1
|
Specchio N, Trivisano M, Aronica E, Balestrini S, Arzimanoglou A, Colasante G, Cross JH, Jozwiak S, Wilmshurst JM, Vigevano F, Auvin S, Nabbout R, Curatolo P. The expanding field of genetic developmental and epileptic encephalopathies: current understanding and future perspectives. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:821-834. [PMID: 39419567 DOI: 10.1016/s2352-4642(24)00196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/19/2024]
Abstract
Recent advances in genetic testing technologies have revolutionised the identification of genetic abnormalities in early onset developmental and epileptic encephalopathies (DEEs). In this Review, we provide an update on the expanding landscape of genetic factors contributing to DEEs, encompassing over 800 reported genes. We focus on the cellular and molecular mechanisms driving epileptogenesis, with an emphasis on emerging therapeutic strategies and effective treatment options. We explore noteworthy, novel genes linked to DEE phenotypes, such as gBRAT-1 and GNAO1, and gene families such as GRIN and HCN. Understanding the network-level effects of gene variants will pave the way for potential gene therapy applications. Given the diverse comorbidities associated with DEEs, a multidisciplinary team approach is essential. Despite ongoing efforts and improved genetic testing, DEEs lack a cure, and treatment complexities persist. This Review underscores the necessity for larger international prospective studies focusing on both seizure outcomes and developmental trajectories.
Collapse
Affiliation(s)
- Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesu' Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Rome, Italy.
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesu' Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Rome, Italy
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam, Netherlands; Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Simona Balestrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Florence, Italy; Neuroscience Department, University of Florence, Florence, Italy; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Alexis Arzimanoglou
- Paediatric Epilepsy and Neurophysiology Department, Hospital San Juan de Dios, Coordinating member of the European Reference Network on Rare and Complex Epilepsies, EpiCARE, Barcelona, Spain
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Sergiusz Jozwiak
- Research Department, Children's Memorial Health Institute, EpicARE Member, Warsaw, Poland
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, South Africa
| | - Federico Vigevano
- Pediatric Neurorehabilitation Department, IRCCS San Raffaele, Rome, Italy
| | - Stéphane Auvin
- AP-HP, Service de Neurologie Pédiatrique, Centre de référence Epilepsies Rares, Member of European Reference Network EpiCARE, Hôpital Universitaire Robert-Debré, Paris, France; Université Paris-Cité, INSERM Neuro Diderot, Paris, France; Institut Universitaire de France, Paris, France
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, AP-HP, Member of European Reference Network EpiCARE, Institut Imagine, INSERM, UMR 1163, Université de Paris Cité, Paris, France
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
2
|
Mir A, AlQahtani M, Amer F, AlBaradie R, AlOtaibi W, AlGhamdi F, Khallaf H, Bashir S, Costain G, Aljouda L, Housawi Y. Diagnostic evaluation of patients with epileptic spasms in the era of next-generation sequencing. Epileptic Disord 2024; 26:651-661. [PMID: 38949266 DOI: 10.1002/epd2.20259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE Epileptic spasms (ES) can be caused by a variety of etiologies. However, in almost half of cases, the etiology is unidentified. With the advent of next-generation sequencing (NGS), the recognition of genetic etiologies has increased. METHODS We retrospectively reviewed the medical records of patients with ES who were evaluated in the comprehensive epilepsy program at King Fahad Specialist Hospital Dammam between 2009 and 2022. RESULTS Our data show that in 57.7% of patients with ES, the etiology was unidentified after a standard clinical evaluation and neuroimaging. Of these patients, n = 25 (35.2%) received a genetic diagnosis after some form of genetic testing, and 3.1% of patients from specialized metabolic work indicated the need for genetic testing to confirm the diagnosis. Karyotyping led to a diagnosis in 3.6% of patients, and chromosomal microarray led to a diagnosis in 7.1%. An NGS epilepsy gene panel (EP) was done for 45 patients, leading to a diagnosis in 24.4% (n = 11). Exome sequencing was done for 27 patients, including n = 14 with non-diagnostic panel testing; it led to a diagnosis in 37.3% (n = 10). Exome sequencing led to a diagnosis in 61.5% of patients without a previous panel test and in only two patients who had previously had a negative panel testing. SIGNIFICANCE In this article, we present the diagnostic evaluations of ES for a cohort of 123 patients and discuss the yield and priority of NGS for evaluating ES. Our findings suggest that exome sequencing has a higher diagnostic yield for determining the etiology of ES in patients for whom the etiology is still unclear after an appropriate clinical assessment and a brain MRI.
Collapse
Affiliation(s)
- Ali Mir
- Department of Pediatric Neurology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Mohammed AlQahtani
- Department of Pediatric Neurology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fawzia Amer
- Department of Pediatric Neurology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
- Department of Pediatric Neurology and Metabolic, Cairo University Children Hospital, Cairo, Egypt
| | - Raidah AlBaradie
- Department of Pediatric Neurology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Wajd AlOtaibi
- Department of Pediatric Neurology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Fouad AlGhamdi
- Department of Pediatric Neurology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Hamoud Khallaf
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Centre, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Gregory Costain
- Program in Genetics and Genome Biology, Division of Clinical and Metabolic Genetics, SickKids Research Institute and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Liali Aljouda
- Program in Genetics and Genome Biology, Division of Clinical and Metabolic Genetics, SickKids Research Institute and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yousef Housawi
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Di Matteo F, Mancuso F, Turcio R, Ciaglia T, Stagno C, Di Chio C, Campiglia P, Bertamino A, Giofrè SV, Ostacolo C, Iraci N. KCNT1 Channel Blockers: A Medicinal Chemistry Perspective. Molecules 2024; 29:2940. [PMID: 38931004 PMCID: PMC11206332 DOI: 10.3390/molecules29122940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Potassium channels have recently emerged as suitable target for the treatment of epileptic diseases. Among potassium channels, KCNT1 channels are the most widely characterized as responsible for several epileptic and developmental encephalopathies. Nevertheless, the medicinal chemistry of KCNT1 blockers is underdeveloped so far. In the present review, we describe and analyse the papers addressing the issue of KCNT1 blockers' development and identification, also evidencing the pros and the cons of the scientific approaches therein described. After a short introduction describing the epileptic diseases and the structure-function of potassium channels, we provide an extensive overview of the chemotypes described so far as KCNT1 blockers, and the scientific approaches used for their identification.
Collapse
Affiliation(s)
- Francesca Di Matteo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Rita Turcio
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
4
|
Marshall GF, Fasol M, Davies FCJ, Le Seelleur M, Fernandez Alvarez A, Bennett-Ness C, Gonzalez-Sulser A, Abbott CM. Face-valid phenotypes in a mouse model of the most common mutation in EEF1A2-related neurodevelopmental disorder. Dis Model Mech 2024; 17:dmm050501. [PMID: 38179821 PMCID: PMC10855229 DOI: 10.1242/dmm.050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
De novo heterozygous missense mutations in EEF1A2, encoding neuromuscular translation-elongation factor eEF1A2, are associated with developmental and epileptic encephalopathies. We used CRISPR/Cas9 to recapitulate the most common mutation, E122K, in mice. Although E122K heterozygotes were not observed to have convulsive seizures, they exhibited frequent electrographic seizures and EEG abnormalities, transient early motor deficits and growth defects. Both E122K homozygotes and Eef1a2-null mice developed progressive motor abnormalities, with E122K homozygotes reaching humane endpoints by P31. The null phenotype is driven by progressive spinal neurodegeneration; however, no signs of neurodegeneration were observed in E122K homozygotes. The E122K protein was relatively stable in neurons yet highly unstable in skeletal myocytes, suggesting that the E122K/E122K phenotype is instead driven by loss of function in muscle. Nevertheless, motor abnormalities emerged far earlier in E122K homozygotes than in nulls, suggesting a toxic gain of function and/or a possible dominant-negative effect. This mouse model represents the first animal model of an EEF1A2 missense mutation with face-valid phenotypes and has provided mechanistic insights needed to inform rational treatment design.
