated FM-dye endocytosis and its sequential evoked exocytosis, and dynole (but not pitstop) prevented 25HC-mediated enhancement of endocytic FM-dye uptake. The positive effects of 25HC were interfered with chelation of cytosolic Ca2+ with a slow Ca2+ buffer EGTA-AM, Ca2+ antagonist TMB8, and sphingomyelin-hydrolyzing enzyme. In contrast to amphiphilic FM1-43 dye capture, 25HC reduced uptake of hydrophilic high molecular weight markers (labeled dextrans and toxin), which utilize bulk endocytosis to enter into nerve terminals. Thus, synaptic vesicle endocytosis had a relatively slow kinetics following the tetanic activity and can be accelerated by 25HC. The positive effect of 25HC on endocytosis engages a dynamin-dependent pathway, interconnected with cytoplasmic Ca2+ and sphingomyelin integrity.
Collapse
Affiliation(s)
- Eva A Kuznetsova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Guzalia F Zakirjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, 119234, Russia
| | - Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.
- Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia.
- Kazan Federal University, 18 Kremlyovskaya St., Kazan, 420008, Russia.
| |
Collapse
|
2
|
Noronha-Matos JB, Sousa-Soares C, Correia-de-Sá P. Differential participation of CaMKII/ROCK and NOS pathways in the cholinergic inhibitory drive operated by nicotinic α7 receptors in perisynaptic Schwann cells. Biochem Pharmacol 2025; 231:116649. [PMID: 39581530 DOI: 10.1016/j.bcp.2024.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/26/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Nicotinic α7 receptors (α7 nAChRs) present in perisynaptic Schwann cells (PSCs) control acetylcholine (ACh) spillover from the neuromuscular synapse by transiently increasing intracellular Ca2+, which fosters adenosine release via type 1 equilibrative nucleoside transporters (ENT1) and retrograde activation of presynaptic A1 inhibitory receptors. The putative Ca2+-dependent pathways downstream α7 nAChRs involved in the sensing inhibitory drive operated by PSCs is unknown. Herein, we used phrenic nerve-hemidiaphragm preparations from Wistar rats. Time-lapse video-microscopy was instrumental to assess nerve-evoked (50-Hz bursts) transmitter exocytosis and intracellular NO oscillations in nerve terminals and PSCs loaded with FM4-64 and DAF-FM diacetate fluorescent dyes, respectively. Selective activation of α7 nAChRs with PNU 282987 reduced transmitter exocytosis (FM4-64 dye unloading) during 50-Hz bursts. Inhibition of calmodulin activity (with W-7), Ca2+/calmodulin-dependent protein kinase II (CaMKII; with KN-62) and Rho-kinase (ROCK; with H1152) all prevented the release inhibitory effect of PNU 282987. The α7 nAChR agonist transiently increased NO inside PSCs; the same occurred during phrenic nerve stimulation with 50-Hz bursts in the presence of the cholinesterase inhibitor, neostigmine. The nitric oxide synthase (NOS) inhibitor, L-NOARG, but not with the guanylylcyclase (GC) inhibitor, ODQ, prevented inhibition of transmitter exocytosis by PNU 282987. Inhibition of adenosine kinase with ABT 702 favors the intracellular accumulation and translocation of the nucleoside to the synaptic cleft, thus overcoming prevention of the PNU 282987 effect caused by H1152, but not by L-NOARG. In conclusion, the α7nAChR-mediated cholinergic inhibitory drive operated by PSCs involves two distinct Ca2+-dependent intracellular pathways: a CaMKII/ROCK cascade along with a GC-independent NO pathway with divergent end-effects concerning ADK inhibition.
Collapse
Affiliation(s)
- José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal.
| | - Carlos Sousa-Soares
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal.
| |
Collapse
|
3
|
Giniatullin AR, Mukhutdinova KA, Petrov AM. Mechanism of Purinergic Regulation of Neurotransmission in Mouse Neuromuscular Junction: The Role of Redox Signaling and Lipid Rafts. Neurochem Res 2024; 49:2021-2037. [PMID: 38814360 DOI: 10.1007/s11064-024-04153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Acetylcholine is the main neurotransmitter at the vertebrate neuromuscular junctions (NMJs). ACh exocytosis is precisely modulated by co-transmitter ATP and its metabolites. It is assumed that ATP/ADP effects on ACh release rely on activation of presynaptic Gi protein-coupled P2Y13 receptors. However, downstream signaling mechanism of ATP/ADP-mediated modulation of neuromuscular transmission remains elusive. Using microelectrode recording and fluorescent indicators, the mechanism underlying purinergic regulation was studied in the mouse diaphragm NMJs. Pharmacological stimulation of purinoceptors with ADP decreased synaptic vesicle exocytosis evoked by both low and higher frequency stimulation. This inhibitory action was suppressed by antagonists of P2Y13 receptors (MRS 2211), Ca2+ mobilization (TMB8), protein kinase C (chelerythrine) and NADPH oxidase (VAS2870) as well as antioxidants. This suggests the participation of Ca2+ and reactive oxygen species (ROS) in the ADP-triggered signaling. Indeed, ADP caused an increase in cytosolic Ca2+ with subsequent elevation of ROS levels. The elevation of [Ca2+]in was blocked by MRS 2211 and TMB8, whereas upregulation of ROS was prevented by pertussis toxin (inhibitor of Gi protein) and VAS2870. Targeting the main components of lipid rafts, cholesterol and sphingomyelin, suppressed P2Y13 receptor-dependent attenuation of exocytosis and ADP-induced enhancement of ROS production. Inhibition of P2Y13 receptors decreased ROS production and increased the rate of exocytosis during intense activity. Thus, suppression of neuromuscular transmission by exogenous ADP or endogenous ATP can rely on P2Y13 receptor/Gi protein/Ca2+/protein kinase C/NADPH oxidase/ROS signaling, which is coordinated in a lipid raft-dependent manner.
