1
|
Picci G, Marchesan S, Caltagirone C. Ion Channels and Transporters as Therapeutic Agents: From Biomolecules to Supramolecular Medicinal Chemistry. Biomedicines 2022; 10:biomedicines10040885. [PMID: 35453638 PMCID: PMC9032600 DOI: 10.3390/biomedicines10040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Ion channels and transporters typically consist of biomolecules that play key roles in a large variety of physiological and pathological processes. Traditional therapies include many ion-channel blockers, and some activators, although the exact biochemical pathways and mechanisms that regulate ion homeostasis are yet to be fully elucidated. An emerging area of research with great innovative potential in biomedicine pertains the design and development of synthetic ion channels and transporters, which may provide unexplored therapeutic opportunities. However, most studies in this challenging and multidisciplinary area are still at a fundamental level. In this review, we discuss the progress that has been made over the last five years on ion channels and transporters, touching upon biomolecules and synthetic supramolecules that are relevant to biological use. We conclude with the identification of therapeutic opportunities for future exploration.
Collapse
Affiliation(s)
- Giacomo Picci
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.M.); (C.C.)
| | - Claudia Caltagirone
- Chemical and Geological Sciences Department, University of Cagliari, 09042 Cagliari, Italy;
- Correspondence: (S.M.); (C.C.)
| |
Collapse
|
2
|
Lanzetti S, Di Biase V. Small Molecules as Modulators of Voltage-Gated Calcium Channels in Neurological Disorders: State of the Art and Perspectives. Molecules 2022; 27:1312. [PMID: 35209100 PMCID: PMC8879281 DOI: 10.3390/molecules27041312] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcription, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disorders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders, Parkinson's disease, drug addiction, pain, and epilepsy. These findings outline the importance of developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of the central nervous system. Several small molecules inhibiting calcium channels are currently used in clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette of molecules available and the emerging extent of VGCC pathophysiology require the development of additional drugs targeting these channels. Here, we provide an overview of the role of calcium channels in neurological disorders and discuss possible strategies to generate novel therapeutics.
Collapse
Affiliation(s)
| | - Valentina Di Biase
- Institute of Pharmacology, Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Peter-Mayr Strasse 1, A-6020 Innsbruck, Austria;
| |
Collapse
|
3
|
Gamba A, Salmona M, Cantù L, Bazzoni G. The similarity of inherited diseases (II): clinical and biological similarity between the phenotypic series. BMC Med Genomics 2020; 13:139. [PMID: 32972400 PMCID: PMC7513283 DOI: 10.1186/s12920-020-00793-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/08/2020] [Indexed: 11/10/2022] Open
Abstract
Background Despite being caused by mutations in different genes, diseases in the same phenotypic series are clinically similar, as reported in Part I of this study. Here, in Part II, we hypothesized that the phenotypic series too might be clinically similar. Furthermore, on the assumption that gene mutations indirectly cause clinical phenotypes by directly affecting biological functions, we hypothesized that clinically similar phenotypic series might be biologically similar as well. Methods To test these hypotheses, we generated a clinical similarity network and a set of biological similarity networks. In both types of network, the nodes represent the phenotypic series, and the edges linking the nodes indicate the similarity of the linked phenotypic series. The weight of each edge is proportional to a similarity coefficient, which depends on the clinical phenotypes and the biological features that are shared by the linked phenotypic series, in the clinical and biological similarity networks, respectively. Results After assembling and analyzing the networks, we raised the threshold for the similarity coefficient, to retain edges of progressively greater weight. This way all the networks were gradually split into fragments, composed of phenotypic series with increasingly greater degrees of similarity. Finally, by comparing the fragments from the two types of network, we defined subsets of phenotypic series with varying types and degrees of clinical and biological correlation. Conclusions Like the individual diseases, the phenotypic series too are clinically and biologically similar to each other. Furthermore, our findings unveil different modalities of correlation between the clinical manifestations and the biological features of the inherited diseases.
