1
|
Yuan Y, Xu T, Huang Y, Shi J. Strategies for developing μ opioid receptor agonists with reduced adverse effects. Bioorg Chem 2024; 149:107507. [PMID: 38850778 DOI: 10.1016/j.bioorg.2024.107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Opioids are currently the most effective and widely used painkillers in the world. Unfortunately, the clinical use of opioid analgesics is limited by serious adverse effects. Many researchers have been working on designing and optimizing structures in search of novel μ opioid receptor(MOR) agonists with improved analgesic activity and reduced incidence of adverse effects. There are many strategies to develop MOR drugs, mainly focusing on new low efficacy agonists (potentially G protein biased agonists), MOR agonists acting on different Gα subtype, targeting opioid receptors in the periphery, acting on multiple opioid receptor, and targeting allosteric sites of opioid receptors, and others. This review summarizes the design methods, clinical applications, and structure-activity relationships of small-molecule agonists for MOR based on these different design strategies, providing ideas for the development of safer novel opioid ligands with therapeutic potential.
Collapse
Affiliation(s)
- Yan Yuan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Ting Xu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yu Huang
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
2
|
Huang YH, Lin SY, Ou LC, Huang WC, Chao PK, Chang YC, Chang HF, Lee PT, Yeh TK, Kuo YH, Tien YW, Xi JH, Tao PL, Chen PY, Chuang JY, Shih C, Chen CT, Tung CW, Loh HH, Ueng SH, Yeh SH. Discovery of a mu-opioid receptor modulator that in combination with morphinan antagonists induces analgesia. Cell Chem Biol 2024:S2451-9456(24)00272-1. [PMID: 39025070 DOI: 10.1016/j.chembiol.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/09/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024]
Abstract
Morphinan antagonists, which block opioid effects at mu-opioid receptors, have been studied for their analgesic potential. Previous studies have suggested that these antagonists elicit analgesia with fewer adverse effects in the presence of the mutant mu-opioid receptor (MOR; S196A). However, introducing a mutant receptor for medical applications represents significant challenges. We hypothesize that binding a chemical compound to the MOR may elicit a comparable effect to the S196A mutation. Through high-throughput screening and structure-activity relationship studies, we identified a modulator, 4-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)-3-methylbenzoic acid (BPRMU191), which confers agonistic properties to small-molecule morphinan antagonists, which induce G protein-dependent MOR activation. Co-application of BPRMU191 and morphinan antagonists resulted in MOR-dependent analgesia with diminished side effects, including gastrointestinal dysfunction, antinociceptive tolerance, and physical and psychological dependence. Combining BPRMU191 and morphinan antagonists could serve as a potential therapeutic strategy for severe pain with reduced adverse effects and provide an avenue for studying G protein-coupled receptor modulation.
Collapse
Affiliation(s)
- Yi-Han Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; Research Center for Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Yu Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Li-Chin Ou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Wei-Cheng Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Po-Kuan Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yung-Chiao Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hsiao-Fu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Pin-Tse Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yu-Hsien Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ya-Wen Tien
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jing-Hua Xi
- Department of Pharmacology, Medical School University of Minnesota, Minneapolis, MN 55455-0217, USA
| | - Pao-Luh Tao
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, Keelung 20401, Taiwan
| | - Jian-Ying Chuang
- Research Center for Neuroscience, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Horace H Loh
- Department of Pharmacology, Medical School University of Minnesota, Minneapolis, MN 55455-0217, USA; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan.
| |
Collapse
|
3
|
Thouaye M, Yalcin I. Neuropathic pain: From actual pharmacological treatments to new therapeutic horizons. Pharmacol Ther 2023; 251:108546. [PMID: 37832728 DOI: 10.1016/j.pharmthera.2023.108546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/07/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Neuropathic pain, caused by a lesion or disease affecting the somatosensory system, affects between 3 and 17% of the general population. The treatment of neuropathic pain is challenging due to its heterogeneous etiologies, lack of objective diagnostic tools and resistance to classical analgesic drugs. First-line treatments recommended by the Special Interest Group on Neuropathic Pain (NeuPSIG) and European Federation of Neurological Societies (EFNS) include gabapentinoids, tricyclic antidepressants (TCAs) and selective serotonin noradrenaline reuptake inhibitors (SNRIs). Nevertheless these treatments have modest efficacy or dose limiting side effects. There is therefore a growing number of preclinical and clinical studies aim at developing new treatment strategies to treat neuropathic pain with better efficacy, selectivity, and less side effects. In this review, after a brief description of the mechanisms of action, efficacy, and limitations of current therapeutic drugs, we reviewed new preclinical and clinical targets currently under investigation, as well as promising non-pharmacological alternatives and their potential co-use with pharmacological treatments.