Collapse
Affiliation(s)
- Grant F. Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Melissa Fasol
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Faith C. J. Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Matthew Le Seelleur
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alejandra Fernandez Alvarez
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Cavan Bennett-Ness
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Catherine M. Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
5
|
Elkhateeb N, Issa MY, Elbendary HM, Elnaggar W, Ramadan A, Rafat K, Kamel M, Abdel-Ghafar SF, Amer F, Hassaan HM, Trunzo R, Pereira C, Abdel-Hamid MS, D'Arco F, Bauer P, Bertoli-Avella AM, Girgis M, Gleeson JG, Zaki MS, Selim L. The clinical and genetic landscape of developmental and epileptic encephalopathies in Egyptian children. Clin Genet 2024; 105:510-522. [PMID: 38221827 DOI: 10.1111/cge.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of epilepsies characterized by early-onset, refractory seizures associated with developmental regression or impairment, with a heterogeneous genetic landscape including genes implicated in various pathways and mechanisms. We retrospectively studied the clinical and genetic data of patients with genetic DEE who presented at two tertiary centers in Egypt over a 10-year period. Exome sequencing was used for genetic testing. We report 74 patients from 63 unrelated Egyptian families, with a high rate of consanguinity (58%). The most common seizure type was generalized tonic-clonic (58%) and multiple seizure types were common (55%). The most common epilepsy syndrome was early infantile DEE (50%). All patients showed variable degrees of developmental impairment. Microcephaly, hypotonia, ophthalmological involvement and neuroimaging abnormalities were common. Eighteen novel variants were identified and the phenotypes of five DEE genes were expanded with novel phenotype-genotype associations. Obtaining a genetic diagnosis had implications on epilepsy management in 17 patients with variants in 12 genes. In this study, we expand the phenotype and genotype spectrum of DEE in a large single ethnic cohort of patients. Reaching a genetic diagnosis guided precision management of epilepsy in a significant proportion of patients.
Collapse
Affiliation(s)
- Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine Unit, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Mahmoud Y Issa
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hasnaa M Elbendary
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Walaa Elnaggar
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine Unit, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Areef Ramadan
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine Unit, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Karima Rafat
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mona Kamel
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine Unit, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Sherif F Abdel-Ghafar
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Fawzia Amer
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine Unit, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Hebatallah M Hassaan
- Department of Pediatrics, Clinical Genetics Unit, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | | | | | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Felice D'Arco
- Radiology Department, Great Ormond Street Hospital for Children, London, UK
| | | | | | - Marian Girgis
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine Unit, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, USA
- Rady Children's Hospital, Rady Children's Institute for Genomic Medicine, San Diego, La Jolla, USA
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Laila Selim
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine Unit, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Cavirani B, Spagnoli C, Caraffi SG, Cavalli A, Cesaroni CA, Cutillo G, De Giorgis V, Frattini D, Marchetti GB, Masnada S, Peron A, Rizzi S, Varesio C, Spaccini L, Vignoli A, Canevini MP, Veggiotti P, Garavelli L, Fusco C. Genetic Epilepsies and Developmental Epileptic Encephalopathies with Early Onset: A Multicenter Study. Int J Mol Sci 2024; 25:1248. [PMID: 38279250 PMCID: PMC10816990 DOI: 10.3390/ijms25021248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The genetic causes of epilepsies and developmental and epileptic encephalopathies (DEE) with onset in early childhood are increasingly recognized. Their outcomes vary from benign to severe disability. In this paper, we wished to retrospectively review the clinical, genetic, EEG, neuroimaging, and outcome data of patients experiencing the onset of epilepsy in the first three years of life, diagnosed and followed up in four Italian epilepsy centres (Epilepsy Centre of San Paolo University Hospital in Milan, Child Neurology and Psychiatry Unit of AUSL-IRCCS di Reggio Emilia, Pediatric Neurology Unit of Vittore Buzzi Children's Hospital, Milan, and Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia). We included 168 patients (104 with monogenic conditions, 45 with copy number variations (CNVs) or chromosomal abnormalities, and 19 with variants of unknown significance), who had been followed up for a mean of 14.75 years. We found a high occurrence of generalized seizures at onset, drug resistance, abnormal neurological examination, global developmental delay and intellectual disability, and behavioural and psychiatric comorbidities. We also documented differing presentations between monogenic issues versus CNVs and chromosomal conditions, as well as atypical/rare phenotypes. Genetic early-childhood-onset epilepsies and DEE show a very wide phenotypic and genotypic spectrum, with a high risk of complex neurological and neuropsychiatric phenotypes.
Collapse
Affiliation(s)
- Benedetta Cavirani
- Child Neuropsychiatry Unit, Azienda USL di Parma, 43121 Parma, Italy;
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy (L.G.)
| | - Anna Cavalli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Carlo Alberto Cesaroni
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Gianni Cutillo
- Pediatric Neurology Unit, Department of Pediatric Neurology, Buzzi Children’s Hospital, 20154 Milan, Italy; (G.C.); (S.M.); (P.V.)
| | - Valentina De Giorgis
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy; (V.D.G.); (C.V.)
- Department of Child Neurology and Psychiatriy, IRCCS Mondino Foundation, ERN-Epicare, 27100 Pavia, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Giulia Bruna Marchetti
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Silvia Masnada
- Pediatric Neurology Unit, Department of Pediatric Neurology, Buzzi Children’s Hospital, 20154 Milan, Italy; (G.C.); (S.M.); (P.V.)
| | - Angela Peron
- Medical Genetics, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Università degli Studi di Firenze, 50121 Florence, Italy
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy
| | - Susanna Rizzi
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| | - Costanza Varesio
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy; (V.D.G.); (C.V.)
- Department of Child Neurology and Psychiatriy, IRCCS Mondino Foundation, ERN-Epicare, 27100 Pavia, Italy
| | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, V. Buzzi Children’s Hospital, University of Milan, 20157 Milan, Italy;
| | - Aglaia Vignoli
- Child Neuropsychiatry Unit-Epilepsy Center, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy; (A.V.); (M.P.C.)
- Department of Health Sciences, University of Milan, 20157 Milan, Italy
| | - Maria Paola Canevini
- Child Neuropsychiatry Unit-Epilepsy Center, ASST Santi Paolo e Carlo, San Paolo Hospital, 20142 Milan, Italy; (A.V.); (M.P.C.)
- Department of Health Sciences, University of Milan, 20157 Milan, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, Department of Pediatric Neurology, Buzzi Children’s Hospital, 20154 Milan, Italy; (G.C.); (S.M.); (P.V.)
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy (L.G.)
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (C.A.C.); (D.F.); (S.R.); (C.F.)
| |
Collapse
|
7
|
Arora R, Baldi A. Revolutionizing Neurological Disorder Treatment: Integrating Innovations in Pharmaceutical Interventions and Advanced Therapeutic Technologies. Curr Pharm Des 2024; 30:1459-1471. [PMID: 38616755 DOI: 10.2174/0113816128284824240328071911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 04/16/2024]
Abstract
Neurological disorders impose a significant burden on individuals, leading to disabilities and a reduced quality of life. However, recent years have witnessed remarkable advancements in pharmaceutical interventions aimed at treating these disorders. This review article aims to provide an overview of the latest innovations and breakthroughs in neurological disorder treatment, with a specific focus on key therapeutic areas such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and stroke. This review explores emerging trends in drug development, including the identification of novel therapeutic targets, the development of innovative drug delivery systems, and the application of personalized medicine approaches. Furthermore, it highlights the integration of advanced therapeutic technologies such as gene therapy, optogenetics, and neurostimulation techniques. These technologies hold promise for precise modulation of neural circuits, restoration of neuronal function, and even disease modification. While these advancements offer hopeful prospects for more effective and tailored treatments, challenges such as the need for improved diagnostic tools, identification of new targets for intervention, and optimization of drug delivery methods will remain. By addressing these challenges and continuing to invest in research and collaboration, we can revolutionize the treatment of neurological disorders and significantly enhance the lives of those affected by these conditions.