Collapse
Affiliation(s)
| | - Kamilla A Mukhutdinova
- Kazan State Medical University, 49 Butlerova St., Kazan, RT, Russia, 420012
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111
| | - Alexey M Petrov
- Kazan State Medical University, 49 Butlerova St., Kazan, RT, Russia, 420012.
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111.
- Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420008.
| |
Collapse
|
4
|
Petrov AM. Oxysterols in Central and Peripheral Synaptic Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:91-123. [PMID: 38036877 DOI: 10.1007/978-3-031-43883-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is a key molecule for synaptic transmission, and both central and peripheral synapses are cholesterol rich. During intense neuronal activity, a substantial portion of synaptic cholesterol can be oxidized by either enzymatic or non-enzymatic pathways to form oxysterols, which in turn modulate the activities of neurotransmitter receptors (e.g., NMDA and adrenergic receptors), signaling molecules (nitric oxide synthases, protein kinase C, liver X receptors), and synaptic vesicle cycling involved in neurotransmitters release. 24-Hydroxycholesterol, produced by neurons in the brain, could directly affect neighboring synapses and change neurotransmission. 27-Hydroxycholesterol, which can cross the blood-brain barrier, can alter both synaptogenesis and synaptic plasticity. Increased generation of 25-hydroxycholesterol by activated microglia and macrophages could link inflammatory processes to learning and neuronal regulation. Amyloids and oxidative stress can lead to an increase in the levels of ring-oxidized sterols and some of these oxysterols (4-cholesten-3-one, 5α-cholestan-3-one, 7β-hydroxycholesterol, 7-ketocholesterol) have a high potency to disturb or modulate neurotransmission at both the presynaptic and postsynaptic levels. Overall, oxysterols could be used as "molecular prototypes" for therapeutic approaches. Analogs of 24-hydroxycholesterol (SGE-301, SGE-550, SAGE718) can be used for correction of NMDA receptor hypofunction-related states, whereas inhibitors of cholesterol 24-hydroxylase, cholestane-3β,5α,6β-triol, and cholest-4-en-3-one oxime (olesoxime) can be utilized as potential anti-epileptic drugs and (or) protectors from excitotoxicity.
Collapse
Affiliation(s)
- Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, RT, Russia.
- Kazan State Medial University, Kazan, RT, Russia.
- Kazan Federal University, Kazan, RT, Russia.
| |
Collapse
|
5
|
Nasoni MG, Crinelli R, Iuliano L, Luchetti F. When nitrosative stress hits the endoplasmic reticulum: Possible implications in oxLDL/oxysterols-induced endothelial dysfunction. Free Radic Biol Med 2023; 208:178-185. [PMID: 37544487 DOI: 10.1016/j.freeradbiomed.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Oxidized LDL (oxLDL) and oxysterols are known to play a crucial role in endothelial dysfunction (ED) by inducing endoplasmic reticulum stress (ERS), inflammation, and apoptosis. However, the precise molecular mechanisms underlying these pathophysiological processes remain incompletely understood. Emerging evidence strongly implicates excessive nitric oxide (NO) production in the progression of various pathological conditions. The accumulation of reactive nitrogen species (RNS) leading to nitrosative stress (NSS) and aberrant protein S-nitrosylation contribute to NO toxicity. Studies have highlighted the involvement of NSS and S-nitrosylation in perturbing ER signaling through the modification of ER sensors and resident isomerases in neurons. This review focuses on the existing evidence that strongly associates NO with ERS and the possible implications in the context of ED induced by oxLDL and oxysterols. The potential effects of perturbed NO synthesis on signaling effectors linking NSS with ERS in endothelial cells are discussed to provide a conceptual framework for further investigations and the development of novel therapeutic strategies targeting ED.
Collapse
Affiliation(s)
- M G Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - R Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - L Iuliano
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Latina, Italy.
| | - F Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
6
|
Sun Z, Yang J, Zhou J, Zhou J, Feng L, Feng Y, He Y, Liu M, Li Y, Wang G, Li R. Tissue-Specific Oxysterols as Predictors of Antidepressant (Escitalopram) Treatment Response in Patients With Major Depressive Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:663-672. [PMID: 37881566 PMCID: PMC10593904 DOI: 10.1016/j.bpsgos.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/08/2023] [Indexed: 02/03/2023] Open
Abstract
Background There is growing evidence that disturbances in cholesterol metabolism may be involved in major depressive disorder (MDD). However, it is not known if cholesterol metabolites present in the brain and periphery can be used to diagnose and predict an MDD patient's response to antidepressant treatment. Methods A total of 176 subjects (85 patients with MDD and 91 healthy control subjects) were included in this study. The expression of peripheral and brain-specific oxysterols and related gene polymorphisms were investigated in all subjects. The severity of depression was measured using the 17-item Hamilton Depression Rating Scale, 16-item Quick Inventory of Depressive Symptoms-Self-Report, and Patient Health Questionnaire-9 for all patients with MDD before and after 12 weeks of antidepressant treatment. Results Patients with MDD expressed higher plasma levels of 24(S)-hydroxycholesterol (24OHC) (mainly secreted from the brain) compared with healthy control subjects, and the higher levels of 24OHC were associated with 24OHC synthetase (CYP46A1) gene polymorphisms. In patients with MDD, an improved response to the 12-week antidepressant treatment was associated with a reduction of both 24OHC and 27OHC (mainly secreted from the peripheral system) levels relative to baseline levels. Nonresponders exhibited increased levels of oxysterols at the end of treatment compared with baseline. The superior reduction in oxysterol levels correlated with better outcomes from the antidepressant treatment. Conclusions These data suggest a potential role for oxysterols as diagnostic and treatment response-related indicators for MDD.
