1
|
Faresjö R, Sehlin D, Syvänen S. Age, dose, and binding to TfR on blood cells influence brain delivery of a TfR-transported antibody. Fluids Barriers CNS 2023; 20:34. [PMID: 37170266 PMCID: PMC10173660 DOI: 10.1186/s12987-023-00435-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Transferrin receptor 1 (TfR1) mediated brain delivery of antibodies could become important for increasing the efficacy of emerging immunotherapies in Alzheimer's disease (AD). However, age, dose, binding to TfR1 on blood cells, and pathology could influence the TfR1-mediated transcytosis of TfR1-binders across the blood-brain barrier (BBB). The aim of the study was, therefore, to investigate the impact of these factors on the brain delivery of a bispecific TfR1-transported Aβ-antibody, mAb3D6-scFv8D3, in comparison with the conventional antibody mAb3D6. METHODS Young (3-5 months) and aged (17-20 months) WT and tg-ArcSwe mice (AD model) were injected with 125I-labeled mAb3D6-scFv8D3 or mAb3D6. Three different doses were used in the study, 0.05 mg/kg (low dose), 1 mg/kg (high dose), and 10 mg/kg (therapeutic dose), with equimolar doses for mAb3D6. The dose-corrected antibody concentrations in whole blood, blood cells, plasma, spleen, and brain were evaluated at 2 h post-administration. Furthermore, isolated brains were studied by autoradiography, nuclear track emulsion, and capillary depletion to investigate the intrabrain distribution of the antibodies, while binding to blood cells was studied in vitro using blood isolated from young and aged mice. RESULTS The aged WT and tg-ArcSwe mice showed significantly lower brain concentrations of TfR-binding [125I]mAb3D6-scFv8D3 and higher concentrations in the blood cell fraction compared to young mice. For [125I]mAb3D6, no significant differences in blood or brain delivery were observed between young and aged mice or between genotypes. A low dose of [125I]mAb3D6-scFv8D3 was associated with increased relative parenchymal delivery, as well as increased blood cell distribution. Brain concentrations and relative parenchymal distribution of [125I]mAb3D6-scFv8D6 did not differ between tg-ArcSwe and WT mice at this early time point but were considerably increased compared to those observed for [125I]mAb3D6. CONCLUSION Age-dependent differences in blood and brain concentrations were observed for the bispecific antibody mAb3D6-scFv8D3 but not for the conventional Aβ antibody mAb3D6, indicating an age-related effect on TfR1-mediated brain delivery. The lowest dose of [125I]mAb3D6-scFv8D3 was associated with higher relative BBB penetration but, at the same time, a higher distribution to blood cells. Overall, Aβ-pathology did not influence the early brain distribution of the bispecific antibody. In summary, age and bispecific antibody dose were important factors determining brain delivery, while genotype was not.
Collapse
Affiliation(s)
- Rebecca Faresjö
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Bei J, Miranda-Morales EG, Gan Q, Qiu Y, Husseinzadeh S, Liew JY, Chang Q, Krishnan B, Gaitas A, Yuan S, Felicella M, Qiu WQ, Fang X, Gong B. Circulating exosomes from Alzheimer's disease suppress VE-cadherin expression and induce barrier dysfunction in recipient brain microvascular endothelial cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535441. [PMID: 37066187 PMCID: PMC10103966 DOI: 10.1101/2023.04.03.535441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Blood-brain barrier (BBB) breakdown is a component of the progression and pathology of Alzheimer's disease (AD). BBB dysfunction is primarily caused by reduced or disorganized tight junction or adherens junction proteins of brain microvascular endothelial cell (BMEC). While there is growing evidence of tight junction disruption in BMECs in AD, the functional role of adherens junctions during BBB dysfunction in AD remains unknown. Exosomes secreted from senescent cells have unique characteristics and contribute to modulating the phenotype of recipient cells. However, it remains unknown if and how these exosomes cause BMEC dysfunction in AD. Objectives This study aimed to investigate the potential roles of AD circulating exosomes and their RNA cargos in brain endothelial dysfunction in AD. Methods We isolated exosomes from sera of five cases of AD compared with age- and sex-matched cognitively normal controls using size-exclusion chromatography technology. We validated the qualities and particle sizes of isolated exosomes with nanoparticle tracking analysis and atomic force microscopy. We measured the biomechanical natures of the endothelial barrier of BMECs, the lateral binding forces between live BMECs, using fluidic force miscopy. We visualized the paracellular expressions of the key adherens junction protein VE-cadherin in BMEC cultures and a 3D BBB model that employs primary human BMECs and pericytes with immunostaining and evaluated them using confocal microscopy. We also examined the VE-cadherin signal in brain tissues from five cases of AD and five age- and sex-matched cognitively normal controls. Results We found that circulating exosomes from AD patients suppress the paracellular expression levels of VE-cadherin and impair the barrier function of recipient BMECs. Immunostaining analysis showed that AD circulating exosomes damage VE-cadherin integrity in a 3D model of microvascular tubule formation. We found that circulating exosomes in AD weaken the BBB depending on the RNA cargos. In parallel, we observed that microvascular VE-cadherin expression is diminished in AD brains compared to normal controls. Conclusion Using in vitro and ex vivo models, our study illustrates that circulating exosomes from AD patients play a significant role in mediating the damage effect on adherens junction of recipient BMEC of the BBB in an exosomal RNA-dependent manner. This suggests a novel mechanism of peripheral senescent exosomes for AD risk.
Collapse
|
3
|
Bei J, Miranda-Morales EG, Gan Q, Qiu Y, Husseinzadeh S, Liew JY, Chang Q, Krishnan B, Gaitas A, Yuan S, Felicella M, Qiu WQ, Fang X, Gong B. Circulating Exosomes from Alzheimer's Disease Suppress Vascular Endothelial-Cadherin Expression and Induce Barrier Dysfunction in Recipient Brain Microvascular Endothelial Cell. J Alzheimers Dis 2023; 95:869-885. [PMID: 37661885 DOI: 10.3233/jad-230347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Blood-brain barrier (BBB) breakdown is a crucial aspect of Alzheimer's disease (AD) progression. Dysfunction in BBB is primarily caused by impaired tight junction and adherens junction proteins in brain microvascular endothelial cells (BMECs). The role of adherens junctions in AD-related BBB dysfunction remains unclear. Exosomes from senescent cells have unique characteristics and contribute to modulating the phenotype of recipient cells. However, it remains unknown if and how these exosomes cause BMEC dysfunction in AD. OBJECTIVE This study aimed to investigate the impact of AD circulating exosomes on brain endothelial dysfunction. METHODS Exosomes were isolated from sera of AD patients and age- and sex-matched cognitively normal controls using size-exclusion chromatography. The study measured the biomechanical nature of BMECs' endothelial barrier, the lateral binding forces between live BMECs. Paracellular expressions of the key adherens junction protein vascular endothelial (VE)-cadherin were visualized in BMEC cultures and a 3D BBB model using human BMECs and pericytes. VE-cadherin signals were also examined in brain tissues from AD patients and normal controls. RESULTS Circulating exosomes from AD patients reduced VE-cadherin expression levels and impaired barrier function in recipient BMECs. Immunostaining analysis demonstrated that AD exosomes damaged VE-cadherin integrity in a 3D microvascular tubule formation model. The study found that AD exosomes weakened BBB integrity depending on their RNA content. Additionally, diminished microvascular VE-cadherin expression was observed in AD brains compared to controls. CONCLUSION These findings highlight the significant role of circulating exosomes from AD patients in damaging adherens junctions of recipient BMECs, dependent on exosomal RNA.