Collapse
Affiliation(s)
- Maxime Thouaye
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
4
|
Hsu YT, Chen SR, Chang YC, Chang HF, Yeh TK, Chuang JY, Loh HH, Hsieh HP, Ueng SH, Yeh SH. A dual nociceptin and mu opioid receptor agonist exhibited robust antinociceptive effect with decreased side effects. Eur J Med Chem 2023; 258:115608. [PMID: 37437352 DOI: 10.1016/j.ejmech.2023.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
The compelling demand of a consummate analgesic medication without addiction is rising due to the clinical mistreatment. Additionally, the series of severe untoward effects usually deterred the utilization while coping with serious pain. As a possible turning point, we revealed that compound 14 is a dual agonist of mu opioid receptor (MOR) and nociceptin-orphanin FQ opioid peptide (NOP) receptor in this study. More importantly, compound 14 achieves pain relieving at very small doses, meanwhile, reduces several unwanted side effects such as constipation, reward, tolerance and withdrawal effects. Here, we evaluated the antinociception and side effects of this novel compound from wild type and humanized mice to further develop a safer prescription analgesic drug.
Collapse
Affiliation(s)
- Ying-Ting Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC; The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan, ROC
| | - Shen-Ren Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Yung-Chiao Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Hsiao-Fu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Jian-Ying Chuang
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan, ROC
| | - Horace H Loh
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 10005, China; Department of Pharmacology, Medical School University of Minnesota, Minneapolis, MN, 55455-0217, USA
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC; School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC; The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan, ROC.
| |
Collapse
|
5
|
Benzo[b]thiophene-2-carboxamides as novel opioid receptor agonists with potent analgesic effect and reduced constipation. Eur J Med Chem 2022; 243:114728. [DOI: 10.1016/j.ejmech.2022.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022]
|
6
|
Selective and antagonist-dependent μ-opioid receptor activation by the combination of 2-{[2-(6-chloro-3,4-dihydro-1(2H)-quinolinyl)-2-oxoethyl]sulfanyl}-5-phenyl-4,6-(1H,5H)-pyrimidinedione and naloxone/naltrexone. Bioorg Chem 2022; 128:105905. [DOI: 10.1016/j.bioorg.2022.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/20/2022]
|
7
|
Spotlight on Nociceptin/Orphanin FQ Receptor in the Treatment of Pain. Molecules 2022; 27:molecules27030595. [PMID: 35163856 PMCID: PMC8838650 DOI: 10.3390/molecules27030595] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/24/2023] Open
Abstract
In our society today, pain has become a main source of strain on most individuals. It is crucial to develop novel treatments against pain while focusing on decreasing their adverse effects. Throughout the extent of development for new pain therapies, the nociceptin/orphanin FQ receptor (NOP receptor) has appeared to be an encouraging focal point. Concentrating on NOP receptor to treat chronic pain with limited range of unwanted effects serves as a suitable alternative to prototypical opioid morphine that could potentially lead to life-threatening effects caused by respiratory depression in overdose, as well as generate abuse and addiction. In addition to these harmful effects, the uprising opioid epidemic is responsible for becoming one of the most disastrous public health issues in the US. In this article, the contributing molecular and cellular structure in controlling the cellular trafficking of NOP receptor and studies that support the role of NOP receptor and its ligands in pain management are reviewed.