Collapse
Affiliation(s)
- Zuoli Sun
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jia Zhou
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jingjing Zhou
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Feng
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuan Feng
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi He
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Min Liu
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Gang Wang
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rena Li
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Fedulova L, Vasilevskaya E, Tikhonova O, Kazieva L, Tolmacheva G, Makarenko A. Proteomic Markers in the Muscles and Brain of Pigs Recovered from Hemorrhagic Stroke. Genes (Basel) 2022; 13:genes13122204. [PMID: 36553471 PMCID: PMC9777686 DOI: 10.3390/genes13122204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
(1) Background: Stroke is the leading cause of serious long-term disability. Walking dysfunction and paresis of the upper extremities occurs in more than 80% of people who have had a stroke. (2) Methods: We studied post-genomic markers in biosamples of muscle and brain tissue from animals that underwent intracerebral hematoma and recovered after 42 days. Our purpose was to understand the biological mechanisms associated with recovery from hemorrhagic stroke. We analyzed the peptides formed after trypsinolysis of samples by HPLC-MS, and the results were processed by bioinformatics methods, including the establishment of biochemical relationships (gene to gene) using topological omics databases such as Reactome and KEGG. (3) Results: In the pig brain, unique compounds were identified which are expressed during the recovery period after traumatic injury. These are molecular factors of activated microglia, and they contribute to the functional recovery of neurons and reduce instances of hematoma, edema, and oxidative stress. Complexes of the main binding factors of the neurotrophins involved in the differentiation and survival of nerve cells were found in muscles. (4) Conclusions: A network of gene interactions has been constructed for proteins involved in the regulation of synaptic transmission, in particular presynaptic vesicular and endocytic processes. The presence of transmitters and transporters associated with stimulation of NMDA receptors at neuromuscular junctions shows the relationship between upper motor neurons and neuromuscular junctions.
Collapse
Affiliation(s)
- Liliya Fedulova
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| | - Ekaterina Vasilevskaya
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| | | | - Laura Kazieva
- Institute of Biomedical Chemistry, 119121 Mosow, Russia
| | - Galina Tolmacheva
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
- Correspondence: ; Tel.: +7-495-676-9511-(128)
| | - Alexandr Makarenko
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| |
Collapse
|
8
|
Guidara W, Messedi M, Naifar M, Maalej M, Khrouf W, Grayaa S, Maalej M, Bonnefont-Rousselot D, Lamari F, Ayadi F. Plasma oxysterols in drug-free patients with schizophrenia. J Steroid Biochem Mol Biol 2022; 221:106123. [PMID: 35550868 DOI: 10.1016/j.jsbmb.2022.106123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/15/2022]
Abstract
Evidence from clinical, genetic, and medical studies has shown the neuronal developmental disorder aspect of schizophrenia (SZ). Whereas oxysterols are vital factors in neurodevelopment, it is still unknown whether they are involved in the pathophysiology of SZ. The current study aims to explore the profile of oxysterols in plasma, ratio to total cholesterol (Tchol) and the association with clinical factors in patients with SZ. Forty men diagnosed with SZ and forty healthy controls matched for age and sex were included in the study. The ratios of cholestane-3β,5α,6β-triol, 27-hydroxycholesterol (27-OHC) and Cholestanol to Tchol increased in the schizophrenic group compared to controls. However, levels of 24S-hydroxycholesterol (24-OHC) were not significantly different between patients and controls. For the SZ patients, the plasma 24-OHC levels were positively correlated with the positive and negative syndrome total scores (PANSS) but negatively correlated with the Montreal Cognitive Assessment scores (MOCA). Moreover, the ratio Cholestanol to Tchol was negatively correlated with MOCA scores and positively correlated with PANSS general. The binary logistic regression analysis revealed that the ratio Cholestane-3β,5α,6β-triol/TChol could be considered as an independent risk factor for SZ. On the other hand, the receiver's operating characteristics analysis corresponding to potential biomarkers on SZ showed Areas Under the Curve (AUCs) of 82.1%; 69.7% and 77.6% for the ratio of Cholestane-3β,5α,6β-triol/TChol, 27-OHC/TChol and Cholestanol/TChol respectively. The relevance of Cholestane-3β,5α,6β-triol, 27-OHC and Cholestanol assays as biomarkers of this disease deserves further investigation.