Collapse
Affiliation(s)
- Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ernesto G Miranda-Morales
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Qini Gan
- Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sorosh Husseinzadeh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Yi Liew
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Balaji Krishnan
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subo Yuan
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michelle Felicella
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wei Qiao Qiu
- Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Xiang Fang
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Bonvicini G, Syvänen S, Andersson KG, Haaparanta-Solin M, López-Picón F, Sehlin D. ImmunoPET imaging of amyloid-beta in a rat model of Alzheimer's disease with a bispecific, brain-penetrating fusion protein. Transl Neurodegener 2022; 11:55. [PMID: 36567338 PMCID: PMC9791759 DOI: 10.1186/s40035-022-00324-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/03/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hijacking the transferrin receptor (TfR) is an effective strategy to transport amyloid-beta (Aβ) immuno-positron emission tomography (immunoPET) ligands across the blood-brain barrier (BBB). Such ligands are more sensitive and specific than small-molecule ligands at detecting Aβ pathology in mouse models of Alzheimer's disease (AD). This study aimed to determine if this strategy would be as sensitive in rats and to assess how TfR affinity affects BBB transport of bispecific immunoPET radioligands. METHODS Two affinity variants of the rat TfR antibody, OX26, were chemically conjugated to a F(ab')2 fragment of the anti-Aβ antibody, bapineuzumab (Bapi), to generate two bispecific fusion proteins: OX265-F(ab')2-Bapi and OX2676-F(ab')2-Bapi. Pharmacokinetic analyses were performed 4 h and 70 h post-injection of radioiodinated fusion proteins in wild-type (WT) rats. [124I]I-OX265-F(ab')2-Bapi was administered to TgF344-AD and WT rats for in vivo PET imaging. Ex vivo distribution of injected [124I]I-OX265-F(ab')2-Bapi and Aβ pathology were assessed. RESULTS More [125I]I-OX265-F(ab')2-Bapi was taken up into the brain 4 h post-administration than [124I]I-OX2676-F(ab')2-Bapi. [124I]I-OX265-F(ab')2-Bapi PET visualized Aβ pathology with significantly higher signals in the TgF344-AD rats than in the WT littermates without Aβ pathology. The PET signals significantly correlated with Aβ levels in AD animals. CONCLUSION Affinity to TfR affects how efficiently a TfR-targeting bispecific fusion protein will cross the BBB, such that the higher-affinity bispecific fusion protein crossed the BBB more efficiently. Furthermore, bispecific immunoPET imaging of brain Aβ pathology using TfR-mediated transport provides good imaging contrast between TgF344-AD and WT rats, suggesting that this immunoPET strategy has the potential to be translated to higher species.
Collapse
Affiliation(s)
- Gillian Bonvicini
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, 751 85 Uppsala, Sweden ,BioArctic AB, 112 51 Stockholm, Sweden
| | - Stina Syvänen
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | | | - Merja Haaparanta-Solin
- grid.1374.10000 0001 2097 1371Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, 20520 Turku, Finland ,grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Francisco López-Picón
- grid.1374.10000 0001 2097 1371Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, 20520 Turku, Finland ,grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Dag Sehlin
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
5
|
Rofo F, Metzendorf NG, Saubi C, Suominen L, Godec A, Sehlin D, Syvänen S, Hultqvist G. Blood-brain barrier penetrating neprilysin degrades monomeric amyloid-beta in a mouse model of Alzheimer's disease. Alzheimers Res Ther 2022; 14:180. [PMID: 36471433 PMCID: PMC9720954 DOI: 10.1186/s13195-022-01132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aggregation of the amyloid-β (Aβ) peptide in the brain is one of the key pathological events in Alzheimer's disease (AD). Reducing Aβ levels in the brain by enhancing its degradation is one possible strategy to develop new therapies for AD. Neprilysin (NEP) is a membrane-bound metallopeptidase and one of the major Aβ-degrading enzymes. The secreted soluble form of NEP (sNEP) has been previously suggested as a potential protein-therapy degrading Aβ in AD. However, similar to other large molecules, peripherally administered sNEP is unable to reach the brain due to the presence of the blood-brain barrier (BBB). METHODS To provide transcytosis across the BBB, we recombinantly fused the TfR binding moiety (scFv8D3) to either sNEP or a previously described variant of NEP (muNEP) suggested to have higher degradation efficiency of Aβ compared to other NEP substrates, but not per se to degrade Aβ more efficiently. To provide long blood half-life, an Fc-based antibody fragment (scFc) was added to the designs, forming sNEP-scFc-scFv8D3 and muNEP-scFc-scFv8D3. The ability of the mentioned recombinant proteins to degrade Aβ was first evaluated in vitro using synthetic Aβ peptides followed by sandwich ELISA. For the in vivo studies, a single injection of 125-iodine-labelled sNEP-scFc-scFv8D3 and muNEP-scFc-scFv8D3 was intravenously administered to a tg-ArcSwe mouse model of AD, using scFc-scFv8D3 protein that lacks NEP as a negative control. Different ELISA setups were applied to quantify Aβ concentration of different conformations, both in brain tissues and blood samples. RESULTS When tested in vitro, sNEP-scFc-scFv8D3 retained sNEP enzymatic activity in degrading Aβ and both constructs efficiently degraded arctic Aβ. When intravenously injected, sNEP-scFc-scFv8D3 demonstrated 20 times higher brain uptake compared to sNEP. Both scFv8D3-fused NEP proteins significantly reduced aggregated Aβ levels in the blood of tg-ArcSwe mice, a transgenic mouse model of AD, following a single intravenous injection. In the brain, monomeric and oligomeric Aβ were significantly reduced. Both scFv8D3-fused NEP proteins displayed a fast clearance from the brain. CONCLUSION A one-time injection of a BBB-penetrating NEP shows the potential to reduce, the likely most toxic, Aβ oligomers in the brain in addition to monomers. Also, Aβ aggregates in the blood were reduced.