Collapse
Affiliation(s)
- Rimpi Arora
- Pharma Innovation Lab., Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India
| | - Ashish Baldi
- Pharma Innovation Lab., Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India
| |
Collapse
|
8
|
De Wachter M, Schoonjans AS, Weckhuysen S, Van Schil K, Löfgren A, Meuwissen M, Jansen A, Ceulemans B. From diagnosis to treatment in genetic epilepsies: Implementation of precision medicine in real-world clinical practice. Eur J Paediatr Neurol 2024; 48:46-60. [PMID: 38039826 DOI: 10.1016/j.ejpn.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/20/2023] [Accepted: 11/11/2023] [Indexed: 12/03/2023]
Abstract
The implementation of whole exome sequencing (WES) has had a major impact on the diagnostic yield of genetic testing in individuals with epilepsy. The identification of a genetic etiology paves the way to precision medicine: an individualized treatment approach, based on the disease pathophysiology. The aim of this retrospective cohort study was to: (1) determine the diagnostic yield of WES in a heterogeneous cohort of individuals with epilepsy referred for genetic testing in a real-world clinical setting, (2) investigate the influence of epilepsy characteristics on the diagnostic yield, (3) determine the theoretical yield of treatment changes based on genetic diagnosis and (4) explore the barriers to implementation of precision medicine. WES was performed in 247 individuals with epilepsy, aged between 7 months and 68 years. In 34/247 (14 %) a (likely) pathogenic variant was identified. In 7/34 (21 %) of these individuals the variant was found using a HPO-based filtering. Diagnostic yield was highest for individuals with an early onset of epilepsy (39 %) or in those with a developmental and epileptic encephalopathy (34 %). Precision medicine was a theoretical possibility in 20/34 (59 %) of the individuals with a (likely) pathogenic variant but implemented in only 11/34 (32 %). The major barrier to implementation of precision treatment was the limited availability or reimbursement of a given drug. These results confirm the potential impact of genetic analysis on treatment choices, but also highlight the hurdles to the implementation of precision medicine. To optimize precision medicine in real-world practice, additional endeavors are needed: unifying definitions of precision medicine, establishment of publicly accessible databases that include data on the functional effect of gene variants, increasing availability and reimbursement of precision therapeutics, and broadening access to innovative clinical trials.
Collapse
Affiliation(s)
- Matthias De Wachter
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium.
| | - An-Sofie Schoonjans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| | - Sarah Weckhuysen
- Department of Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium; Applied&Translational Neurogenomics Group, VIB-CMN, VIB, UAntwerpen, Universiteitsplein 1, 2610, Wilrijk, Belgium; Translational Neurosciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Kristof Van Schil
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| | - Ann Löfgren
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| | - Anna Jansen
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium; Translational Neurosciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Berten Ceulemans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| |
Collapse
|
9
|
Auvin S, Galanopoulou AS, Moshé SL, Potschka H, Rocha L, Walker MC. Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2891-2908. [PMID: 37676719 PMCID: PMC10836613 DOI: 10.1111/epi.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.
Collapse
Affiliation(s)
| | - Stéphane Auvin
- Institut Universitaire de France, Paris, France; Paediatric Neurology, Assistance Publique - Hôpitaux de Paris, EpiCARE ERN Member, Robert-Debré Hospital, Paris, France; University Paris-Cité, Paris, France
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Luisa Rocha
- Pharmacobiology Department. Center for Research and Advanced Studies (CINVESTAV). Mexico City, Mexico
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
10
|
Koch NA, Sonnenberg L, Hedrich UBS, Lauxmann S, Benda J. Loss or gain of function? Effects of ion channel mutations on neuronal firing depend on the neuron type. Front Neurol 2023; 14:1194811. [PMID: 37292138 PMCID: PMC10244640 DOI: 10.3389/fneur.2023.1194811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Clinically relevant mutations to voltage-gated ion channels, called channelopathies, alter ion channel function, properties of ionic currents, and neuronal firing. The effects of ion channel mutations are routinely assessed and characterized as loss of function (LOF) or gain of function (GOF) at the level of ionic currents. However, emerging personalized medicine approaches based on LOF/GOF characterization have limited therapeutic success. Potential reasons are among others that the translation from this binary characterization to neuronal firing is currently not well-understood-especially when considering different neuronal cell types. In this study, we investigate the impact of neuronal cell type on the firing outcome of ion channel mutations. Methods To this end, we simulated a diverse collection of single-compartment, conductance-based neuron models that differed in their composition of ionic currents. We systematically analyzed the effects of changes in ion current properties on firing in different neuronal types. Additionally, we simulated the effects of known mutations in KCNA1 gene encoding the KV1.1 potassium channel subtype associated with episodic ataxia type 1 (EA1). Results These simulations revealed that the outcome of a given change in ion channel properties on neuronal excitability depends on neuron type, i.e., the properties and expression levels of the unaffected ionic currents. Discussion Consequently, neuron-type specific effects are vital to a full understanding of the effects of channelopathies on neuronal excitability and are an important step toward improving the efficacy and precision of personalized medicine approaches.
Collapse
Affiliation(s)
- Nils A. Koch
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Lukas Sonnenberg
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Ulrike B. S. Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Stephan Lauxmann
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, University of Tübingen, Tübingen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jan Benda
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Asadi-Pooya AA. Precision Medicine in Epilepsy Management; GET Application (Gene, Epilepsy, Treatment). Clin Neuropharmacol 2023; 46:95-97. [PMID: 37191562 DOI: 10.1097/wnf.0000000000000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
OBJECTIVES The aim was to develop a prototype of an application (app) that identifies the significance of discovered genes for further consideration in the treatment plan of patients with epilepsy (precision medicine). METHODS MEDLINE was systematically searched for related publications from inception to April 1, 2022. The following search strategy was implemented (title/abstract): "epilepsy" AND "precision" AND "medicine." The following data were extracted: genes, phenotypes associated with those genes, and the recommended treatments. Two other databases were searched to cross-check the retrieved data and add to the data: https://www.genecards.org and https://medlineplus.gov/genetics. Also, the original articles of the identified genes were retrieved. Genes with specific treatment strategies (ie, any specific drug to be selected or to be avoided and also any other specific therapies [eg, diets, supplements, etc]) were selected. RESULTS A database of 93 genes, which are associated with various epilepsy syndromes and for which specific treatment strategies have been suggested, was developed. CONCLUSIONS A Web-based app (a search engine) was developed accordingly that is freely available at http://get.yektaparnian.ir/, GET (Gene, Epilepsy, Treatment). When a patient comes to the clinic with a genetic diagnosis and a specific gene is identified, the physician enters the gene name into the search box, and the app shows whether this genetic epilepsy needs a specific treatment. This endeavor would benefit from input by experts in the field, and the Web site should be developed more comprehensively.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Shiraz University of Medical Sciences, Shiraz, Iran; and Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
12
|
Chang YT, Hong SY, Lin WD, Lin CH, Lin SS, Tsai FJ, Chou IC. Genetic Testing in Children with Developmental and Epileptic Encephalopathies: A Review of Advances in Epilepsy Genomics. CHILDREN 2023; 10:children10030556. [PMID: 36980114 PMCID: PMC10047509 DOI: 10.3390/children10030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Advances in disease-related gene discovery have led to tremendous innovations in the field of epilepsy genetics. Identification of genetic mutations that cause epileptic encephalopathies has opened new avenues for the development of targeted therapies. Clinical testing using extensive gene panels, exomes, and genomes is currently accessible and has resulted in higher rates of diagnosis and better comprehension of the disease mechanisms underlying the condition. Children with developmental disabilities have a higher risk of developing epilepsy. As our understanding of the mechanisms underlying encephalopathies and epilepsies improves, there may be greater potential to develop innovative therapies tailored to an individual’s genotype. This article provides an overview of the significant progress in epilepsy genomics in recent years, with a focus on developmental and epileptic encephalopathies in children. The aim of this review is to enhance comprehension of the clinical utilization of genetic testing in this particular patient population. The development of effective and precise therapeutic strategies for epileptic encephalopathies may be facilitated by a comprehensive understanding of their molecular pathogenesis.