Collapse
Affiliation(s)
- Wassim Guidara
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia.
| | - Meriam Messedi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia
| | - Manel Naifar
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia; Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C-department, Hédi Chaker Hospital, Sfax, Tunisia
| | - Walid Khrouf
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, F-75013 Paris, France
| | - Sahar Grayaa
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C-department, Hédi Chaker Hospital, Sfax, Tunisia
| | - Dominique Bonnefont-Rousselot
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, F-75013 Paris, France; Université de Paris, CNRS, Inserm, UTCBS, F-75006 Paris, France
| | - Foudil Lamari
- Service de Biochimie Métabolique, AP-HP.Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, DMU BioGeM, F-75013 Paris, France
| | - Fatma Ayadi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Tunisia; Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
9
|
Odnoshivkina UG, Kuznetsova EA, Petrov AM. 25-Hydroxycholesterol as a Signaling Molecule of the Nervous System. BIOCHEMISTRY (MOSCOW) 2022; 87:524-537. [PMID: 35790411 PMCID: PMC9201265 DOI: 10.1134/s0006297922060049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cholesterol is an essential component of plasma membrane and precursor of biological active compounds, including hydroxycholesterols (HCs). HCs regulate cellular homeostasis of cholesterol; they can pass across the membrane and vascular barriers and act distantly as para- and endocrine agents. A small amount of 25-hydroxycholesterol (25-HC) is produced in the endoplasmic reticulum of most cells, where it serves as a potent regulator of the synthesis, intracellular transport, and storage of cholesterol. Production of 25-HC is strongly increased in the macrophages, dendrite cells, and microglia at the inflammatory response. The synthesis of 25-HC can be also upregulated in some neurological disorders, such as Alzheimer’s disease, amyotrophic lateral sclerosis, spastic paraplegia type 5, and X-linked adrenoleukodystrophy. However, it is unclear whether 25-HC aggravates these pathologies or has the protective properties. The molecular targets for 25-HC are transcriptional factors (LX receptors, SREBP2, ROR), G protein-coupled receptor (GPR183), ion channels (NMDA receptors, SLO1), adhesive molecules (α5β1 and ανβ3 integrins), and oxysterol-binding proteins. The diversity of 25-HC-binding proteins points to the ability of HC to affect many physiological and pathological processes. In this review, we focused on the regulation of 25-HC production and its universal role in the control of cellular cholesterol homeostasis, as well as the effects of 25-HC as a signaling molecule mediating the influence of inflammation on the processes in the neuromuscular system and brain. Based on the evidence collected, it can be suggested that 25-HC prevents accumulation of cellular cholesterol and serves as a potent modulator of neuroinflammation, synaptic transmission, and myelinization. An increased production of 25-HC in response to a various type of damage can have a protective role and reduce neuronal loss. At the same time, an excess of 25-HC may exert the neurotoxic effects.
Collapse
Affiliation(s)
- Ulia G Odnoshivkina
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of Russian Academy of Sciences", Kazan, 420111, Russia
- Kazan State Medical University, Kazan, 420012, Russia
| | - Eva A Kuznetsova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of Russian Academy of Sciences", Kazan, 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of Russian Academy of Sciences", Kazan, 420111, Russia.
- Kazan State Medical University, Kazan, 420012, Russia
| |
Collapse
|
10
|
Zakyrjanova GF, Tsentsevitsky AN, Kuznetsova EA, Petrov AM. Immune-related oxysterol modulates neuromuscular transmission via non-genomic liver X receptor-dependent mechanism. Free Radic Biol Med 2021; 174:121-134. [PMID: 34391813 DOI: 10.1016/j.freeradbiomed.2021.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
Inflammatory reactions induce changes in the neuromuscular system. The mechanisms underlying this link are unclear. Besides cytokines and reactive oxygen species (ROS), production of an antiviral oxysterol 25-hydroxycholesterol (25HC) by immune cells is quickly increased in response to inflammation. Hypothetically, 25HC could contribute to regulation of neuromuscular activity as well as redox status. We found that 25HC (0.01-10 μM) can bidirectionally modulate neurotransmission in mice diaphragm, the main respiratory muscle. Low concentrations (≤0.1 μM) of 25HC reduced involvement of synaptic vesicles (SVs) into exocytosis during 20-Hz activity, whereas higher inflammatory-related concentrations (≥1 μM) had a profound potentiating effect on SV mobilization. The latter stimulatory action of 25HC was accompanied by increase in Ca2+ release from intracellular stores via IP3 receptors. Both increase in SV mobilization and [Ca2+]in were suppressed by a specific antagonist of liver X receptors (LXRs). These receptors formed clusters within the synaptic membranes in a lipid raft-dependent manner. Either raft disruption or intracellular Ca2+ chelation prevented 25HC-mediated acceleration of the exocytotic rate. The same action had inhibition of estrogen receptor α, Gi-protein, Gβγ, phospholipase C and protein kinase C. Additionally, 1 μM 25HC upregulated ROS production in a Ca2+-dependent way and an antioxidant partially decreased the exocytosis-promoting effect of 25HC. Thus, 25HC has prooxidant properties and it is a potent regulator of SV mobilization via activation of lipid raft-associated LXRs which can trigger signaling via estrogen receptor α - Gi-protein - Gβγ - phospholipase C - Ca2+ - protein kinase C pathway. 25HC-mediated increase in ROS may modulate this signaling.