Collapse
Affiliation(s)
- Fadi Rofo
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Nicole G Metzendorf
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Cristina Saubi
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Laura Suominen
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Ana Godec
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmacy, Uppsala University, Biomedicinskt Centrum BMC, Husargatan 3, 751 24, Uppsala, Sweden.
| |
Collapse
|
6
|
Meier SR, Sehlin D, Syvänen S. Passive and receptor mediated brain delivery of an anti-GFAP nanobody. Nucl Med Biol 2022; 114-115:121-127. [PMID: 35487832 DOI: 10.1016/j.nucmedbio.2022.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Antibody-based constructs, engineered to enter the brain using transferrin receptor (TfR) mediated transcytosis, have been successfully used as PET radioligands for imaging of amyloid-beta (Aβ) in preclinical studies. However, these radioligands have been large and associated with long circulation times, i.e. non-optimal properties for neuroPET radioligands. The aim of this study was to investigate the in vivo brain delivery of the radiolabeled nanobody VHH-E9 that binds to glial fibrillary acidic protein (GFAP) expressed by reactive astrocytes, without and with fusion to a TfR binding moiety, as potential tools to detect neuroinflammation. METHODS Three protein constructs were recombinantly expressed: 1) The GFAP specific nanobody VHH-E9, 2) VHH-E9 fused to a single chain variable fragment of the TfR binding antibody 8D3 (scFv8D3) and 3) scFv8D3 alone. Brain delivery of the constructs was investigated at 2 h post injection. Binding to GFAP was studied with autoradiography while in vivo brain retention of [125I]VHH-E9 and [125I]VHH-E9-scFv8D3 was further investigated at 8 h, 24 h and 48 h in wild-type (WT), and at the same time points in transgenic mice (ArcSwe) that in addition to Aβ pathology also display neuroinflammation. RESULTS At 2 h after administration, [125I]VHH-E9-scFv8D3 and [125I]scFv8D3 displayed 3-fold higher brain concentrations than [125I]VHH-E9. In vitro autoradiography showed distinct binding of both [125I]VHH-E9-scFv8D3 and [125I]VHH-E9 to regions with abundant GFAP in ArcSwe mice. However, in vivo, there was no difference in brain concentrations between WT and ArcSwe at any of the studied time points. CONCLUSIONS Fused to scFv8D3, VHH-E9 displayed increased brain delivery. When radiolabeled and applied on brain sections, the bispecific construct was able to discriminate between WT and ArcSwe mice, but in vivo brain uptake and retention over time did not differ between WT and ArcSwe mice.
Collapse
Affiliation(s)
- Silvio R Meier
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Rofo F, Meier SR, Metzendorf NG, Morrison JI, Petrovic A, Syvänen S, Sehlin D, Hultqvist G. A Brain-Targeting Bispecific-Multivalent Antibody Clears Soluble Amyloid-Beta Aggregates in Alzheimer's Disease Mice. Neurotherapeutics 2022; 19:1588-1602. [PMID: 35939261 PMCID: PMC9606191 DOI: 10.1007/s13311-022-01283-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Amyloid-β (Aβ) oligomers and protofibrils are suggested to be the most neurotoxic Aβ species in Alzheimer's disease (AD). Hence, antibodies with strong and selective binding to these soluble Aβ aggregates are of therapeutic potential. We have recently introduced HexaRmAb158, a multivalent antibody with additional Aβ-binding sites in the form of single-chain fragment variables (scFv) on the N-terminal ends of Aβ protofibril selective antibody (RmAb158). Due to the additional binding sites and the short distance between them, HexaRmAb158 displayed a slow dissociation from protofibrils and strong binding to oligomers in vitro. In the current study, we aimed at investigating the therapeutic potential of this antibody format in vivo using mouse models of AD. To enhance BBB delivery, the transferrin receptor (TfR) binding moiety (scFv8D3) was added, forming the bispecific-multivalent antibody (HexaRmAb158-scFv8D3). The new antibody displayed a weaker TfR binding compared to the previously developed RmAb158-scFv8D3 and was less efficiently transcytosed in a cell-based BBB model. HexaRmAb158 detected soluble Aβ aggregates derived from brains of tg-ArcSwe and AppNL-G-F mice more efficiently compared to RmAb158. When intravenously injected, HexaRmAb158-scFv8D3 was actively transported over the BBB into the brain in vivo. Brain uptake was marginally lower than that of RmAb158-scFv8D3, but significantly higher than observed for conventional IgG antibodies. Both antibody formats displayed similar brain retention (72 h post injection) and equal capacity in clearing soluble Aβ aggregates in tg-ArcSwe mice. In conclusion, we demonstrate a bispecific-multivalent antibody format capable of passing the BBB and targeting a wide-range of sizes of soluble Aβ aggregates.
Collapse
Affiliation(s)
- Fadi Rofo
- Department of Pharmacy, Uppsala University, 75124, Uppsala, Sweden
| | - Silvio R Meier
- Department of Public Health and Caring Sciences, Uppsala University, 75185, Uppsala, Sweden
| | | | - Jamie I Morrison
- Department of Pharmacy, Uppsala University, 75124, Uppsala, Sweden
| | - Alex Petrovic
- Department of Pharmacy, Uppsala University, 75124, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmacy, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
8
|
Transferrin Receptor Binding BBB-Shuttle Facilitates Brain Delivery of Anti-Aβ-Affibodies. Pharm Res 2022; 39:1509-1521. [PMID: 35538266 PMCID: PMC9246779 DOI: 10.1007/s11095-022-03282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022]
Abstract
Affibodies targeting amyloid-beta (Aβ) could potentially be used as therapeutic and diagnostic agents in Alzheimer's disease (AD). Affibodies display suitable characteristics for imaging applications such as high stability and a short biological half-life. The aim of this study was to explore brain delivery and retention of Aβ protofibril-targeted affibodies in wild-type (WT) and AD transgenic mice and to evaluate their potential as imaging agents. Two affibodies, Z5 and Z1, were fused with the blood-brain barrier (BBB) shuttle single-chain variable fragment scFv8D3. In vitro binding of 125I-labeled affibodies with and without scFv8D3 was evaluated by ELISA and autoradiography. Brain uptake and retention of the affibodies at 2 h and 24 h post injection was studied ex vivo in WT and transgenic (tg-Swe and tg-ArcSwe) mice. At 2 h post injection, [125I]I-Z5 and [125I]I-Z1 displayed brain concentrations of 0.37 ± 0.09% and 0.46 ± 0.08% ID/g brain, respectively. [125I]I-scFv8D3-Z5 and [125I]I-scFv8D3-Z1 showed increased brain concentrations of 0.53 ± 0.16% and 1.20 ± 0.35%ID/g brain. At 24 h post injection, brain retention of [125I]I-Z1 and [125I]I-Z5 was low, while [125I]I-scFv8D3-Z1 and [125I]I-scFv8D3-Z5 showed moderate brain retention, with a tendency towards higher retention of [125I]I-scFv8D3-Z5 in AD transgenic mice. Nuclear track emulsion autoradiography showed greater parenchymal distribution of [125I]I-scFv8D3-Z5 and [125I]I-scFv8D3-Z1 compared with the affibodies without scFv8D3, but could not confirm specific affibody accumulation around Aβ deposits. Affibody-scFv8D3 fusions displayed increased brain and parenchymal delivery compared with the non-fused affibodies. However, fast brain washout and a suboptimal balance between Aβ and mTfR1 affinity resulted in low intrabrain retention around Aβ deposits.