Collapse
Affiliation(s)
- Alessio Gamba
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, I-20156, Milan, Italy
| | - Mario Salmona
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, I-20156, Milan, Italy
| | - Laura Cantù
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA, Segrate, Italy
| | - Gianfranco Bazzoni
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, I-20156, Milan, Italy.
| |
Collapse
|
4
|
Lory P, Nicole S, Monteil A. Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch 2020; 472:831-844. [PMID: 32638069 PMCID: PMC7351805 DOI: 10.1007/s00424-020-02429-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
T-type, low-voltage activated, calcium channels, now designated Cav3 channels, are involved in a wide variety of physiological functions, especially in nervous systems. Their unique electrophysiological properties allow them to finely regulate neuronal excitability and to contribute to sensory processing, sleep, and hormone and neurotransmitter release. In the last two decades, genetic studies, including exploration of knock-out mouse models, have greatly contributed to elucidate the role of Cav3 channels in normal physiology, their regulation, and their implication in diseases. Mutations in genes encoding Cav3 channels (CACNA1G, CACNA1H, and CACNA1I) have been linked to a variety of neurodevelopmental, neurological, and psychiatric diseases designated here as neuronal Cav3 channelopathies. In this review, we describe and discuss the clinical findings and supporting in vitro and in vivo studies of the mutant channels, with a focus on de novo, gain-of-function missense mutations recently discovered in CACNA1G and CACNA1H. Overall, the studies of the Cav3 channelopathies help deciphering the pathogenic mechanisms of corresponding diseases and better delineate the properties and physiological roles Cav3 channels.
Collapse
Affiliation(s)
- Philippe Lory
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France. .,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France.
| | - Sophie Nicole
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France
| |
Collapse
|
5
|
Molecular dysregulation of ciliary polycystin-2 channels caused by variants in the TOP domain. Proc Natl Acad Sci U S A 2020; 117:10329-10338. [PMID: 32332171 PMCID: PMC7229662 DOI: 10.1073/pnas.1920777117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genetic variants in PKD2 which encodes for the polycystin-2 ion channel are responsible for many clinical cases of autosomal dominant polycystic kidney disease (ADPKD). Despite our strong understanding of the genetic basis of ADPKD, we do not know how most variants impact channel function. Polycystin-2 is found in organelle membranes, including the primary cilium-an antennae-like structure on the luminal side of the collecting duct. In this study, we focus on the structural and mechanistic regulation of polycystin-2 by its TOP domain-a site with unknown function that is commonly altered by missense variants. We use direct cilia electrophysiology, cryogenic electron microscopy, and superresolution imaging to determine that variants of the TOP domain finger 1 motif destabilizes the channel structure and impairs channel opening without altering cilia localization and channel assembly. Our findings support the channelopathy classification of PKD2 variants associated with ADPKD, where polycystin-2 channel dysregulation in the primary cilia may contribute to cystogenesis.