Collapse
Affiliation(s)
- Guzel F Zakyrjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia; Department of Normal Physiology, Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Eva A Kuznetsova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia; Department of Normal Physiology, Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia.
| |
Collapse
|
11
|
Zakyrjanova GF, Giniatullin AR, Mukhutdinova KA, Kuznetsova EA, Petrov AM. Early differences in membrane properties at the neuromuscular junctions of ALS model mice: Effects of 25-hydroxycholesterol. Life Sci 2021; 273:119300. [PMID: 33662433 DOI: 10.1016/j.lfs.2021.119300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/13/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
AIMS Plasma hyperlipidemia is a protective factor in amyotrophic lateral sclerosis (ALS) while cholesterol-lowering drugs aggravate the pathology. We hypothesize that this phenomenon can be linked with membrane lipid alterations in the neuromuscular junctions (NMJs) occurring before motor neuron loss. METHODS Neurotransmitter release in parallel with lipid membrane properties in diaphragm NMJs of SOD1G93A (mSOD) mice at nine weeks of age (pre-onset stage) were assessed. KEY FINDINGS Despite on slight changes in spontaneous and evoked quantum release of acetylcholine, extracellular levels of choline at resting conditions, an indicator of non-quantum release, were significantly increased in mSOD mice. The use of lipid-sensitive fluorescent probes points to lipid raft disruption in the NMJs of mSOD mice. However, content of cholesterol, a key raft component was unchanged implying another pathway responsible for the loss of raft integrity. In the mSOD mice we found marked increase in levels of raft-destabilizing lipid ceramide. This was accompanied by enhanced ability to uptake of exogenous ceramide in NMJs. Acute and chronic administration of 25-hydroxycholesterol, whose levels increase due to hypercholesterolemia, recovered early alterations in membrane properties. Furthermore, chronic treatment with 25-hydroxycholesterol prevented increase in ceramide and extracellular choline levels as well as suppressed lipid peroxidation of NMJ membranes and fragmentation of end plates. SIGNIFICANCE Thus, lipid raft disruption likely due to ceramide accumulation could be early event in ALS which may trigger neuromuscular abnormalities. Cholesterol derivative 25-hydroxycholesterol may serve as a molecule restoring the membrane and functional properties of NMJs at the early stage.
Collapse
Affiliation(s)
- Guzel F Zakyrjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Arthur R Giniatullin
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova Street, Kazan 420012, Russia
| | - Kamilla A Mukhutdinova
- Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Eva A Kuznetsova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia.
| |
Collapse
|
12
|
Samadi A, Sabuncuoglu S, Samadi M, Isikhan SY, Chirumbolo S, Peana M, Lay I, Yalcinkaya A, Bjørklund G. A Comprehensive Review on Oxysterols and Related Diseases. Curr Med Chem 2021; 28:110-136. [PMID: 32175830 DOI: 10.2174/0929867327666200316142659] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 11/22/2022]
Abstract
The present review aims to provide a complete and comprehensive summary of current literature relevant to oxysterols and related diseases. Oxidation of cholesterol leads to the formation of a large number of oxidized products, generally known as oxysterols. They are intermediates in the biosynthesis of bile acids, steroid hormones, and 1,25- dihydroxyvitamin D3. Although oxysterols are considered as metabolic intermediates, there is a growing body of evidence that many of them are bioactive, and their absence or excess may be part of the cause of a disease phenotype. These compounds derive from either enzymatic or non-enzymatic oxidation of cholesterol. This study provides comprehensive information about the structures, formation, and types of oxysterols even when involved in certain disease states, focusing on their effects on metabolism and linkages with these diseases. The role of specific oxysterols as mediators in various disorders, such as degenerative (age-related) and cancer-related disorders, has now become clearer. Oxysterol levels may be employed as suitable markers for the diagnosis of specific diseases or in predicting the incidence rate of diseases, such as diabetes mellitus, Alzheimer's disease, multiple sclerosis, osteoporosis, lung cancer, breast cancer, and infertility. However, further investigations may be required to confirm these mentioned possibilities.
Collapse
Affiliation(s)
- Afshin Samadi
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Suna Sabuncuoglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mahshid Samadi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Selen Yilmaz Isikhan
- Vocational Higher School of Social Sciences, Hacettepe University, Ankara, Turkey
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Incilay Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ahmet Yalcinkaya
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
13
|
El-Ansary A, Chirumbolo S, Bhat RS, Dadar M, Ibrahim EM, Bjørklund G. The Role of Lipidomics in Autism Spectrum Disorder. Mol Diagn Ther 2021; 24:31-48. [PMID: 31691195 DOI: 10.1007/s40291-019-00430-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental syndrome commonly diagnosed in early childhood; it is usually characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social withdrawal with loss in communication skills. Its development may be affected by a variety of environmental and genetic factors. Trained physicians diagnose and evaluate the severity of ASD based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. Several important issues and concerns exist regarding the diagnostic competence of the many abnormal plasma metabolites produced in the different biochemical pathways evaluated in individuals with ASD. The search for high-performing bio-analytes to diagnose and follow-up ASD development is still a major target in medicine. Dysregulation in the oxidative stress response and proinflammatory processes are major etiological causes of ASD pathogenesis. Furthermore, dicarboxylic acid metabolites, cholesterol-related metabolites, phospholipid-related metabolites, and lipid transporters and mediators are impaired in different pathological conditions that have a role in the ASD etiology. A mechanism may exist by which pro-oxidant environmental stressors and abnormal metabolites regulate clinical manifestations and development of ASD.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia.,CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia.,Therapeutic Chemistry Department, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Eiman M Ibrahim
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
14
|
Sun Z, Zhao L, Bo Q, Mao Z, He Y, Jiang T, Li Y, Wang C, Li R. Brain-Specific Oxysterols and Risk of Schizophrenia in Clinical High-Risk Subjects and Patients With Schizophrenia. Front Psychiatry 2021; 12:711734. [PMID: 34408685 PMCID: PMC8367079 DOI: 10.3389/fpsyt.2021.711734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/19/2023] Open
Abstract
Accumulating evidence from clinical, genetic, and epidemiologic studies suggest that schizophrenia might be a neuronal development disorder. While oxysterols are important factors in neurodevelopment, it is unknown whether oxysterols might be involved in development of schizophrenia. The present study investigated the relationship between tissue-specifically originated oxysterols and risk of schizophrenia. A total of 216 individuals were recruited in this study, including 76 schizophrenia patients, 39 clinical high-risk (CHR) subjects, and 101 healthy controls (HC). We investigated the circulating levels of brain-specific oxysterol 24(S)-hydroxycholesterol (24OHC) and peripheral oxysterol 27-hydroxycholesterol (27OHC) in all participants and analyzed the potential links between the oxysterols and specific clinical symptoms in schizophrenic patients and CHR. Our data showed an elevation of 24OHC in both schizophrenia patients and CHR than that in HC, while a lower level of 27OHC in the schizophrenia group only. The ratio of 24OHC to 27OHC was only increased in the schizophrenic group compared with CHR and HC. For the schizophrenic patients, the circulating 24OHC levels are significantly associated with disease duration, positively correlated with the positive and negative syndrome total scores, while the 27OHC levels were inversely correlated with the positive symptom scores. Together, our data demonstrated the disruption of tissue-specifically originated cholesterol metabolism in schizophrenia and CHR, suggesting the circulating 24OHC or 24OHC/27OHC ratio might not only be a potential indicator for risk for schizophrenia but also be biomarkers for functional abnormalities in neuropathology of schizophrenia.