Collapse
|
9
|
Syvänen S, Meier SR, Roshanbin S, Xiong M, Faresjö R, Gustavsson T, Bonvicini G, Schlein E, Aguilar X, Julku U, Eriksson J, Sehlin D. PET Imaging in Preclinical Anti-Aβ Drug Development. Pharm Res 2022; 39:1481-1496. [PMID: 35501533 PMCID: PMC9246809 DOI: 10.1007/s11095-022-03277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
Positron emission tomography (PET), a medical imaging technique allowing for studies of the living human brain, has gained an important role in clinical trials of novel drugs against Alzheimer’s disease (AD). For example, PET data contributed to the conditional approval in 2021 of aducanumab, an antibody directed towards amyloid-beta (Aβ) aggregates, by showing a dose-dependent reduction in brain amyloid after treatment. In parallel to clinical studies, preclinical studies in animal models of Aβ pathology may also benefit from PET as a tool to detect target engagement and treatment effects of anti-Aβ drug candidates. PET is associated with a high level of translatability between species as similar, non-invasive protocols allow for longitudinal rather than cross-sectional studies and can be used both in a preclinical and clinical setting. This review focuses on the use of preclinical PET imaging in genetically modified animals that express human Aβ, and its present and potential future role in the development of drugs aimed at reducing brain Aβ levels as a therapeutic strategy to halt disease progression in AD.
Collapse
Affiliation(s)
- Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden.
| | - Silvio R Meier
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Sahar Roshanbin
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Mengfei Xiong
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Rebecca Faresjö
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Tobias Gustavsson
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Gillian Bonvicini
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden.,BioArctic AB, Stockholm, Sweden
| | - Eva Schlein
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Ximena Aguilar
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Ulrika Julku
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.,PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjöldsväg 20, 75185, Uppsala, Sweden
| |
Collapse
|
10
|
Dickie BR, Boutin H, Parker GJM, Parkes LM. Alzheimer's disease pathology is associated with earlier alterations to blood-brain barrier water permeability compared with healthy ageing in TgF344-AD rats. NMR IN BIOMEDICINE 2021; 34:e4510. [PMID: 33723901 PMCID: PMC11475392 DOI: 10.1002/nbm.4510] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The effects of Alzheimer's disease (AD) and ageing on blood-brain barrier (BBB) breakdown are investigated in TgF344-AD and wild-type rats aged 13, 18 and 21 months. Permeability surface area products of the BBB to water (PSw ) and gadolinium-based contrast agent (PSg ) were measured in grey matter using multiflip angle multiecho dynamic contrast-enhanced MRI. At 13 months of age, there was no significant difference in PSw between TgF344-AD and wild-types (p = 0.82). Between 13 and 18 months, PSw increased in TgF344-AD rats (p = 0.027), but not in wild-types (p = 0.99), leading to significantly higher PSw in TgF344-AD rats at 18 months, as previously reported (p = 0.012). Between 18 and 21 months, PSw values increased in wild-types (p = 0.050), but not in TgF344-AD rats (p = 0.50). These results indicate that BBB water permeability is affected by both AD pathology and ageing, but that changes occur earlier in the presence of AD pathology. There were no significant genotype or ageing effects on PSg (p > 0.05). In conclusion, we detected increases in BBB water permeability with age in TgF344-AD and wild-type rats, and found that changes occurred at an earlier age in rats with AD pathology.
Collapse
Affiliation(s)
- Ben R. Dickie
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford BuildingUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreManchester Academic Health Science CentreManchesterUK
| | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford BuildingUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreManchester Academic Health Science CentreManchesterUK
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Geoff J. M. Parker
- Bioxydyn LtdManchesterUK
- Centre for Medical Image Computing, Department of Computer Science and Department of NeuroinflammationUniversity College LondonLondonUK
| | - Laura M. Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford BuildingUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreManchester Academic Health Science CentreManchesterUK
| |
Collapse
|
11
|
Xiong M, Roshanbin S, Rokka J, Schlein E, Ingelsson M, Sehlin D, Eriksson J, Syvänen S. In vivo imaging of synaptic density with [ 11C]UCB-J PET in two mouse models of neurodegenerative disease. Neuroimage 2021; 239:118302. [PMID: 34174391 DOI: 10.1016/j.neuroimage.2021.118302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
The positron emission tomography (PET) radioligand [11C]UCB-J binds to synaptic vesicle protein 2A (SV2A) and is used to investigate synaptic density in the living brain. Clinical studies have indicated reduced [11C]UCB-J binding in Alzheimer's disease (AD) and Parkinson's disease (PD) brains compared to healthy controls. Still, it is unknown whether [11C]UCB-J PET can visualise synaptic loss in mouse models of these disorders. Such models are essential for understanding disease pathology and for evaluating the effects of novel disease-modifying drug candidates. In the present study, synaptic density in transgenic models of AD (ArcSwe) and PD (L61) was studied using [11C]UCB-J PET. Data were acquired during 60 min after injection, and time-activity curves (TACs) in different brain regions and the left ventricle of the heart were generated based on the dynamic PET images. The [11C]UCB-J brain concentrations were expressed as standardised uptake value (SUV) over time. The area under the SUV curve (AUC), the ratio of AUC in the brain to that in the heart (AUCbrain/blood), and the volume of distribution (VT) obtained by kinetic modelling using the heart TAC as input were compared between transgenic and age-matched wild type (WT) mice. The L61 mice displayed 11-13% lower AUCbrain/blood ratio and brain VT generated by kinetic modeling compared to the control WT mice. In general, also transgenic ArcSwe mice tended to show lower [11C]UCB-J brain exposure than age-matched WT controls, but variation within the different animal groups was high. Older WT mice (18-20 months) showed lower [11C]UCB-J brain exposure than younger WT mice (8-9 months). Together, these data imply that [11C]UCB-J PET reflects synaptic density in mouse models of neurodegeneration and that inter-subject variation is large. In addition, the study suggested that model-independent AUCbrain/blood ratio can be used to evaluate [11C]UCB-J binding as an alternative to full pharmacokinetic modelling.