Collapse
Affiliation(s)
- Yu-Tzu Chang
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Syuan-Yu Hong
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung 40447, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan
| | - Wei-De Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chien-Heng Lin
- Division of Pediatric Pulmonology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medial University, Taichung 40447, Taiwan
| | - Sheng-Shing Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Division of Genetics and Metabolism, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 40447, Taiwan
| | - I-Ching Chou
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40447, Taiwan
- Correspondence: ; Tel.: +886-4-22052121
| |
Collapse
|
13
|
Esterhuizen AI, Tiffin N, Riordan G, Wessels M, Burman RJ, Aziz MC, Calhoun JD, Gunti J, Amiri EE, Ramamurthy A, Bamshad MJ, Mefford HC, Ramesar R, Wilmshurst JM, Carvill GL, Leal SM, Nickerson DA, Anderson P, Bacus TJ, Blue EE, Brower K, Buckingham KJ, Chong JX, Cornejo Sánchez D, Davis CP, Davis CJ, Frazar CD, Gomeztagle-Burgess K, Gordon WW, Horike-Pyne M, Hurless JR, Jarvik GP, Johanson E, Thomas Kolar J, Marvin CT, McGee S, McGoldrick DJ, Mekonnen B, Nielsen PM, Patterson K, Radhakrishnan A, Richardson MA, Roote GT, Ryke EL, Schrauwen I, Shively KM, Smith JD, Tackett M, Wang G, Weiss JM, Wheeler MM, Yi Q, Zhang X. Precision medicine for developmental and epileptic encephalopathies in Africa-strategies for a resource-limited setting. Genet Med 2023; 25:100333. [PMID: 36480001 DOI: 10.1016/j.gim.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Sub-Saharan Africa bears the highest burden of epilepsy worldwide. A presumed proportion is genetic, but this etiology is buried under the burden of infections and perinatal insults in a setting of limited awareness and few options for testing. Children with developmental and epileptic encephalopathies (DEEs) are most severely affected by this diagnostic gap in Africa, because the rate of actionable findings is highest in DEE-associated genes. METHODS We tested 234 genetically naive South African children diagnosed with/possible DEE using gene panels, exome sequencing, and chromosomal microarray. Statistical comparison of electroclinical features in children with and children without candidate variants was performed to identify characteristics most likely predictive of a positive genetic finding. RESULTS Of the 41 (of 234) children with likely/pathogenic variants, 26 had variants supporting precision therapy. Multivariate regression modeling highlighted neonatal or infantile-onset seizures and movement abnormalities as predictive of a positive genetic finding. We used this, coupled with an emphasis on precision medicine outcomes, to propose the pragmatic "Think-Genetics" strategy for early recognition of a possible genetic etiology. CONCLUSION Our findings emphasize the importance of an early genetic diagnosis in DEE. We designed the Think-Genetics strategy for early recognition, appropriate interim management, and genetic testing for DEE in resource-constrained settings.
Collapse
Affiliation(s)
- Alina I Esterhuizen
- The South African MRC/UCT Genomic and Precision Medicine Research Unit, Division of Human Genetics, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Nicki Tiffin
- South African National Bioinformatics Institute, University of the Western Cape, Bellville, Western Cape, South Africa
| | - Gillian Riordan
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Marie Wessels
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Richard J Burman
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Miriam C Aziz
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jeffrey D Calhoun
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jonathan Gunti
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ezra E Amiri
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Aishwarya Ramamurthy
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA; Department of Genome Sciences, University of Washington, Seattle, WA; Brotman Baty Institute, Seattle, WA
| | | | - Heather C Mefford
- Centre for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN
| | - Raj Ramesar
- The South African MRC/UCT Genomic and Precision Medicine Research Unit, Division of Human Genetics, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bauer J, Devinsky O, Rothermel M, Koch H. Autonomic dysfunction in epilepsy mouse models with implications for SUDEP research. Front Neurol 2023; 13:1040648. [PMID: 36686527 PMCID: PMC9853197 DOI: 10.3389/fneur.2022.1040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Epilepsy has a high prevalence and can severely impair quality of life and increase the risk of premature death. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in drug-resistant epilepsy and most often results from respiratory and cardiac impairments due to brainstem dysfunction. Epileptic activity can spread widely, influencing neuronal activity in regions outside the epileptic network. The brainstem controls cardiorespiratory activity and arousal and reciprocally connects to cortical, diencephalic, and spinal cord areas. Epileptic activity can propagate trans-synaptically or via spreading depression (SD) to alter brainstem functions and cause cardiorespiratory dysfunction. The mechanisms by which seizures propagate to or otherwise impair brainstem function and trigger the cascading effects that cause SUDEP are poorly understood. We review insights from mouse models combined with new techniques to understand the pathophysiology of epilepsy and SUDEP. These techniques include in vivo, ex vivo, invasive and non-invasive methods in anesthetized and awake mice. Optogenetics combined with electrophysiological and optical manipulation and recording methods offer unique opportunities to study neuronal mechanisms under normal conditions, during and after non-fatal seizures, and in SUDEP. These combined approaches can advance our understanding of brainstem pathophysiology associated with seizures and SUDEP and may suggest strategies to prevent SUDEP.
Collapse
Affiliation(s)
- Jennifer Bauer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Orrin Devinsky
- Departments of Neurology, Neurosurgery and Psychiatry, NYU Langone School of Medicine, New York, NY, United States
| | - Markus Rothermel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Henner Koch
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,*Correspondence: Henner Koch ✉
| |
Collapse
|
15
|
Mahdiannasser M, Rashidi-Nezhad A, Badv RS, Akrami SM. Exploring the genetic etiology of drug-resistant epilepsy: incorporation of exome sequencing into practice. Acta Neurol Belg 2022; 122:1457-1468. [PMID: 36127562 DOI: 10.1007/s13760-022-02095-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND By affecting about 50 million people worldwide, epilepsy is considered a global concern in neurology. Intolerable enough, up to ¼ of all patients do not respond to antiepileptic drugs and have recurring seizures. Therefore, revealing the underlying etiology is quite demanding in a clinical context to improve diagnosis and disease management. METHODS Initially, 85 patients suspected of epilepsy underwent thorough clinical and paraclinical evaluation and 24 individuals with drug-resistant epilepsy entered the study. Using whole-exome sequencing, the genetic etiology of drug-resistant epilepsy was investigated and discerned whether this method could facilitate the management of drug-resistant epilepsy through personalized medicine. Eventually, functional annotation was performed and drug-gene interaction networks were constructed to find potential therapeutic targets. RESULTS We found eleven novel variants in various genes including IRF2BPL, ST3GAL3, and GPAA1, for which a few epilepsy-related variants are available in public databases. The overall diagnostic yield for likely pathogenic and pathogenic variants and the detection rate of novel variants were 25% and 84.6%, respectively. Based on the results, two patients were considered potential candidates for personalized medicine. The highest number of interaction with drugs was demonstrated for SCN1A, SCN2A, and GRIN2A genes. CONCLUSIONS This study highlighted the importance of consanguineous marriage in drug-resistant epilepsy and suggested the possibility of reduced penetrance and variable expressivity in some of the autosomal dominant cases. We also suggest that whole-exome sequencing could facilitate personalized management of drug-resistant epilepsy. Regarding drug-gene interactions, some genes such as SCN1A and SCN2A might serve as therapeutic targets in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Mojdeh Mahdiannasser
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Poursina St., P.O. Box:14176-13151, Tehran, Iran
| | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Genetics Ward, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Poursina St., P.O. Box:14176-13151, Tehran, Iran.