Collapse
|
6
|
Schlegel DK, Glasauer SMK, Mateos JM, Barmettler G, Ziegler U, Neuhauss SCF. A New Zebrafish Model for CACNA2D4-Dysfunction. Invest Ophthalmol Vis Sci 2020; 60:5124-5135. [PMID: 31834350 DOI: 10.1167/iovs.19-26759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mutations in CACNA2D4, encoding the α2δ4 subunit of retinal voltage-gated calcium channels (Cav), cause a rare type of retinal dysfunction in human, mainly affecting cone vision. Here, we investigate the role of CACNA2D4 in targeting of Cav, its influence on cone-mediated signal transmission, and the cellular and subcellular changes upon loss of α2δ4 by exploiting the advantages of the cone-dominant zebrafish as model system. Methods We identified two zebrafish CACNA2D4 paralogs (cacna2d4a and cacna2d4b), analyzed their expression by RNA in situ hybridization and introduced truncating frameshift mutations through CRISPR/Cas9-mediated mutagenesis. We analyzed retinal function and morphology of the single and double mutant lines by electroretinography, immunohistochemistry, light- and electron microscopy. Results Knockout of cacna2d4b reduces the expression of Cacna1fa, the pore-forming subunit of retinal Cav1.4, whereas loss of cacna2d4a did not. Only knockout of both paralogs impaired cone-mediated ERG b-wave amplitude. The number of "floating" ribbons is increased in double-KO, while retinal morphology and expression of postsynaptic mGluR6b remain largely unaffected. Both Cacna1fa and Ribeyeb show ectopic punctate expression in cacna2d4b-KO and double-KO photoreceptors. Conclusions We find that increasing the expression of Cav at the synaptic membrane is an evolutionarily conserved function of Cacna2d4b. Yet, since both paralogs participate in cone synaptic transmission, we propose partial subfunctionalization in zebrafish. Similar to human patients, our double KO zebrafish model shows mild cone dysfunction, which was not associated with signs of retinal degeneration. Therefore, cacna2d4-KO zebrafish is a suitable model to study the pathophysiological mechanisms underlying CACNA2D4 dysfunction in human.
Collapse
Affiliation(s)
- Domino K Schlegel
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Life Science Zurich Graduate School, Ph.D. Program in Molecular Life Sciences, Zurich, Switzerland
| | - Stella M K Glasauer
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - José M Mateos
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Gery Barmettler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
7
|
Bartolini E, Campostrini R, Kiferle L, Pradella S, Rosati E, Chinthapalli K, Palumbo P. Epilepsy and brain channelopathies from infancy to adulthood. Neurol Sci 2019; 41:749-761. [PMID: 31838630 DOI: 10.1007/s10072-019-04190-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Genetic brain channelopathies result from inherited or de novo mutations of genes encoding ion channel subunits within the central nervous system. Most neurological channelopathies arise in childhood with paroxysmal or episodic symptoms, likely because of a transient impairment of homeostatic mechanisms regulating membrane excitability, and the prototypical expression of this impairment is epilepsy. Migraine, episodic ataxia and alternating hemiplegia can also occur, as well as chronic phenotypes, such as spinocerebellar ataxias, intellectual disability and autism spectrum disorder. Voltage-gated and ligand-gated channels may be involved. In most cases, a single gene may be associated with a phenotypical spectrum that shows variable expressivity. Different clinical features may arise at different ages and the adult phenotype may be remarkably modified from the syndrome onset in childhood or adolescence. Recognizing the prominent phenotypical traits of brain channelopathies is essential to perform appropriate diagnostic investigations and to provide the better care not only in the paediatric setting but also for adult patients and their caregivers. Herein, we provide an overview of genetic brain channelopathies associated with epilepsy, highlight the different molecular mechanisms and describe the different clinical characteristics which may prompt the clinician to suspect specific syndromes and to possibly establish tailored treatments.
Collapse
Affiliation(s)
- Emanuele Bartolini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy.
| | - Roberto Campostrini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Lorenzo Kiferle
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Silvia Pradella
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Eleonora Rosati
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | | | - Pasquale Palumbo
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| |
Collapse
|
8
|
He M, Xu Z, Zhang Y, Hu C. Splice-variant-specific effects of primary aldosteronism point mutations on human Ca V3.2 calcium channels. Cell Calcium 2019; 84:102104. [PMID: 31706065 DOI: 10.1016/j.ceca.2019.102104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 10/25/2022]
Abstract
CaV3.2 calcium channels play important roles in both neural excitability and aldosterone secretion. Recent clinical studies found four germline mutations (S196 L, M1549I, V1951E and P2083 L) in CaV3.2 channels. All four mutations caused primary aldosteronism (PA), while only the M1549I mutation resulted in obvious neural malfunctions besides PA. In human, there are two major CaV3.2 channel gene (CACNA1H) splice variants, either with or without exon 26. In this study, we tested the expression of the two CACNA1H splice variants in zona glomerulosa (ZG) cells of human adrenal cortex and the possibility that CaV3.2 (-26) and CaV3.2 (+26) channels have different functional responses to the four PA mutations. We found that human ZG cells only express long form CaV3.2(+26) channels. The M1549I mutation slowed the inactivation of CaV3.2(+26) more than 5 fold, and CaV3.2(-26) more than 2 fold. The S196 L, V1951E and P2083 L mutations accelerated channel recovery from inactivation for CaV3.2(+26), but not CaV3.2(-26) channels. All four mutations resulted in gain of function of CaV3.2(+26) channels, leading to overproduction of aldosterone. In conclusion, the four PA mutations caused more profound changes on CaV3.2 (+26) currents than on CaV3.2 (-26) currents, and except the M1549I mutation, the S196 L, V1951E and P2083 L have little effect on the electrophysiological properties of CaV3.2(-26) currents, which may partially explain the limitation of the phenotype associated with the V1951E, S196 L and P2083 L germline mutations to PA.