Collapse
Affiliation(s)
- Mengfei Xiong
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala SE-751 85, Sweden
| | - Sahar Roshanbin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala SE-751 85, Sweden
| | - Johanna Rokka
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala SE-751 85, Sweden
| | - Eva Schlein
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala SE-751 85, Sweden
| | - Martin Ingelsson
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala SE-751 85, Sweden
| | - Dag Sehlin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala SE-751 85, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala University, Uppsala SE-751 23, Sweden; PET Centre, Uppsala University Hospital, Uppsala SE-751 85, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala SE-751 85, Sweden.
| |
Collapse
|
12
|
Faresjö R, Bonvicini G, Fang XT, Aguilar X, Sehlin D, Syvänen S. Brain pharmacokinetics of two BBB penetrating bispecific antibodies of different size. Fluids Barriers CNS 2021; 18:26. [PMID: 34078410 PMCID: PMC8170802 DOI: 10.1186/s12987-021-00257-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Background Transferrin receptor (TfR1) mediated enhanced brain delivery of antibodies have been studied extensively in preclinical settings. However, the brain pharmacokinetics, i.e. brain entry, distribution and elimination are still not fully understood for this class of antibodies. The overall aim of the study was to compare the brain pharmacokinetics of two BBB-penetrating bispecific antibodies of different size (210 vs 58 kDa). Specifically, we wanted to investigate if the faster systemic clearance of the smaller non-IgG antibody di-scFv3D6-8D3, in comparison with the IgG-based bispecific antibody mAb3D6-scFv8D3, was also reflected in the brain. Methods Wild-type (C57/Bl6) mice were injected with 125I-iodinated ([125I]) mAb3D6-scFv8D3 (n = 46) or [125I]di-scFv3D6-8D3 (n = 32) and euthanized 2, 4, 6, 8, 10, 12, 16, or 24 h post injection. Ex vivo radioactivity in whole blood, peripheral organs and brain was measured by γ-counting. Ex vivo autoradiography and nuclear track emulsion were performed on brain sections to investigate brain and parenchymal distribution. Capillary depletion was carried out at 2, 6, and 24 h after injection of [125I]mAb3D6-scFv8D3 (n = 12) or [125I]di-scFv3D6-8D3 (n = 12), to estimate the relative levels of radiolabelled antibody in brain capillaries versus brain parenchyma. In vitro binding kinetics for [125I]mAb3D6-scFv8D3 or [125I]di-scFv3D6-8D3 to murine TfR were determined by LigandTracer. Results [125I]di-scFv3D6-8D3 showed faster elimination from blood, lower brain Cmax, and Tmax, a larger parenchymal-to-capillary concentration ratio, and a net elimination from brain at an earlier time point after injection compared with the larger [125I]mAb3D6-scFv8D3. However, the elimination rate from brain did not differ between the antibodies. The study also indicated that [125I]di-scFv3D6-8D3 displayed lower avidity than [125I]mAb3D6-scFv8D3 towards TfR1 in vitro and potentially in vivo, at least at the BBB. Conclusion A smaller size and lower TfR1 avidity are likely important for fast parenchymal delivery, while elimination of brain-associated bispecific antibodies may not be dependent on these characteristics. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00257-0.
Collapse
Affiliation(s)
- Rebecca Faresjö
- Department of Public Healt and Caring Sciences, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Gillian Bonvicini
- Department of Public Healt and Caring Sciences, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.,BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden
| | - Xiaotian T Fang
- Department of Radiology and Biomedical Imaging, Yale University, Yale PET Center, 801 Howard Avenue, New Haven, CT, 06520, USA
| | - Ximena Aguilar
- Department of Public Healt and Caring Sciences, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Healt and Caring Sciences, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Healt and Caring Sciences, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.
| |
Collapse
|
13
|
Taccola C, Barneoud P, Cartot-Cotton S, Valente D, Schussler N, Saubaméa B, Chasseigneaux S, Cochois V, Mignon V, Curis E, Lochus M, Nicolic S, Dodacki A, Cisternino S, Declèves X, Bourasset F. Modifications of physical and functional integrity of the blood-brain barrier in an inducible mouse model of neurodegeneration. Neuropharmacology 2021; 191:108588. [PMID: 33940010 DOI: 10.1016/j.neuropharm.2021.108588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
The inducible p25 overexpression mouse model recapitulate many hallmark features of Alzheimer's disase including progressive neuronal loss, elevated Aβ, tau pathology, cognitive dysfunction, and impaired synaptic plasticity. We chose p25 mice to evaluate the physical and functional integrity of the blood-brain barrier (BBB) in a context of Tau pathology (pTau) and severe neurodegeneration, at an early (3 weeks ON) and a late (6 weeks ON) stage of the pathology. Using in situ brain perfusion and confocal imaging, we found that the brain vascular surface area and the physical integrity of the BBB were unaltered in p25 mice. However, there was a significant 14% decrease in cerebrovascular volume in 6 weeks ON mice, possibly explained by a significant 27% increase of collagen IV in the basement membrane of brain capillaries. The function of the BBB transporters GLUT1 and LAT1 was evaluated by measuring brain uptake of d-glucose and phenylalanine, respectively. In 6 weeks ON p25 mice, d-glucose brain uptake was significantly reduced by about 17% compared with WT, without any change in the levels of GLUT1 protein or mRNA in brain capillaries. The brain uptake of phenylalanine was not significantly reduced in p25 mice compared with WT. Lack of BBB integrity, impaired BBB d-glucose transport have been observed in several mouse models of AD. In contrast, reduced cerebrovascular volume and an increased basement membrane thickness may be more specifically associated with pTau in mouse models of neurodegeneration.