| |
Collapse
|
16
|
Polymorphisms of the sodium voltage-gated channel, alpha subunit 1 (SCN1A -A3184G) gene among children with non-lesional epilepsy: a case-control study. Ital J Pediatr 2022; 48:157. [PMID: 36056404 PMCID: PMC9438243 DOI: 10.1186/s13052-022-01350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Mutations in the neuronal sodium voltage-gated channel, alpha subunit 1 (SCN1A) gene have been associated with epilepsy. We investigated the SCN1A-A3184G polymorphism among Egyptian children and adolescents with non-lesional epilepsy. Methods A prospective case – control observational study was done in Mansoura University Children’s Hospital, Egypt including 326 children with non-lesional epilepsy (163 antiepileptic drugs (AEDs) resistant cases & 163 AEDs responders) and 163 healthy controls. One step real time polymerase chain reaction (PCR) was used for the molecular analysis. Student’s t-test, and Monto Carlo, chi-square and Mann–Whitney tests were used for the statistical analysis. Results All study participants were matched as regards the age, sex and body weight (p = 0.07, 0.347 and 0.462, respectively). They had the (AA) and (AG) genotypes but not the (GG) variant. No significant differences were found between cases and controls regarding (AG) and (AA) genotypes and A- and G-alleles (p = 0.09 and 0.3, respectively). We did not find significant differences between AEDs responders and resistant cases regarding the studied genotypes and alleles (p = 0.61 and 0.746, respectively). In the resistant group, we observed significant associations between the (AG) genotype and seizure frequency (p = 0.05), the tonic-clonic seizure (p < 0.001), the younger age of first seizure attack (p = 0.03), abnormal electroencephalogram (EEG) (p < 0.001), the positive family history of epilepsy (p = 0.006), topiramate (p = 0.03) and valproic acid (p < 0.001), while the (AA) genotype was associated with carbamazepine (p = 0.03). While in AEDs responders, there were significant associations between the AG genotype and the abnormal EEG activity, levetiracetam and carbamazepine (p = 0.016, 0.028 and 0.02). Conclusions The SCN1A-A3184G genotypes and alleles were not associated with the epilepsy risk among Egyptian children. Significant associations were reported between the AG genotype and some predictors of refractory epilepsy.
Collapse
|
17
|
A Multi-Disciplinary Team Approach to Genomic Testing for Drug-Resistant Epilepsy Patients—The GENIE Study. J Clin Med 2022; 11:jcm11144238. [PMID: 35888005 PMCID: PMC9319736 DOI: 10.3390/jcm11144238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Background. The genomic era has led to enormous progress in clinical care and a multi-disciplinary team (MDT) approach is imperative for integration of genomics into epilepsy patient care. Methods. The MDT approach involved patient selection, genomic testing choice, variant discussions and return of results. Genomics analysis included cytogenomic testing and whole exome sequencing (WES). Neurologist surveys were undertaken at baseline and after genomic testing to determine if genomic diagnoses would alter their management, and if there was a change in confidence in genomic testing and neurologist perceptions of the MDT approach. Results. The total diagnostic yield from all genomic testing was 17% (11/66), with four diagnoses from cytogenomic analyses. All chromosomal microarray (CMA) diagnoses were in patients seen by adult neurologists. Diagnostic yield for WES was 11% (7/62). The most common gene with pathogenic variants was DCX, reported in three patients, of which two were mosaic. The genomic diagnosis impacted management in 82% (9/11). There was increased confidence with integrating genomics into clinical care (Pearson chi square = 83, p = 0.004) and qualitative comments were highly supportive of the MDT approach. Conclusions. We demonstrated diagnostic yield from genomic testing, and the impact on management in a cohort with drug-resistant epilepsy. The MDT approach increased confidence in genomic testing and neurologists valued the input from this approach. The utility of CMA was demonstrated in epilepsy patients seen by adult neurologists as was the importance of considering mosaicism for previously undiagnosed patients.
Collapse
|
18
|
Xian J, Parthasarathy S, Ruggiero SM, Balagura G, Fitch E, Helbig K, Gan J, Ganesan S, Kaufman MC, Ellis CA, Lewis-Smith D, Galer P, Cunningham K, O’Brien M, Cosico M, Baker K, Darling A, Veiga de Goes F, El Achkar CM, Doering JH, Furia F, García-Cazorla Á, Gardella E, Geertjens L, Klein C, Kolesnik-Taylor A, Lammertse H, Lee J, Mackie A, Misra-Isrie M, Olson H, Sexton E, Sheidley B, Smith L, Sotero L, Stamberger H, Syrbe S, Thalwitzer KM, van Berkel A, van Haelst M, Yuskaitis C, Weckhuysen S, Prosser B, Son Rigby C, Demarest S, Pierce S, Zhang Y, Møller RS, Bruining H, Poduri A, Zara F, Verhage M, Striano P, Helbig I. Assessing the landscape of STXBP1-related disorders in 534 individuals. Brain 2022; 145:1668-1683. [PMID: 35190816 PMCID: PMC9166568 DOI: 10.1093/brain/awab327] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Disease-causing variants in STXBP1 are among the most common genetic causes of neurodevelopmental disorders. However, the phenotypic spectrum in STXBP1-related disorders is wide and clear correlations between variant type and clinical features have not been observed so far. Here, we harmonized clinical data across 534 individuals with STXBP1-related disorders and analysed 19 973 derived phenotypic terms, including phenotypes of 253 individuals previously unreported in the scientific literature. The overall phenotypic landscape in STXBP1-related disorders is characterized by neurodevelopmental abnormalities in 95% and seizures in 89% of individuals, including focal-onset seizures as the most common seizure type (47%). More than 88% of individuals with STXBP1-related disorders have seizure onset in the first year of life, including neonatal seizure onset in 47%. Individuals with protein-truncating variants and deletions in STXBP1 (n = 261) were almost twice as likely to present with West syndrome and were more phenotypically similar than expected by chance. Five genetic hotspots with recurrent variants were identified in more than 10 individuals, including p.Arg406Cys/His (n = 40), p.Arg292Cys/His/Leu/Pro (n = 30), p.Arg551Cys/Gly/His/Leu (n = 24), p.Pro139Leu (n = 12), and p.Arg190Trp (n = 11). None of the recurrent variants were significantly associated with distinct electroclinical syndromes, single phenotypic features, or showed overall clinical similarity, indicating that the baseline variability in STXBP1-related disorders is too high for discrete phenotypic subgroups to emerge. We then reconstructed the seizure history in 62 individuals with STXBP1-related disorders in detail, retrospectively assigning seizure type and seizure frequency monthly across 4433 time intervals, and retrieved 251 anti-seizure medication prescriptions from the electronic medical records. We demonstrate a dynamic pattern of seizure control and complex interplay with response to specific medications particularly in the first year of life when seizures in STXBP1-related disorders are the most prominent. Adrenocorticotropic hormone and phenobarbital were more likely to initially reduce seizure frequency in infantile spasms and focal seizures compared to other treatment options, while the ketogenic diet was most effective in maintaining seizure freedom. In summary, we demonstrate how the multidimensional spectrum of phenotypic features in STXBP1-related disorders can be assessed using a computational phenotype framework to facilitate the development of future precision-medicine approaches.