Collapse
Affiliation(s)
- Min He
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zilan Xu
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuchen Zhang
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Changlong Hu
- Department of Physiology and Biophysics, School of Life Sciences, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Punetha J, Karaca E, Gezdirici A, Lamont RE, Pehlivan D, Marafi D, Appendino JP, Hunter JV, Akdemir ZC, Fatih JM, Jhangiani SN, Gibbs RA, Innes AM, Posey JE, Lupski JR. Biallelic CACNA2D2 variants in epileptic encephalopathy and cerebellar atrophy. Ann Clin Transl Neurol 2019; 6:1395-1406. [PMID: 31402629 PMCID: PMC6689679 DOI: 10.1002/acn3.50824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To characterize the molecular and clinical phenotypic basis of developmental and epileptic encephalopathies caused by rare biallelic variants in CACNA2D2. METHODS Two affected individuals from a family with clinical features of early onset epileptic encephalopathy were recruited for exome sequencing at the Centers for Mendelian Genomics to identify their molecular diagnosis. GeneMatcher facilitated identification of a second family with a shared candidate disease gene identified through clinical gene panel-based testing. RESULTS Rare biallelic CACNA2D2 variants have been previously reported in three families with developmental and epileptic encephalopathy, and one family with congenital ataxia. We identified three individuals in two unrelated families with novel homozygous rare variants in CACNA2D2 with clinical features of developmental and epileptic encephalopathy and cerebellar atrophy. Family 1 includes two affected siblings with a likely damaging homozygous rare missense variant c.1778G>C; p.(Arg593Pro) in CACNA2D2. Family 2 includes a proband with a homozygous rare nonsense variant c.485_486del; p.(Tyr162Ter) in CACNA2D2. We compared clinical and molecular findings from all nine individuals reported to date and note that cerebellar atrophy is shared among all. INTERPRETATION Our study supports the candidacy of CACNA2D2 as a disease gene associated with a phenotypic spectrum of neurological disease that include features of developmental and epileptic encephalopathy, ataxia, and cerebellar atrophy. Age at presentation may affect apparent penetrance of neurogenetic trait manifestations and of a particular clinical neurological endophenotype, for example, seizures or ataxia.