Collapse
Affiliation(s)
- Camille Taccola
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine & Early Development, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France; INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Pascal Barneoud
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 1 Avenue Pierre Brossolette, 91380, Chilly-Mazarin, France
| | - Sylvaine Cartot-Cotton
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine & Early Development, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France
| | - Delphine Valente
- Drug Metabolism & Pharmacokinetics, Research platform, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France
| | - Nathalie Schussler
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 1 Avenue Pierre Brossolette, 91380, Chilly-Mazarin, France
| | - Bruno Saubaméa
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Stéphanie Chasseigneaux
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Véronique Cochois
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Virginie Mignon
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Emmanuel Curis
- Laboratoire de biomathématiques, plateau iB(2), EA 7537 « BioSTM », UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France; Service de bioinformatique et statistique médicale, hôpital Saint-Louis, APHP, 1, avenue Claude Vellefaux, 75010, Paris, France
| | - Murielle Lochus
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Sophie Nicolic
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Agnès Dodacki
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Salvatore Cisternino
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Xavier Declèves
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Fanchon Bourasset
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France.
| |
Collapse
|
14
|
An Improved Method for Physical Separation of Cerebral Vasculature and Parenchyma Enables Detection of Blood-Brain-Barrier Dysfunction. NEUROSCI 2021. [DOI: 10.3390/neurosci2010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The neurovascular niche is crucial for constant blood supply and blood-brain barrier (BBB) function and is altered in a number of different neurological conditions, making this an intensely active field of research. Brain vasculature is unique for its tight association of endothelial cells with astrocytic endfeet processes. Separation of the vascular compartment by centrifugation-based methods confirmed enrichment of astrocytic endfeet processes, making it possible to study the entire vascular niche with such methods. Several centrifugation-based separation protocols are found in the literature; however, with some constraints which limit their applicability and the scope of the studies. Here, we describe and validate a protocol for physically separating the neurovascular niche from the parenchyma, which is optimized for smaller tissue quantities. Using endothelial, neuronal, and astrocyte markers, we show that quantitative Western blot-based target detection can be performed of both the vessel-enriched and parenchymal fractions using as little as a single mouse brain hemisphere. Validation of our protocol in rodent stroke models by detecting changes in tight junction protein expression, serum albumin signals and astrocyte activation, i.e., increased glial fibrillary acidic protein expression, between the ipsilateral and the lesion-free contralateral hemisphere demonstrates this protocol as a new way of detecting BBB breakdown and astrogliosis, respectively.
Collapse
|
15
|
Rofo F, Ugur Yilmaz C, Metzendorf N, Gustavsson T, Beretta C, Erlandsson A, Sehlin D, Syvänen S, Nilsson P, Hultqvist G. Enhanced neprilysin-mediated degradation of hippocampal Aβ42 with a somatostatin peptide that enters the brain. Am J Cancer Res 2021; 11:789-804. [PMID: 33391505 PMCID: PMC7738863 DOI: 10.7150/thno.50263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Aggregation of the amyloid-beta (Aβ) peptide is one of the main neuropathological events in Alzheimer's disease (AD). Neprilysin is the major enzyme degrading Aβ, with its activity enhanced by the neuropeptide somatostatin (SST). SST levels are decreased in the brains of AD patients. The poor delivery of SST over the blood-brain barrier (BBB) and its extremely short half-life of only 3 min limit its therapeutic significance. Methods: We recombinantly fused SST to a BBB transporter binding to the transferrin receptor. Using primary neuronal cultures and neuroblastoma cell lines, the ability of the formed fusion protein to activate neprilysin was studied. SST-scFv8D3 was administered to mice overexpressing the Aβ-precursor protein (AβPP) with the Swedish mutation (APPswe) as a single injection or as a course of three injections over a 72 h period. Levels of neprilysin and Aβ were quantified using an Enzyme-linked immunosorbent assay (ELISA). Distribution of SST-scFv8D3 in the brain, blood and peripheral organs was studied by radiolabeling with iodine-125. Results: The construct, SST-scFv8D3, exhibited 120 times longer half-life than SST alone, reached the brain in high amounts when injected intravenously and significantly increased the brain concentration of neprilysin in APPswe mice. A significant decrease in the levels of membrane-bound Aβ42 was detected in the hippocampus and the adjacent cortical area after only three injections. Conclusion: With intravenous injections of our BBB permeable SST peptide, we were able to significantly increase the levels neprilysin, an effect that was followed by a significant and selective degradation of membrane-bound Aβ42 in the hippocampus. Being that membrane-bound Aβ triggers neuronal toxicity and the hippocampus is the central brain area in the progression of AD, the study has illuminated a new potential treatment paradigm with a promising safety profile targeting only the disease affected areas.
Collapse
|
16
|
Zhao F, Zhong L, Luo Y. Endothelial glycocalyx as an important factor in composition of blood-brain barrier. CNS Neurosci Ther 2020; 27:26-35. [PMID: 33377610 PMCID: PMC7804892 DOI: 10.1111/cns.13560] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 12/19/2022] Open
Abstract
The blood‐brain barrier is a dynamic and complex neurovascular unit that protects neurons from somatic circulatory factors as well as regulates the internal environmental stability of the central nervous system. Endothelial glycocalyx is a critical component of an extended neurovascular unit that influences the structure of the blood‐brain barrier and plays various physiological functions, including an important role in maintaining normal neuronal homeostasis. Specifically, glycocalyx acts in physical and charge barriers, mechanical transduction, regulation of vascular permeability, modulation of inflammatory response, and anticoagulation. Since intact glycocalyx is necessary to maintain the stability and integrity of the internal environment of the blood‐brain barrier, damage to glycocalyx can lead to the dysfunction of the blood‐brain barrier. This review discusses the role of glycocalyx in the context of the substantial literature regarding the blood‐brain barrier research, in order to provide a theoretical basis for the diagnosis and treatment of neurological diseases as well as point to new breakthroughs and innovations in glycocalyx‐dependent blood‐brain barrier function.
Collapse
Affiliation(s)
- Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liyuan Zhong
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Noorani B, Chowdhury EA, Alqahtani F, Ahn Y, Patel D, Al-Ahmad A, Mehvar R, Bickel U. LC-MS/MS-based in vitro and in vivo investigation of blood-brain barrier integrity by simultaneous quantitation of mannitol and sucrose. Fluids Barriers CNS 2020; 17:61. [PMID: 33054801 PMCID: PMC7556948 DOI: 10.1186/s12987-020-00224-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Understanding the pathophysiology of the blood brain-barrier (BBB) plays a critical role in diagnosis and treatment of disease conditions. Applying a sensitive and specific LC-MS/MS technique for the measurement of BBB integrity with high precision, we have recently introduced non-radioactive [13C12]sucrose as a superior marker substance. Comparison of permeability markers with different molecular weight, but otherwise similar physicochemical properties, can provide insights into the uptake mechanism at the BBB. Mannitol is a small hydrophilic, uncharged molecule that is half the size of sucrose. Previously only radioactive [3H]mannitol or [14C]mannitol has been used to measure BBB integrity. METHODS We developed a UPLC-MS/MS method for simultaneous analysis of stable isotope-labeled sucrose and mannitol. The in vivo BBB permeability of [13C6]mannitol and [13C12]sucrose was measured in mice, using [13C6]sucrose as a vascular marker to correct for brain intravascular content. Moreover, a Transwell model with induced pluripotent stem cell-derived brain endothelial cells was used to measure the permeability coefficient of sucrose and mannitol in vitro both under control and compromised (in the presence of IL-1β) conditions. RESULTS We found low permeability values for both mannitol and sucrose in vitro (permeability coefficients of 4.99 ± 0.152 × 10-7 and 3.12 ± 0.176 × 10-7 cm/s, respectively) and in vivo (PS products of 0.267 ± 0.021 and 0.126 ± 0.025 µl g-1 min-1, respectively). Further, the in vitro permeability of both markers substantially increased in the presence of IL-1β. Corrected brain concentrations (Cbr), obtained by washout vs. vascular marker correction, were not significantly different for either mannitol (0.071 ± 0.007 and 0.065 ± 0.009 percent injected dose per g) or sucrose (0.035 ± 0.003 and 0.037 ± 0.005 percent injected dose per g). These data also indicate that Cbr and PS product values of mannitol were about twice the corresponding values of sucrose. CONCLUSIONS We established a highly sensitive, specific and reproducible approach to simultaneously measure the BBB permeability of two classical low molecular weight, hydrophilic markers in a stable isotope labeled format. This method is now available as a tool to quantify BBB permeability in vitro and in vivo in different disease models, as well as for monitoring treatment outcomes.