Collapse
Affiliation(s)
- Julie Xian
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Neuroscience Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shridhar Parthasarathy
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Department of Biology, The College of New Jersey, Ewing Township, NJ 08618, USA
| | - Sarah M Ruggiero
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS ‘G. Gaslini’ Institute, Genoa, Italy
| | - Eryn Fitch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Katherine Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shiva Ganesan
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Michael C Kaufman
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Colin A Ellis
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
- Royal Victoria Infirmary, Newcastle-upon-Tyne NE1 4LP, UK
| | - Peter Galer
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristin Cunningham
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Margaret O’Brien
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mahgenn Cosico
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Alejandra Darling
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Fernanda Veiga de Goes
- Department of Pediatrics and Pediatric Neurology Laboratory, Instituto Fernandes Figueira, Rio de Janeiro 22250-020, Brazil
| | - Christelle M El Achkar
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Jan Henje Doering
- Division of Pediatric Epileptology, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Francesca Furia
- Department of Clinical Neurophysiology, Danish Epilepsy Center Filadelfia, Dianalund 4293, Denmark
| | - Ángeles García-Cazorla
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Elena Gardella
- Department of Clinical Neurophysiology, Danish Epilepsy Center Filadelfia, Dianalund 4293, Denmark
| | - Lisa Geertjens
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Courtney Klein
- Departments of Pediatrics and Neurology, Children's Hospital Colorado, Aurora, CO 80045, USA
| | | | - Hanna Lammertse
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Alexandra Mackie
- Departments of Pediatrics and Neurology, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Mala Misra-Isrie
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Heather Olson
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Emma Sexton
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Beth Sheidley
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Lacey Smith
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Luiza Sotero
- Department of Pediatrics and Pediatric Neurology Laboratory, Instituto Fernandes Figueira, Rio de Janeiro 22250-020, Brazil
| | - Hannah Stamberger
- Division of Neurology, University Hospital Antwerp, Antwerp, Belgium
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Kim Marie Thalwitzer
- Division of Pediatric Epileptology, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Annemiek van Berkel
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Mieke van Haelst
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Christopher Yuskaitis
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Sarah Weckhuysen
- Division of Neurology, University Hospital Antwerp, Antwerp, Belgium
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Ben Prosser
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Scott Demarest
- Departments of Pediatrics and Neurology, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Samuel Pierce
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuehua Zhang
- Department of Pediatrics, Beijing University First Hospital, Beijing, China
| | - Rikke S Møller
- Department of Clinical Neurophysiology, Danish Epilepsy Center Filadelfia, Dianalund 4293, Denmark
| | - Hilgo Bruining
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Annapurna Poduri
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Matthijs Verhage
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS ‘G. Gaslini’ Institute, Genoa, Italy
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Zimmern V, Minassian B, Korff C. A Review of Targeted Therapies for Monogenic Epilepsy Syndromes. Front Neurol 2022; 13:829116. [PMID: 35250833 PMCID: PMC8891748 DOI: 10.3389/fneur.2022.829116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Genetic sequencing technologies have led to an increase in the identification and characterization of monogenic epilepsy syndromes. This increase has, in turn, generated strong interest in developing “precision therapies” based on the unique molecular genetics of a given monogenic epilepsy syndrome. These therapies include diets, vitamins, cell-signaling regulators, ion channel modulators, repurposed medications, molecular chaperones, and gene therapies. In this review, we evaluate these therapies from the perspective of their clinical validity and discuss the future of these therapies for individual syndromes.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
- *Correspondence: Vincent Zimmern
| | - Berge Minassian
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
| | - Christian Korff
- Pediatric Neurology Unit, University Hospitals, Geneva, Switzerland
| |
Collapse
|
20
|
Łukawski K, Czuczwar SJ. Emerging therapeutic targets for epilepsy: Preclinical insights. Expert Opin Ther Targets 2022; 26:193-206. [PMID: 35130119 DOI: 10.1080/14728222.2022.2039120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Around 30% of patients with epilepsy suffer from drug-resistant seizures. Drug-resistant seizures may have significant consequences such as sudden death in epilepsy, injuries, memory disturbances, and childhood learning and developmental problems. Conventional and newer available antiepileptic drugs (AEDs) work via numerous mechanisms - mainly through inhibition of voltage-operated Na+ and/or Ca2+ channels, excitation of K+ channels, enhancement of GABA-mediated inhibition and/or blockade of glutamate-produced excitation. However, the discovery and development of novel brain targets may improve the future pharmacological management of epilepsy and hence is of pivotal importance. AREAS COVERED This article examines novel drug targets such as brain multidrug efflux transporters and inflammatory pathways; it progresses to discuss possible strategies for the management of drug-resistant seizures. Reduction of the consequences of blood brain barrier dysfunction and enhancement of anti-oxidative defense are discussed. EXPERT OPINION Novel drug targets comprise brain multidrug efflux transporters, TGF-β, Nrf2-ARE or m-TOR signaling and inflammatory pathways. Gene therapy and antagomirs seem the most promising targets. Epileptic foci may be significantly suppressed by viral-vector-mediated gene transfer, leading to an increased in situ concentration of inhibitory factors (for instance, galanin). Also, antagomirs offer a promising possibility of seizure inhibition by silencing micro-RNAs involved in epileptogenesis and possibly in seizure generation.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland.,Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland.,Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
21
|
He Q, Shen H, Shao X, Chen W, Wu Y, Liu R, Li S, Zhou Z. Cardiovascular Phenotypes Profiling for L-Transposition of the Great Arteries and Prognosis Analysis. Front Cardiovasc Med 2022; 8:781041. [PMID: 35127856 PMCID: PMC8814104 DOI: 10.3389/fcvm.2021.781041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives Congenitally corrected transposition of the great arteries (ccTGA) is a rare and complex congenital heart disease with the characteristics of double discordance. Enormous co-existed anomalies are the culprit of prognosis evaluation and clinical decision. We aim at delineating a novel ccTGA clustering modality under human phenotype ontology (HPO) instruction and elucidating the relationship between phenotypes and prognosis in patients with ccTGA. Methods A retrospective review of 270 patients diagnosed with ccTGA in Fuwai hospital from 2009 to 2020 and cross-sectional follow-up were performed. HPO-instructed clustering method was administered in ccTGA risk stratification. Kaplan-Meier survival, Landmark analysis, and cox regression analysis were used to investigate the difference of outcomes among clusters. Results The median follow-up time was 4.29 (2.07–7.37) years. A total of three distinct phenotypic clusters were obtained after HPO-instructed clustering with 21 in cluster 1, 136 in cluster 2, and 113 in cluster 3. Landmark analysis revealed significantly worse mid-term outcomes in all-cause mortality (p = 0.021) and composite endpoints (p = 0.004) of cluster 3 in comparison with cluster 1 and cluster 2. Multivariate analysis indicated that pulmonary arterial hypertension (PAH), atrioventricular septal defect (AVSD), and arrhythmia were risk factors for composite endpoints. Moreover, the surgical treatment was significantly different among the three groups (p < 0.001) and surgical strategies had different effects on the prognosis of the different phenotypic clusters. Conclusions Human phenotype ontology-instructed clustering can be a potentially powerful tool for phenotypic risk stratification in patients with complex congenital heart diseases, which may improve prognosis prediction and clinical decision.
Collapse
Affiliation(s)
- Qiyu He
- Pediatric Cardiac Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huayan Shen
- Department of Laboratory Medicine, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyang Shao
- Department of Laboratory Medicine, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Chen
- Department of Laboratory Medicine, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yafeng Wu
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
| | - Rui Liu
- Pediatric Cardiac Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shoujun Li
- Pediatric Cardiac Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Shoujun Li
| | - Zhou Zhou
- Department of Laboratory Medicine, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Zhou Zhou
| |
Collapse
|
22
|
Jensen TL, Gøtzsche CR, Woldbye DPD. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front Mol Neurosci 2021; 14:695937. [PMID: 34690692 PMCID: PMC8527017 DOI: 10.3389/fnmol.2021.695937] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, gene therapy has been raising hopes toward viable treatment strategies for rare genetic diseases for which there has been almost exclusively supportive treatment. We here review this progress at the pre-clinical and clinical trial levels as well as market approvals within diseases that specifically affect the brain and spinal cord, including degenerative, developmental, lysosomal storage, and metabolic disorders. The field reached an unprecedented milestone when Zolgensma® (onasemnogene abeparvovec) was approved by the FDA and EMA for in vivo adeno-associated virus-mediated gene replacement therapy for spinal muscular atrophy. Shortly after EMA approved Libmeldy®, an ex vivo gene therapy with lentivirus vector-transduced autologous CD34-positive stem cells, for treatment of metachromatic leukodystrophy. These successes could be the first of many more new gene therapies in development that mostly target loss-of-function mutation diseases with gene replacement (e.g., Batten disease, mucopolysaccharidoses, gangliosidoses) or, less frequently, gain-of-toxic-function mutation diseases by gene therapeutic silencing of pathologic genes (e.g., amyotrophic lateral sclerosis, Huntington's disease). In addition, the use of genome editing as a gene therapy is being explored for some diseases, but this has so far only reached clinical testing in the treatment of mucopolysaccharidoses. Based on the large number of planned, ongoing, and completed clinical trials for rare genetic central nervous system diseases, it can be expected that several novel gene therapies will be approved and become available within the near future. Essential for this to happen is the in depth characterization of short- and long-term effects, safety aspects, and pharmacodynamics of the applied gene therapy platforms.