Collapse
Affiliation(s)
- Jaya Punetha
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - Ender Karaca
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAlabama
| | - Alper Gezdirici
- Department of Medical GeneticsKanuni Sultan Suleyman Training and Research HospitalIstanbulTurkey
| | - Ryan E. Lamont
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Davut Pehlivan
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
- Section of Pediatric Neurology and Developmental Neuroscience, Department of PediatricsBaylor College of MedicineHoustonTexas
| | - Dana Marafi
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - Juan P. Appendino
- Clinical Neuroscience, Department of Pediatrics, Alberta Children's Hospital, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Jill V. Hunter
- Department of RadiologyTexas Children's HospitalHoustonTexas
| | - Zeynep C. Akdemir
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - Jawid M. Fatih
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | | | - Richard A. Gibbs
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
- Human Genome Sequencing CenterBaylor College of MedicineHoustonTexas
| | - A. Micheil Innes
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Pediatrics, Cumming School of Medicine, Alberta Children's HospitalUniversity of CalgaryCalgaryAlbertaCanada
| | - Jennifer E. Posey
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| | - James R. Lupski
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
- Human Genome Sequencing CenterBaylor College of MedicineHoustonTexas
- Texas Children's HospitalHoustonTexas
- Department of PediatricsBaylor College of MedicineHoustonTexas
| |
Collapse
|
10
|
Tan Y, Fei D, He X, Dai J, Xu R, Xu X, Wu J, Li B. L-type voltage-gated calcium channels in stem cells and tissue engineering. Cell Prolif 2019; 52:e12623. [PMID: 31115100 PMCID: PMC6669004 DOI: 10.1111/cpr.12623] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022] Open
Abstract
L-type voltage-gated calcium ion channels (L-VGCCs) have been demonstrated to be the mediator of several significant intracellular activities in excitable cells, such as neurons, chromaffin cells and myocytes. Recently, an increasing number of studies have investigated the function of L-VGCCs in non-excitable cells, particularly stem cells. However, there appear to be no systematic reviews of the relationship between L-VGCCs and stem cells, and filling this gap is prescient considering the contribution of L-VGCCs to the proliferation and differentiation of several types of stem cells. This review will discuss the possible involvement of L-VGCCs in stem cells, mainly focusing on osteogenesis mediated by mesenchymal stem cells (MSCs) from different tissues and neurogenesis mediated by neural stem/progenitor cells (NSCs). Additionally, advanced applications that use these channels as the target for tissue engineering, which may offer the hope of tissue regeneration in the future, will also be explored.
Collapse
Affiliation(s)
- Yi‐zhou Tan
- Department of Periodontology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of StomatologyThe Fourth Military Medical UniversityXi’anChina
| | - Dong‐dong Fei
- Department of Periodontology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of StomatologyThe Fourth Military Medical UniversityXi’anChina
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue EngineeringFourth Military Medical UniversityXi’anChina
| | - Xiao‐ning He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue EngineeringFourth Military Medical UniversityXi’anChina
| | - Ji‐min Dai
- Doctoral students of eight-year programThe Fourth Military Medical UniversityXi’anChina
| | - Rong‐chen Xu
- Doctoral students of eight-year programThe Fourth Military Medical UniversityXi’anChina
| | - Xin‐yue Xu
- Department of Periodontology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of StomatologyThe Fourth Military Medical UniversityXi’anChina
| | - Jun‐jie Wu
- Department of Orthodontics, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, School of StomatologyThe Fourth Military Medical UniversityXi’anChina
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue EngineeringFourth Military Medical UniversityXi’anChina
| |
Collapse
|
11
|
Affiliation(s)
- Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
| |
Collapse
|
12
|
Schampel A, Kuerten S. Danger: High Voltage-The Role of Voltage-Gated Calcium Channels in Central Nervous System Pathology. Cells 2017; 6:E43. [PMID: 29140302 PMCID: PMC5755501 DOI: 10.3390/cells6040043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely distributed within the central nervous system (CNS) and presumed to play an important role in the pathophysiology of a broad spectrum of CNS disorders including Alzheimer's and Parkinson's disease as well as multiple sclerosis. Several calcium channel blockers have been in clinical practice for many years so that their toxicity and side effects are well studied. However, these drugs are primarily used for the treatment of cardiovascular diseases and most if not all effects on brain functions are secondary to peripheral effects on blood pressure and circulation. While the use of calcium channel antagonists for the treatment of CNS diseases therefore still heavily depends on the development of novel strategies to specifically target different channels and channel subunits, this review is meant to provide an impulse to further emphasize the importance of future research towards this goal.
Collapse
Affiliation(s)
- Andrea Schampel
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg 97070, Germany.
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany.
| |
Collapse
|