Collapse
|
8
|
De Neve J, Barlow TMA, Tourwé D, Bihel F, Simonin F, Ballet S. Comprehensive overview of biased pharmacology at the opioid receptors: biased ligands and bias factors. RSC Med Chem 2021; 12:828-870. [PMID: 34223156 PMCID: PMC8221262 DOI: 10.1039/d1md00041a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
One of the main challenges in contemporary medicinal chemistry is the development of safer analgesics, used in the treatment of pain. Currently, moderate to severe pain is still treated with the "gold standard" opioids whose long-term often leads to severe side effects. With the discovery of biased agonism, the importance of this area of pharmacology has grown exponentially over the past decade. Of these side effects, tolerance, opioid misuse, physical dependence and substance use disorder (SUD) stand out, since these have led to many deaths over the past decades in both USA and Europe. New therapeutic molecules that induce a biased response at the opioid receptors (MOR, DOR, KOR and NOP receptor) are able to circumvent these side effects and, consequently, serve as more advantageous therapies with great promise. The concept of biased signaling extends far beyond the already sizeable field of GPCR pharmacology and covering everything would be vastly outside the scope of this review which consequently covers the biased ligands acting at the opioid family of receptors. The limitation of quantifying bias, however, makes this a controversial subject, where it is dependent on the reference ligand, the equation or the assay used for the quantification. Hence, the major issue in the field of biased ligands remains the translation of the in vitro profiles of biased signaling, with corresponding bias factors to in vivo profiles showing the presence or the lack of specific side effects. This review comprises a comprehensive overview of biased ligands in addition to their bias factors at individual members of the opioid family of receptors, as well as bifunctional ligands.
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, CNRS Université de Strasbourg Illkirch France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS, Université de Strasbourg Illkirch France
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
9
|
Pacifico S, Albanese V, Illuminati D, Marzola E, Fabbri M, Ferrari F, Holanda VAD, Sturaro C, Malfacini D, Ruzza C, Trapella C, Preti D, Lo Cascio E, Arcovito A, Della Longa S, Marangoni M, Fattori D, Nassini R, Calò G, Guerrini R. Novel Mixed NOP/Opioid Receptor Peptide Agonists. J Med Chem 2021; 64:6656-6669. [PMID: 33998786 PMCID: PMC8279409 DOI: 10.1021/acs.jmedchem.0c02062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
The nociceptin/orphanin FQ (N/OFQ)/N/OFQ receptor (NOP) system
controls different biological functions including pain and cough reflex.
Mixed NOP/opioid receptor agonists elicit similar effects to strong
opioids but with reduced side effects. In this work, 31 peptides with
the general sequence [Tyr/Dmt1,Xaa5]N/OFQ(1-13)-NH2 were synthesized and pharmacologically characterized for
their action at human recombinant NOP/opioid receptors. The best results
in terms of NOP versus mu opioid receptor potency were obtained by
substituting both Tyr1 and Thr5 at the N-terminal
portion of N/OFQ(1-13)-NH2 with the noncanonical amino
acid Dmt. [Dmt1,5]N/OFQ(1-13)-NH2 has been identified
as the most potent dual NOP/mu receptor peptide agonist so far described.
Experimental data have been complemented by in silico studies to shed light on the molecular mechanisms by which the peptide
binds the active form of the mu receptor. Finally, the compound exerted
antitussive effects in an in vivo model of cough.
Collapse
Affiliation(s)
- Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Valentina Albanese
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Davide Illuminati
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Erika Marzola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Martina Fabbri
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Federica Ferrari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Victor A D Holanda
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Chiara Sturaro
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, Padova 35131, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, Ferrara 44121, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, via Fossato di Mortara 70, Ferrara 44121, Italy
| | - Claudio Trapella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, via Fossato di Mortara 70, Ferrara 44121, Italy
| | - Delia Preti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy
| | - Ettore Lo Cascio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma 00168, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma 00168, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, Roma 00168, Italy