Collapse
Affiliation(s)
- Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Reza Mehvar
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, CA, USA
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA. .,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
18
|
Ristori E, Donnini S, Ziche M. New Insights Into Blood-Brain Barrier Maintenance: The Homeostatic Role of β-Amyloid Precursor Protein in Cerebral Vasculature. Front Physiol 2020; 11:1056. [PMID: 32973564 PMCID: PMC7481479 DOI: 10.3389/fphys.2020.01056] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular homeostasis is maintained by the blood-brain barrier (BBB), a highly selective structure that separates the peripheral blood circulation from the brain and protects the central nervous system (CNS). Dysregulation of BBB function is the precursor of several neurodegenerative diseases including Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA), both related to β-amyloid (Aβ) accumulation and deposition. The origin of BBB dysfunction before and/or during CAA and AD onset is not known. Several studies raise the possibility that vascular dysfunction could be an early step in these diseases and could even precede significant Aβ deposition. Though accumulation of neuron-derived Aβ peptides is considered the primary influence driving AD and CAA pathogenesis, recent studies highlighted the importance of the physiological role of the β-amyloid precursor protein (APP) in endothelial cell homeostasis, suggesting a potential role of this protein in maintaining vascular stability. In this review, we will discuss the physiological function of APP and its cleavage products in the vascular endothelium. We further suggest how loss of APP homeostatic regulation in the brain vasculature could lead toward pathological outcomes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Ristori
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Marina Ziche
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
19
|
Ni YN, Kong L, Li XT, Xiao HH, Wu YT, Liang XC, Lin Y, Li WY, Deng Y, Li Y, Shi Y, Cheng L, Li HY, Ju RJ, Yang JX. Multifunctional osthole liposomes and brain targeting functionality with potential applications in a mouse model of Alzheimer's disease. J Liposome Res 2020; 31:267-278. [PMID: 32757676 DOI: 10.1080/08982104.2020.1806872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Osthole (Ost) is a coumarin compound and a potential drug for Alzheimer's disease (AD). However, the effectiveness of Ost is limited by solubility, bioavailability, and low permeability of the blood-brain barrier. In this study, we constructed Ost liposomes with modified CXCR4 on the surface (CXCR4-Ost-Lips), and investigated the intracellular distribution of liposomes in APP-SH-SY5Y cells. In addition, the neuroprotective effect of CXCR4-Ost-Lips was examined in vitro and in vivo. The results showed that CXCR4-Ost-Lips increased intracellular uptake by APP-SH-SY5Y cells and exerted a cytoprotective effect in vitro. The results of Ost brain distribution showed that CXCR4-Ost-Lips prolonged the cycle time of mice and increased the accumulation of Ost in the brain. In addition, CXCR4-Ost-Lips enhanced the effect of Ost in relieving AD-related pathologies. These results indicate that CXCR4-modified liposomes are a potential Ost carrier to treat AD.
Collapse
Affiliation(s)
- Ying-Nan Ni
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Hong-He Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yu-Tong Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xi-Cai Liang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ying Lin
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Wan-Yi Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yan Deng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yue Shi
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Hong-Yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Jing-Xian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
20
|
Sehlin D, Stocki P, Gustavsson T, Hultqvist G, Walsh FS, Rutkowski JL, Syvänen S. Brain delivery of biologics using a cross‐species reactive transferrin receptor 1 VNAR shuttle. FASEB J 2020; 34:13272-13283. [DOI: 10.1096/fj.202000610rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Dag Sehlin
- Department of Public Health and Caring Sciences/Geriatrics Uppsala University Uppsala Sweden
| | - Pawel Stocki
- Ossianix, Inc. Stevenage UK
- Ossianix, Inc. Philadelphia PA USA
| | - Tobias Gustavsson
- Department of Public Health and Caring Sciences/Geriatrics Uppsala University Uppsala Sweden
| | - Greta Hultqvist
- Department of Pharmaceutical Biosciences Uppsala University Uppsala Sweden
| | - Frank S. Walsh
- Ossianix, Inc. Stevenage UK
- Ossianix, Inc. Philadelphia PA USA
| | | | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics Uppsala University Uppsala Sweden
| |
Collapse
|
21
|
Rabanel JM, Delbreil P, Banquy X, Brambilla D, Ramassamy C. Periphery-confined particulate systems for the management of neurodegenerative diseases and toxicity: Avoiding the blood-brain-barrier challenge. J Control Release 2020; 322:286-299. [PMID: 32243978 DOI: 10.1016/j.jconrel.2020.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/07/2023]
Abstract
The blood-brain barrier prevents passage of large and hydrophilic molecules, undermining efforts to deliver most active molecules, proteins and other macromolecules. To date, nanoparticle-assisted delivery has been extensively studied to overcome this challenge but with limited success. On the other hand, for certain brain therapeutic applications, periphery-confined particles could be of immediate therapeutic usefulness. The modulation of CNS dysfunctions from the peripheral compartment is a promising approach, as it does not involve invasive interventions. From recent studies, three main roles could be identified for periphery-confined particles: brain tissue detoxification via the "sink-effect"; a "circulating drug-reservoir" effect to improve drug delivery to brain tissues, and finally, brain vascular endothelium targeting to diagnose or heal vascular-related dysfunctions. These applications are much easier to implement as they do not involve complex therapeutic and targeting strategies and do not require crossing biological barriers. Micro/nano-devices required for such applications will likely be simpler to synthesize and will involve fewer complex materials. Moreover, peripheral particles are expected to be less prone to neurotoxicity and issues related to their diffusion in confined space.