Collapse
Affiliation(s)
- Zuoli Sun
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zhen Mao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rena Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Hoy KC, Strain MM, Turtle JD, Lee KH, Huie JR, Hartman JJ, Tarbet MM, Harlow ML, Magnuson DSK, Grau JW. Evidence That the Central Nervous System Can Induce a Modification at the Neuromuscular Junction That Contributes to the Maintenance of a Behavioral Response. J Neurosci 2020; 40:9186-9209. [PMID: 33097637 PMCID: PMC7687054 DOI: 10.1523/jneurosci.2683-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/21/2022] Open
Abstract
Neurons within the spinal cord are sensitive to environmental relations and can bring about a behavioral modification without input from the brain. For example, rats that have undergone a thoracic (T2) transection can learn to maintain a hind leg in a flexed position to minimize exposure to a noxious electrical stimulation (shock). Inactivating neurons within the spinal cord with lidocaine, or cutting communication between the spinal cord and the periphery (sciatic transection), eliminates the capacity to learn, which implies that it depends on spinal neurons. Here we show that these manipulations have no effect on the maintenance of the learned response, which implicates a peripheral process. EMG showed that learning augments the muscular response evoked by motoneuron output and that this effect survives a sciatic transection. Quantitative fluorescent imaging revealed that training brings about an increase in the area and intensity of ACh receptor labeling at the neuromuscular junction (NMJ). It is hypothesized that efferent motoneuron output, in conjunction with electrical stimulation of the tibialis anterior muscle, strengthens the connection at the NMJ in a Hebbian manner. Supporting this, paired stimulation of the efferent nerve and tibialis anterior generated an increase in flexion duration and augmented the evoked electrical response without input from the spinal cord. Evidence is presented that glutamatergic signaling contributes to plasticity at the NMJ. Labeling for vesicular glutamate transporter is evident at the motor endplate. Intramuscular application of an NMDAR antagonist blocked the acquisition/maintenance of the learned response and the strengthening of the evoked electrical response.SIGNIFICANCE STATEMENT The neuromuscular junction (NMJ) is designed to faithfully elicit a muscular contraction in response to neural input. From this perspective, encoding environmental relations (learning) and the maintenance of a behavioral modification over time (memory) are assumed to reflect only modifications upstream from the NMJ, within the CNS. The current results challenge this view. Rats were trained to maintain a hind leg in a flexed position to avoid noxious stimulation. As expected, treatments that inhibit activity within the CNS, or disrupt peripheral communication, prevented learning. These manipulations did not affect the maintenance of the acquired response. The results imply that a peripheral modification at the NMJ contributes to the maintenance of the learned response.
Collapse
Affiliation(s)
- Kevin C Hoy
- Case Comprehensive Cancer Center/Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | - Misty M Strain
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, Houston, Texas 78234
| | - Joel D Turtle
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Kuan H Lee
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - J Russell Huie
- Department of Neuroscience, University of California San Francisco, San Francisco, California 94110
| | - John J Hartman
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Megan M Tarbet
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| | - Mark L Harlow
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - David S K Magnuson
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40202
| | - James W Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
16
|
Sodero AO. 24S-hydroxycholesterol: Cellular effects and variations in brain diseases. J Neurochem 2020; 157:899-918. [PMID: 33118626 DOI: 10.1111/jnc.15228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The adult brain exhibits a characteristic cholesterol homeostasis, with low synthesis rate and active catabolism. Brain cholesterol turnover is possible thanks to the action of the enzyme cytochrome P450 46A1 (CYP46A1) or 24-cholesterol hydroxylase, that transforms cholesterol into 24S-hydroxycholesterol (24S-HC). But before crossing the blood-brain barrier (BBB), this oxysterol, that is the most abundant in the brain, can act locally, affecting the functioning of neurons, astrocytes, oligodendrocytes, and vascular cells. The first part of this review addresses different aspects of 24S-HC production and elimination from the brain. The second part concentrates in the effects of 24S-HC at the cellular level, describing how this oxysterol affects cell viability, amyloid β production, neurotransmission, and transcriptional activity. Finally, the role of 24S-HC in Alzheimer, Huntington and Parkinson diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as the possibility of using this oxysterol as predictive and/or evolution biomarker in different brain disorders is discussed.