Collapse
Affiliation(s)
- Thomas Leth Jensen
- Department of Neurology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|
23
|
Iizumi M, Oota-Ishigaki A, Yamashita M, Hayashi T. Reduced Effect of Anticonvulsants on AMPA Receptor Palmitoylation-Deficient Mice. Front Pharmacol 2021; 12:711737. [PMID: 34483921 PMCID: PMC8416418 DOI: 10.3389/fphar.2021.711737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022] Open
Abstract
AMPA receptors are responsible for fast excitatory synaptic transmission in the mammalian brain. Post-translational protein S-palmitoylation of AMPA receptor subunits GluA1-4 reversibly regulates synaptic AMPA receptor expression, resulting in long-lasting changes in excitatory synaptic strengths. Our previous studies have shown that GluA1 C-terminal palmitoylation-deficient (GluA1C811S) mice exhibited hyperexcitability in the cerebrum and elevated seizure susceptibility without affecting brain structure or basal synaptic transmission. Moreover, some inhibitory GABAergic synapses-targeting anticonvulsants, such as valproic acid, phenobarbital, and diazepam, had less effect on these AMPA receptor palmitoylation-deficient mutant mice. This work explores pharmacological effect of voltage-gated ion channel-targeted anticonvulsants, phenytoin and trimethadione, on GluA1C811S mice. Similar to GABAergic synapses-targeting anticonvulsants, anticonvulsive effects were also reduced for both sodium channel- and calcium channel-blocking anticonvulsants, which suppress excess excitation. These data strongly suggest that the GluA1C811S mice generally underlie the excessive excitability in response to seizure-inducing stimulation. AMPA receptor palmitoylation site could be a novel target to develop unprecedented type of anticonvulsants and GluA1C811S mice are suitable as a model animal for broadly evaluating pharmacological effectiveness of antiepileptic drugs.
Collapse
Affiliation(s)
- Madoka Iizumi
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Akiko Oota-Ishigaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mariko Yamashita
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Takashi Hayashi
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
24
|
Beslow LA, Helbig I, Fox CK. Long-Term Risk of Epilepsy After Pediatric Stroke and Potential Genetic Vulnerabilities. Stroke 2021; 52:3541-3542. [PMID: 34470482 DOI: 10.1161/strokeaha.121.036376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lauren A Beslow
- Division of Neurology, Children's Hospital of Philadelphia, PA (L.A.B., I.H.)
- Department of Neurology (L.A.B., I.H.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia
- Department of Pediatrics (L.A.B.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, PA (L.A.B., I.H.)
- Department of Neurology (L.A.B., I.H.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia
- The Epilepsy NeuroGenetics Initiative (ENGIN) (I.H.), Children's Hospital of Philadelphia, PA
- Department of Biomedical and Health Informatics (DBHi) (I.H.), Children's Hospital of Philadelphia, PA
| | - Christine K Fox
- Departments of Neurology and Pediatrics (C.K.F.), University of California San Francisco
| |
Collapse
|
25
|
Binaafar S, Garshasbi M, Tavasoli AR, Badv RS, Hosseiny SMM, Samanta D, Rabbani B, Mahdieh N. Nonsyndromic Early-Onset Epileptic Encephalopathies: Two Novel KCTD7 Pathogenic Variants and a Literature Review. Dev Neurosci 2021; 43:348-357. [PMID: 34469883 DOI: 10.1159/000519318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Early-onset epileptic encephalopathies (EOEE) affect cognitive, sensory, and motor development. Genetic variations are among the identifiable primary causes of these syndromes. However, some patients have been reported to be affected by EOEE without any other clinical symptoms and signs. We study the genotype and phenotype of patients with nonsyndromic early-onset epileptic encephalopathy (NSEOEE) and report 2 novel patients from Iran. A comprehensive search was conducted in PubMed, John Willy, Springer, Elsevier, and Google Scholar databases to collect related information of all the previously reported cases with KCTD7 mutations. Fifty-four patients (from 40 families) were investigated. Using trio-whole-exome sequencing (trio-WES) and Sanger sequencing, the possible genetic causes of the disorder were checked. The probable impacts of the identified variants on the KCTD7 protein structure and function were predicted. This study provided a detailed overview of all published KCTD7 mutations and 2 de novo ones. We identified 2 novel homozygous variants of uncertain significance, c.458 G > A p. Arg153His and c.529C > T (p.Arg177Cys), in KCTD7 (NM_153033.4) (Chr7(GRCh37)). There is a significant wide distribution of the KCTD7 gene causing NSEOEE among different populations. In conclusion, KCTD7 mutations demonstrate a diverse geographical distribution alongside a wide range of ethnicities. This highlights the importance of careful consideration in the WES data analysis. Mutations of this gene may be a common cause of NSEOEE. Also, this study imprints targeted therapeutic opportunities for potassium channelepsies such as KCTD7-related NSEOEE.
Collapse
Affiliation(s)
- Sima Binaafar
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Children's Hospital Center, Pediatric Center of Excellence, Tehran University of Medical Center, Tehran, Iran
| | - Seyyed Mohammad Mahdi Hosseiny
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Rahman MM, Fatema K. Genetic Diagnosis in Children with Epilepsy and Developmental Disorders by Targeted Gene Panel Analysis in a Developing Country. J Epilepsy Res 2021; 11:22-31. [PMID: 34395220 PMCID: PMC8357555 DOI: 10.14581/jer.21004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose In childhood epilepsy, genetic etiology is increasingly recognized in recent years with the advent of next generation sequencing. This has broadened the scope of precision medicine in intractable epilepsy, particularly epileptic encephalopathy (EE). Developmental disorder (DD) is an integral part of childhood uncontrolled epilepsy. This study was performed to investigate the genetic etiology of childhood epilepsy and DD. Methods In this study, 40 children with epilepsy and DD with positive genetic mutation were included retrospectively. It was done in a tertiary care referral hospital of Bangladesh from January 2019 to December 2020. Genetic study was done by next generation sequencing. In all cases electroencephalography, neuroimaging was done and reviewed. Results In total, 40 children were enrolled and the average age was 41.4±35.850 months with a male predominance (67.5%). Generalized seizure was the predominant type of seizure. Regarding the association, intellectual disability and attention deficit hyperactivity disorder was common. Seventeen cases had genetically identified early infantile EE and common mutations observed were SCN1A (3), SCN8A (2), SLC1A2 (2), KCNT1 (2), and etc. Five patients of progressive myoclonic epilepsy were diagnosed and the mutations identified were in KCTD7, MFSD8, and CLN6 genes. Three cases had mitochondrial gene mutation (MT-ND5, MT-CYB). Some rare syndromes like Gibbs syndrome, Kohlschütter-Tönz syndrome, Cockayne syndrome, Pitt-Hopkins syndrome and cerebral creatine deficiency were diagnosed. Conclusions This is the first study from Bangladesh on genetics of epilepsy and DD. This will help to improve the understanding of genetics epilepsy of this region as well as contribute in administering precision medicine in these patients.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Pediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Kanij Fatema
- Department of Pediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| |
Collapse
|
27
|
Łukawski K, Czuczwar SJ. Understanding mechanisms of drug resistance in epilepsy and strategies for overcoming it. Expert Opin Drug Metab Toxicol 2021; 17:1075-1090. [PMID: 34310255 DOI: 10.1080/17425255.2021.1959912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The present evidence indicates that approximately 70% of patients with epilepsy can be successfully treated with antiepileptic drugs (AEDs). A significant proportion of patients are not under sufficient control, and pharmacoresistant epilepsy is clearly associated with poor quality of life and increased morbidity and mortality. There is a great need for newer therapeutic options able to reduce the percentage of drug-resistant patients. AREAS COVERED A number of hypotheses trying to explain the development of pharmacoresistance have been put forward. These include: target hypothesis (altered AED targets), transporter (overexpression of brain efflux transporters), pharmacokinetic (overexpression of peripheral efflux transporters in the intestine or kidneys), intrinsic severity (initial high seizure frequency), neural network (aberrant networks), and gene variant hypothesis (genetic polymorphisms). EXPERT OPINION A continuous search for newer AEDs or among non-AEDs (blockers of efflux transporters, interleukin antagonists, cyclooxygenase inhibitors, mTOR inhibitors, angiotensin II receptor antagonists) may provide efficacious drugs for the management of drug-resistant epilepsy. Also, combinations of AEDs exerting synergy in preclinical and clinical studies (for instance, lamotrigine + valproate, levetiracetam + valproate, topiramate + carbamazepine) might be of importance in this respect. Preclinically antagonistic combinations must be avoided (lamotrigine + carbamazepine, lamotrigine + oxcarbazepine).