| | - Stefano Della Longa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Pza S. Tommasi 1, L'Aquila 67100, Italy
| | - Martina Marangoni
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, Florence 50139, Italy
| | - Davide Fattori
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, Florence 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, Florence 50139, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, Padova 35131, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, via Fossato di Mortara 70, Ferrara 44121, Italy
| |
Collapse
|
10
|
Gottesman-Katz L, Latorre R, Vanner S, Schmidt BL, Bunnett NW. Targeting G protein-coupled receptors for the treatment of chronic pain in the digestive system. Gut 2021; 70:970-981. [PMID: 33272979 PMCID: PMC9716638 DOI: 10.1136/gutjnl-2020-321193] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022]
Abstract
Chronic pain is a hallmark of functional disorders, inflammatory diseases and cancer of the digestive system. The mechanisms that initiate and sustain chronic pain are incompletely understood, and available therapies are inadequate. This review highlights recent advances in the structure and function of pronociceptive and antinociceptive G protein-coupled receptors (GPCRs) that provide insights into the mechanisms and treatment of chronic pain. This knowledge, derived from studies of somatic pain, can guide research into visceral pain. Mediators from injured tissues transiently activate GPCRs at the plasma membrane of neurons, leading to sensitisation of ion channels and acute hyperexcitability and nociception. Sustained agonist release evokes GPCR redistribution to endosomes, where persistent signalling regulates activity of channels and genes that control chronic hyperexcitability and nociception. Endosomally targeted GPCR antagonists provide superior pain relief in preclinical models. Biased agonists stabilise GPCR conformations that favour signalling of beneficial actions at the expense of detrimental side effects. Biased agonists of µ-opioid receptors (MOPrs) can provide analgesia without addiction, respiratory depression and constipation. Opioids that preferentially bind to MOPrs in the acidic microenvironment of diseased tissues produce analgesia without side effects. Allosteric modulators of GPCRs fine-tune actions of endogenous ligands, offering the prospect of refined pain control. GPCR dimers might function as distinct therapeutic targets for nociception. The discovery that GPCRs that control itch also mediate irritant sensation in the colon has revealed new targets. A deeper understanding of GPCR structure and function in different microenvironments offers the potential of developing superior treatments for GI pain.
Collapse
Affiliation(s)
- Lena Gottesman-Katz
- Molecular Pathobiology, New York University, New York, New York, USA,Division of Pediatric Gastroenterology, Columbia University Medical Center/New York Presbyterian, New York, New York, USA
| | - Rocco Latorre
- Molecular Pathobiology, New York University, New York, New York, USA
| | - Stephen Vanner
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queens University, Kingston, Ontario, Canada
| | - Brian L Schmidt
- Bluestone Center, New York University, New York, New York, USA
| | - Nigel W Bunnett
- Molecular Pathobiology, New York University, New York, New York, USA
| |
Collapse
|
11
|
Shamakina IY, Shagiakhmetov FS, Anokhin PK, Kohan VS, Davidova TV. [The role of nociceptin in opioid regulation of brain functions]. BIOMEDITSINSKAIA KHIMIIA 2021; 67:5-16. [PMID: 33645518 DOI: 10.18097/pbmc20216701005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review discusses our current knowledge on the nociceptin/orphanin (N/OFQ) system regarding its role in regulation of brain functions. Nociceptin receptor (NOPr) was identified in 1994 [Bunzow et al., 1994; Mollereau et al., 1994]. In 1995 a 17 amino acid endogenous peptide was found to be the high-affinity ligand for the NOPr [Reinscheid et al., 1995]. N/OFQ has a broad spectrum of activity and can act as on opioid-like as well as an anti-opioid peptide. Considering high level of N/OFQ and NOPr mRNA expression in the limbic brain regions, the N/OFQ/NOP system is suggested to be involved in regulation of emotions, resward, pain sensitivity, stress responsibility, sexual behavior, aggression, drug abuse and addiction. However it is still not well understood whether an increased vulnerability to drugs of abuse may be associated with dysregulation of N/OFQ/NOP system. Current review further highlights a need for further research on N/OFQ/NOP system as it could have clinical utility for substance abuse, depression, and anxiety pharmacotherapy.