Collapse
Affiliation(s)
- Jean-Michel Rabanel
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Philippe Delbreil
- Faculty of Pharmacy, Université de Montréal, CP. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, CP. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, CP. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Charles Ramassamy
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
22
|
Zhang Y, Lv X, Qu J, Zhang X, Zhang M, Gao H, Zhang Q, Liu R, Xu H, Li Q, Bi K. A systematic strategy for screening therapeutic constituents of Schisandra chinensis (Turcz .) Baill infiltrated blood-brain barrier oriented in lesions using ethanol and water extracts: a novel perspective for exploring chemical material basis of herb medicines. Acta Pharm Sin B 2020; 10:557-568. [PMID: 32140399 PMCID: PMC7049611 DOI: 10.1016/j.apsb.2019.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/03/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Schisandra chinensis, a widely used Chinese herbal medicine, was considered as central nervous system (CNS) drug for years. Both ethanol extracts (EES) and water extracts (WES) of it were applied clinically. Unfortunately, the difference of their efficacy and even effective material foundation of S. chinensis remains obscure. In this study, to explore the active constituents of S. chinensis, we compared pharmacodynamics and chemical profiles in vitro/in vivo of EES/WES for the first time using multiple chemical analysis, pharmacological and data processing approaches. It was proved that there was no significant difference in the anti-depressive effects between WES and EES. However, the contents of most components in vitro and in plasma were higher in EES than those in WES, which was unconvincing for their similar efficacy. Therefore, we further explored components of S. chinensis targeted onto brain and the results showed that 5 lignans were identified with definite absorptivity respectively both in EES and WES caused by the limitation of blood−brain barrier. Moreover, bioinformatic analysis predicted their anti-depressive action. Above all, the systematic strategy screened 5 brain-targeted effective substances of S. chinensis and it was suggested that exploring the components into nidi would promote the studies on herbs effective material basis.
Collapse
Affiliation(s)
- Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyan Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiameng Qu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingyang Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding author. Tel.: +86 24 23986012; fax: +86 24 23986259.
| |
Collapse
|
23
|
Zhang Y, Lv X, Liu R, Zhang M, Liu H, Gao H, Zhang Q, Xu H, Li Q, Bi K. An integrated strategy for ascertaining quality marker of Schisandra chinensis (Turcz.) Baill based on correlation analysis between depression-related monoaminergic metabolites and chemical components profiling. J Chromatogr A 2019; 1598:122-131. [DOI: 10.1016/j.chroma.2019.03.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023]
|
24
|
Engineered antibodies: new possibilities for brain PET? Eur J Nucl Med Mol Imaging 2019; 46:2848-2858. [PMID: 31342134 PMCID: PMC6879437 DOI: 10.1007/s00259-019-04426-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Almost 50 million people worldwide are affected by Alzheimer’s disease (AD), the most common neurodegenerative disorder. Development of disease-modifying therapies would benefit from reliable, non-invasive positron emission tomography (PET) biomarkers for early diagnosis, monitoring of disease progression, and assessment of therapeutic effects. Traditionally, PET ligands have been based on small molecules that, with the right properties, can penetrate the blood–brain barrier (BBB) and visualize targets in the brain. Recently a new class of PET ligands based on antibodies have emerged, mainly in applications related to cancer. While antibodies have advantages such as high specificity and affinity, their passage across the BBB is limited. Thus, to be used as brain PET ligands, antibodies need to be modified for active transport into the brain. Here, we review the development of radioligands based on antibodies for visualization of intrabrain targets. We focus on antibodies modified into a bispecific format, with the capacity to undergo transferrin receptor 1 (TfR1)-mediated transcytosis to enter the brain and access pathological proteins, e.g. amyloid-beta. A number of such antibody ligands have been developed, displaying differences in brain uptake, pharmacokinetics, and ability to bind and visualize the target in the brain of transgenic mice. Potential pathological changes related to neurodegeneration, e.g. misfolded proteins and neuroinflammation, are suggested as future targets for this novel type of radioligand. Challenges are also discussed, such as the temporal match of radionuclide half-life with the ligand’s pharmacokinetic profile and translation to human use. In conclusion, brain PET imaging using bispecific antibodies, modified for receptor-mediated transcytosis across the BBB, is a promising method for specifically visualizing molecules in the brain that are difficult to target with traditional small molecule ligands.
Collapse
|
25
|
Wang Z, Gao G, Duan C, Yang H. Progress of immunotherapy of anti-α-synuclein in Parkinson's disease. Biomed Pharmacother 2019; 115:108843. [PMID: 31055236 DOI: 10.1016/j.biopha.2019.108843] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases are characterized by progressive loss of neurons and abnormal protein accumulation, including amyloid (A)β and tau in Alzheimer's disease and Lewy bodies and α-synuclein (α-syn) in Parkinson's disease (PD). Recent evidence suggests that adaptive immunity plays an important role in PD, and that anti-α-syn antibodies can be used as therapy in neurodegenerative diseases; monoclonal antibodies were shown to inhibit α-syn propagation and aggregation in PD models and patients. In this review, we summarize the different pathological states of α-syn, including gene mutations, truncation, phosphorylation, and the high molecular weight form, and describe the specific antibodies that recognize the α-syn monomer or oligomer, some of which have been tested in clinic trials. We also discuss future research directions and potential targets in PD therapy.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ge Gao
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Chunli Duan
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hui Yang
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
26
|
Erickson MA, Banks WA. Age-Associated Changes in the Immune System and Blood⁻Brain Barrier Functions. Int J Mol Sci 2019; 20:ijms20071632. [PMID: 30986918 PMCID: PMC6479894 DOI: 10.3390/ijms20071632] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Age is associated with altered immune functions that may affect the brain. Brain barriers, including the blood-brain barrier (BBB) and blood-CSF barrier (BCSFB), are important interfaces for neuroimmune communication, and are affected by aging. In this review, we explore novel mechanisms by which the aging immune system alters central nervous system functions and neuroimmune responses, with a focus on brain barriers. Specific emphasis will be on recent works that have identified novel mechanisms by which BBB/BCSFB functions change with age, interactions of the BBB with age-associated immune factors, and contributions of the BBB to age-associated neurological disorders. Understanding how age alters BBB functions and responses to pathological insults could provide important insight on the role of the BBB in the progression of cognitive decline and neurodegenerative disease.
Collapse
Affiliation(s)
- Michelle A Erickson
- VA Puget Sound Healthcare System, Geriatric Research Education and Clinical Center, Seattle, WA 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA.
| | - William A Banks
- VA Puget Sound Healthcare System, Geriatric Research Education and Clinical Center, Seattle, WA 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA.
| |
Collapse
|