Collapse
Affiliation(s)
- Alejandro O Sodero
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
Zefirov AL, Mukhametzyanov RD, Zakharov AV, Mukhutdinova KA, Odnoshivkina UG, Petrov AM. Intracellular Acidification Suppresses Synaptic Vesicle Mobilization in the Motor Nerve Terminals. Acta Naturae 2020; 12:105-113. [PMID: 33456982 PMCID: PMC7800596 DOI: 10.32607/actanaturae.11054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/07/2020] [Indexed: 01/27/2023] Open
Abstract
Intracellular protons play a special role in the regulation of presynaptic processes, since the functioning of synaptic vesicles and endosomes depends on their acidification by the H+-pump. Furthermore, transient acidification of the intraterminal space occurs during synaptic activity. Using microelectrode recording of postsynaptic responses (an indicator of neurotransmitter release) and exo-endocytic marker FM1-43, we studied the effects of intracellular acidification with propionate on the presynaptic events underlying neurotransmitter release. Cytoplasmic acidification led to a marked decrease in neurotransmitter release during the first minute of a 20-Hz stimulation in the neuromuscular junctions of mouse diaphragm and frog cutaneous pectoris muscle. This was accompanied by a reduction in the FM1-43 loss during synaptic vesicle exocytosis in response to the stimulation. Estimation of the endocytic uptake of FM1-43 showed no disruption in synaptic vesicle endocytosis. Acidification completely prevented the action of the cell-membrane permeable compound 24-hydroxycholesterol, which can enhance synaptic vesicle mobilization. Thus, the obtained results suggest that an increase in [H+]in negatively regulates neurotransmission due to the suppression of synaptic vesicle delivery to the sites of exocytosis at high activity. This mechanism can be a part of the negative feedback loop in regulating neurotransmitter release.
Collapse
Affiliation(s)
- A. L. Zefirov
- Kazan State Medical University, Department of Normal Physiology, Kazan, 420012 Russia
- Institute of Neuroscience, Kazan State Medical University, Kazan, 420012 Russia
| | - R. D. Mukhametzyanov
- Kazan State Medical University, Department of Normal Physiology, Kazan, 420012 Russia
| | - A. V. Zakharov
- Kazan State Medical University, Department of Normal Physiology, Kazan, 420012 Russia
- Kazan Federal University, Kazan, 420008 Russia
| | - K. A. Mukhutdinova
- Institute of Neuroscience, Kazan State Medical University, Kazan, 420012 Russia
| | - U. G. Odnoshivkina
- Kazan State Medical University, Department of Normal Physiology, Kazan, 420012 Russia
| | - A. M. Petrov
- Kazan State Medical University, Department of Normal Physiology, Kazan, 420012 Russia
- Institute of Neuroscience, Kazan State Medical University, Kazan, 420012 Russia
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, Kazan, 420111 Russia
| |
Collapse
|
18
|
Zakyrjanova GF, Gilmutdinov AI, Tsentsevitsky AN, Petrov AM. Olesoxime, a cholesterol-like neuroprotectant restrains synaptic vesicle exocytosis in the mice motor nerve terminals: Possible role of VDACs. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158739. [PMID: 32428575 DOI: 10.1016/j.bbalip.2020.158739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Olesoxime is a cholesterol-like neuroprotective compound that targets to mitochondrial voltage dependent anion channels (VDACs). VDACs were also found in the plasma membrane and highly expressed in the presynaptic compartment. Here, we studied the effects of olesoxime and VDAC inhibitors on neurotransmission in the mouse neuromuscular junction. Electrophysiological analysis revealed that olesoxime suppressed selectively evoked neurotransmitter release in response to a single stimulus and 20 Hz activity. Also olesoxime decreased the rate of FM1-43 dye loss (an indicator of synaptic vesicle exocytosis) at low frequency stimulation and 20 Hz. Furthermore, an increase in extracellular Cl- enhanced the action of olesoxime on the exocytosis and olesoxime increased intracellular Cl- levels. The effects of olesoxime on the evoked synaptic vesicle exocytosis and [Cl-]i were blocked by membrane-permeable and impermeable VDAC inhibitors. Immunofluorescent labeling pointed on the presence of VDACs on the synaptic membranes. Rotenone-induced mitochondrial dysfunction perturbed the exocytotic release of FM1-43 and cell-permeable VDAC inhibitor (but not olesoxime or impermeable VDAC inhibitor) partially mitigated the rotenone-driven alterations in the FM1-43 unloading and mitochondrial superoxide production. Thus, olesoxime restrains neurotransmission by acting on plasmalemmal VDACs whose activation can limit synaptic vesicle exocytosis probably via increasing anion flux into the nerve terminals.
Collapse
Affiliation(s)
- Guzalia F Zakyrjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan 420012, Russia
| | - Amir I Gilmutdinov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia
| | - Andrey N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, box 30, Kazan 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan 420012, Russia.