Collapse
Affiliation(s)
- I Yu Shamakina
- V.P. Serbsky National Medical Research Center on Psychiatry and Addiction, Moscow, Russia
| | | | - P K Anokhin
- V.P. Serbsky National Medical Research Center on Psychiatry and Addiction, Moscow, Russia
| | - V S Kohan
- V.P. Serbsky National Medical Research Center on Psychiatry and Addiction, Moscow, Russia
| | - T V Davidova
- The Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
12
|
Faouzi A, Varga BR, Majumdar S. Biased Opioid Ligands. Molecules 2020; 25:E4257. [PMID: 32948048 PMCID: PMC7570672 DOI: 10.3390/molecules25184257] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Achieving effective pain management is one of the major challenges associated with modern day medicine. Opioids, such as morphine, have been the reference treatment for moderate to severe acute pain not excluding chronic pain modalities. Opioids act through the opioid receptors, the family of G-protein coupled receptors (GPCRs) that mediate pain relief through both the central and peripheral nervous systems. Four types of opioid receptors have been described, including the μ-opioid receptor (MOR), κ-opioid receptor (KOR), δ-opioid receptor (DOR), and the nociceptin opioid peptide receptor (NOP receptor). Despite the proven success of opioids in treating pain, there are still some inherent limitations. All clinically approved MOR analgesics are associated with adverse effects, which include tolerance, dependence, addiction, constipation, and respiratory depression. On the other hand, KOR selective analgesics have found limited clinical utility because they cause sedation, anxiety, dysphoria, and hallucinations. DOR agonists have also been investigated but they have a tendency to cause convulsions. Ligands targeting NOP receptor have been reported in the preclinical literature to be useful as spinal analgesics and as entities against substance abuse disorders while mixed MOR/NOP receptor agonists are useful as analgesics. Ultimately, the goal of opioid-related drug development has always been to design and synthesize derivatives that are equally or more potent than morphine but most importantly are devoid of the dangerous residual side effects and abuse potential. One proposed strategy is to take advantage of biased agonism, in which distinct downstream pathways can be activated by different molecules working through the exact same receptor. It has been proposed that ligands not recruiting β-arrestin 2 or showing a preference for activating a specific G-protein mediated signal transduction pathway will function as safer analgesic across all opioid subtypes. This review will focus on the design and the pharmacological outcomes of biased ligands at the opioid receptors, aiming at achieving functional selectivity.
Collapse
MESH Headings
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Arrestin/metabolism
- Furans/chemistry
- Furans/metabolism
- Humans
- Ligands
- Pain/drug therapy
- Pyrones/chemistry
- Pyrones/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
| | | | - Susruta Majumdar
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63131, USA; (A.F.); (B.R.V.)
| |
Collapse
|
13
|
Kiguchi N, Ding H, Ko MC. Therapeutic potentials of NOP and MOP receptor coactivation for the treatment of pain and opioid abuse. J Neurosci Res 2020; 100:191-202. [PMID: 32255240 DOI: 10.1002/jnr.24624] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/26/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Following the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) as an endogenous ligand for the NOP receptor, ample evidence has revealed unique functional profiles of the N/OFQ-NOP receptor system. NOP receptors are expressed in key neural substrates involved in pain and reward modulation. In nonhuman primates (NHPs), NOP receptor activation effectively exerts antinociception and anti-hypersensitivity at the spinal and supraspinal levels. Moreover, NOP receptor activation inhibits dopaminergic transmission and synergistically enhances mu-opioid peptide (MOP) receptor-mediated analgesia. In this article, we have discussed the functional profiles of ligands with dual NOP and MOP receptor agonist activities and highlight their optimal functional efficacy for pain relief and drug abuse treatment. Through coactivation of NOP and MOP receptors, bifunctional NOP/MOP receptor "partial" agonists (e.g., AT-121, BU08028, and BU10038) reveal a wider therapeutic window with fewer side effects. These newly developed ligands potently induce antinociception without MOP receptor agonist-associated side effects such as abuse potential, respiratory depression, itching sensation, and physical dependence. In addition, in both rodent and NHP models, bifunctional NOP/MOP receptor agonists can attenuate reward processing and/or the reinforcing effects of opioids and other abused drugs. While a mixed NOP/opioid receptor "full" agonist cebranopadol is undergoing clinical trials, bifunctional NOP/MOP "partial" agonists exhibit promising therapeutic profiles in translational NHP models for the treatment of pain and opioid abuse. This class of drugs demonstrates the therapeutic advantage of NOP and MOP receptor coactivation, indicating a greater potential for future development.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Huiping Ding
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC, USA
| |
Collapse
|
14
|
Baumann MH, Pasternak GW, Negus SS. Confronting the opioid crisis with basic research in neuropharmacology. Neuropharmacology 2020; 166:107972. [PMID: 31958407 DOI: 10.1016/j.neuropharm.2020.107972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michael H Baumann
- Designer Drug Research Unit (DDRU), National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Suite 4400, Baltimore, MD 21224, USA.
| | - Gavril W Pasternak
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sidney S Negus
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, VA 23298, USA.
| |
Collapse
|