| |
Collapse
|
19
|
Breakdown of phospholipids and the elevated nitric oxide are involved in M3 muscarinic regulation of acetylcholine secretion in the frog motor synapse. Biochem Biophys Res Commun 2020; 524:589-594. [DOI: 10.1016/j.bbrc.2020.01.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
|
20
|
Glutamate at the Vertebrate Neuromuscular Junction: From Modulation to Neurotransmission. Cells 2019; 8:cells8090996. [PMID: 31466388 PMCID: PMC6770210 DOI: 10.3390/cells8090996] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
Although acetylcholine is the major neurotransmitter operating at the skeletal neuromuscular junction of many invertebrates and of vertebrates, glutamate participates in modulating cholinergic transmission and plastic changes in the last. Presynaptic terminals of neuromuscular junctions contain and release glutamate that contribute to the regulation of synaptic neurotransmission through its interaction with pre- and post-synaptic receptors activating downstream signaling pathways that tune synaptic efficacy and plasticity. During vertebrate development, the chemical nature of the neurotransmitter at the vertebrate neuromuscular junction can be experimentally shifted from acetylcholine to other mediators (including glutamate) through the modulation of calcium dynamics in motoneurons and, when the neurotransmitter changes, the muscle fiber expresses and assembles new receptors to match the nature of the new mediator. Finally, in adult rodents, by diverting descending spinal glutamatergic axons to a denervated muscle, a functional reinnervation can be achieved with the formation of new neuromuscular junctions that use glutamate as neurotransmitter and express ionotropic glutamate receptors and other markers of central glutamatergic synapses. Here, we summarize the past and recent experimental evidences in support of a role of glutamate as a mediator at the synapse between the motor nerve ending and the skeletal muscle fiber, focusing on the molecules and signaling pathways that are present and activated by glutamate at the vertebrate neuromuscular junction.
Collapse
|
21
|
Mukhutdinova KA, Kasimov MR, Zakyrjanova GF, Gumerova MR, Petrov AM. Oxysterol modulates neurotransmission via liver-X receptor/NO synthase-dependent pathway at the mouse neuromuscular junctions. Neuropharmacology 2019; 150:70-79. [DOI: 10.1016/j.neuropharm.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/15/2019] [Accepted: 03/13/2019] [Indexed: 02/08/2023]
|
22
|
Odnoshivkina UG, Sytchev VI, Starostin O, Petrov AM. Brain cholesterol metabolite 24-hydroxycholesterol modulates inotropic responses to β-adrenoceptor stimulation: The role of NO and phosphodiesterase. Life Sci 2019; 220:117-126. [DOI: 10.1016/j.lfs.2019.01.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
|
23
|
Cholesterol and the Safety Factor for Neuromuscular Transmission. Int J Mol Sci 2019; 20:ijms20051046. [PMID: 30823359 PMCID: PMC6429197 DOI: 10.3390/ijms20051046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
A present review is devoted to the analysis of literature data and results of own research. Skeletal muscle neuromuscular junction is specialized to trigger the striated muscle fiber contraction in response to motor neuron activity. The safety factor at the neuromuscular junction strongly depends on a variety of pre- and postsynaptic factors. The review focuses on the crucial role of membrane cholesterol to maintain a high efficiency of neuromuscular transmission. Cholesterol metabolism in the neuromuscular junction, its role in the synaptic vesicle cycle and neurotransmitter release, endplate electrogenesis, as well as contribution of cholesterol to the synaptogenesis, synaptic integrity, and motor disorders are discussed.
Collapse
|
24
|
Grayaa S, Zerbinati C, Messedi M, HadjKacem I, Chtourou M, Ben Touhemi D, Naifar M, Ayadi H, Ayedi F, Iuliano L. Plasma oxysterol profiling in children reveals 24-hydroxycholesterol as a potential marker for Autism Spectrum Disorders. Biochimie 2018; 153:80-85. [DOI: 10.1016/j.biochi.2018.04.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/29/2018] [Indexed: 12/19/2022]
|
25
|
Zhou CC, Gao ZY, Wang J, Wu MQ, Hu S, Chen F, Liu JX, Pan H, Yan CH. Lead exposure induces Alzheimers’s disease (AD)-like pathology and disturbes cholesterol metabolism in the young rat brain. Toxicol Lett 2018; 296:173-183. [PMID: 29908845 DOI: 10.1016/j.toxlet.2018.06.1065] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
|
26
|
24S-hydroxycholesterol suppresses neuromuscular transmission in SOD1(G93A) mice: A possible role of NO and lipid rafts. Mol Cell Neurosci 2018; 88:308-318. [PMID: 29550246 DOI: 10.1016/j.mcn.2018.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the initial denervation of skeletal muscle and subsequent death of motor neurons. A dying-back pattern of ALS suggests a crucial role for neuromuscular junction dysfunction. In the present study, microelectrode recording of postsynaptic currents and optical detection of synaptic vesicle traffic (FM1-43 dye) and intracellular NO levels (DAF-FM DA) were used to examine the effect of the major brain-derived cholesterol metabolite 24S-hydroxycholesterol (24S-HC, 0.4 μM) on neuromuscular transmission in the diaphragm of transgenic mice carrying a mutant superoxide dismutase 1 (SODG93A). We found that 24S-HC suppressed spontaneous neurotransmitter release and neurotransmitter exocytosis during high-frequency stimulation. The latter was accompanied by a decrease in both the rate of synaptic vesicle recycling and activity-dependent enhancement of NO production. Inhibition of NO synthase with L-NAME also attenuated synaptic vesicle exocytosis during high-frequency stimulation and completely abolished the effect of 24S-HC itself. Of note, 24S-HC enhanced the labeling of synaptic membranes with B-subunit of cholera toxin, suggesting an increase in lipid ordering. Lipid raft-disrupting agents (methyl-β-cyclodextrin, sphingomyelinase) prevented the action of 24S-HC on both lipid raft marker labeling and NO synthesis. Together, these experiments indicate that 24S-HC is able to suppress the exocytotic release of neurotransmitter in response to intense activity via a NO/lipid raft-dependent pathway in the neuromuscular junctions of SODG93A mice.
Collapse
|