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland.,Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
28
|
Epilepsy Syndromes in the First Year of Life and Usefulness of Genetic Testing for Precision Therapy. Genes (Basel) 2021; 12:genes12071051. [PMID: 34356067 PMCID: PMC8307222 DOI: 10.3390/genes12071051] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
The high pace of gene discovery has resulted in thrilling advances in the field of epilepsy genetics. Clinical testing with comprehensive gene panels, exomes, or genomes are now increasingly available and have led to a significant higher diagnostic yield in early-onset epilepsies and enabled precision medicine approaches. These have been instrumental in providing insights into the pathophysiology of both early-onset benign and self-limited syndromes and devastating developmental and epileptic encephalopathies (DEEs). Genetic heterogeneity is seen in many epilepsy syndromes such as West syndrome and epilepsy of infancy with migrating focal seizures (EIMFS), indicating that two or more genetic loci produce the same or similar phenotypes. At the same time, some genes such as SCN2A can be associated with a wide range of epilepsy syndromes ranging from self-limited familial neonatal epilepsy at the mild end to Ohtahara syndrome, EIFMS, West syndrome, Lennox–Gastaut syndrome, or unclassifiable DEEs at the severe end of the spectrum. The aim of this study was to review the clinical and genetic heterogeneity associated with epilepsy syndromes starting in the first year of life including: Self-limited familial neonatal, neonatal-infantile or infantile epilepsies, genetic epilepsy with febrile seizures plus spectrum, myoclonic epilepsy in infancy, Ohtahara syndrome, early myoclonic encephalopathy, West syndrome, Dravet syndrome, EIMFS, and unclassifiable DEEs. We also elaborate on the advantages and pitfalls of genetic testing in such conditions. Finally, we describe how a genetic diagnosis can potentially enable precision therapy in monogenic epilepsies and emphasize that early genetic testing is a cornerstone for such therapeutic strategies.
Collapse
|
29
|
Choi HS, Ko A, Kim SH, Lee ST, Choi JR, Lee JS, Kim HD, Kang HC. Disparate treatment outcomes according to presence of pathogenic mutations in West syndrome. Epilepsia 2021; 62:1656-1664. [PMID: 34008866 DOI: 10.1111/epi.16924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE It has been known that West syndrome (WS) patients with an unknown etiology have better clinical outcomes than patients with an identified etiology of any kind. However, after the exponential discovery of genes with mutations responsible for developmental and epileptic encephalopathy (DEE), a significant proportion of patients with a previously unknown etiology have been reclassified as having a genetic etiology, requiring reinvestigation of this concept. Therefore, this study investigated clinical outcomes of WS patients with genetic and unknown etiologies. METHODS Patients diagnosed with WS without structural or metabolic abnormalities were included in this study. The DEE gene panel, comprising 172 genes, was performed for all patients. All patients were treated using the same treatment protocol for vigabatrin and high-dose prednisolone add-on therapy. Favorable responders were defined as patients who were seizure-free and whose electroencephalogram showed Burden of Amplitudes and Epileptiform Discharges scores of 2 or less. RESULTS Of the 58 patients included in the study, 17 (29.3%) patients had an identified genetic etiology. There was no significant difference in rates of favorable response at 1 and 3 months after treatment, but significantly higher proportions of patients exhibited favorable responses among those with an unknown etiology at long-term follow-up (41.2% vs. 78.0%, p = .006 at 6 months; 29.4% vs. 65.9%, p = .011 at 1 year; 23.5 vs. 65.9%, p = .003 at 2 years). Moreover, the mental, psychomotor, and social age quotients of the patients with an identified genetic etiology were reduced to a significantly greater degree since diagnosis compared with those of the patients with an unknown etiology. SIGNIFICANCE WS patients with genetic and unknown etiologies did not initially exhibit significantly different response rates to the vigabatrin and high-dose prednisolone add-on treatment. However, patients with a genetic etiology exhibited significantly higher relapse rates and significantly poorer long-term responses.
Collapse
Affiliation(s)
- Han Som Choi
- Department of Pediatrics, Ewha Womans University Seoul Hospital, Ewha Womans University School of Medicine, Seoul, South Korea.,Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ara Ko
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Se Hee Kim
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Heung Dong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
30
|
Marshall GF, Gonzalez-Sulser A, Abbott CM. Modelling epilepsy in the mouse: challenges and solutions. Dis Model Mech 2021; 14:dmm.047449. [PMID: 33619078 PMCID: PMC7938804 DOI: 10.1242/dmm.047449] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In most mouse models of disease, the outward manifestation of a disorder can be measured easily, can be assessed with a trivial test such as hind limb clasping, or can even be observed simply by comparing the gross morphological characteristics of mutant and wild-type littermates. But what if we are trying to model a disorder with a phenotype that appears only sporadically and briefly, like epileptic seizures? The purpose of this Review is to highlight the challenges of modelling epilepsy, in which the most obvious manifestation of the disorder, seizures, occurs only intermittently, possibly very rarely and often at times when the mice are not under direct observation. Over time, researchers have developed a number of ways in which to overcome these challenges, each with their own advantages and disadvantages. In this Review, we describe the genetics of epilepsy and the ways in which genetically altered mouse models have been used. We also discuss the use of induced models in which seizures are brought about by artificial stimulation to the brain of wild-type animals, and conclude with the ways these different approaches could be used to develop a wider range of anti-seizure medications that could benefit larger patient populations. Summary: This Review discusses the challenges of modelling epilepsy in mice, a condition in which the outward manifestation of the disorder appears only sporadically, and reviews possible solutions encompassing both genetic and induced models.
Collapse
Affiliation(s)
- Grant F Marshall
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Discovery Brain Sciences, 1 George Square, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
31
|
Łukawski K, Czuczwar SJ. Developing precision treatments for epilepsy using patient and animal models. Expert Rev Neurother 2020; 21:1241-1250. [PMID: 33339471 DOI: 10.1080/14737175.2021.1866989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Phenytoin was the first antiepileptic drug (AED) discovered in an animal model of seizures whose clinical efficacy was subsequently confirmed. This clearly indicated that a search for other AEDs had to consider animal studies.Areas covered: Main seizure tests used for the evaluation of possible anticonvulsive activity of potential anticonvulsants and their predictive values have been reviewed. Procedures used for the estimation of antiepileptogenic effects have been also included.Expert opinion: First-line seizure models comprise maximal electroshock (MES)-, pentylenetetrazol (PTZ)- and kindling-induced convulsions in rodents. The MES test may be considered as a convenient and easy model of generalized tonic-clonic seizures, PTZ test - as a model of generalized myoclonic seizures and to a certain degree - absence seizures. Kindled seizures (for example, from amygdala) may be regarded as a model of focal seizures. Some tests have been suggested for the search of AEDs effective in drug-resistant seizures - for instance, 6 Hz (44 mA) test or intrahippocampal kainate model of mesial temporal lobe epilepsy. There are also recommendations from experimental epileptology on synergistic AED combinations for patients with drug-resistant seizures. The clinical evidence on this issue is scarce and favors a combined treatment with valproate + lamotrigine.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland.,Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
32
|
Fasham J, Leslie JS, Harrison JW, Deline J, Williams KB, Kuhl A, Scott Schwoerer J, Cross HE, Crosby AH, Baple EL. No association between SCN9A and monogenic human epilepsy disorders. PLoS Genet 2020; 16:e1009161. [PMID: 33216760 PMCID: PMC7717534 DOI: 10.1371/journal.pgen.1009161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/04/2020] [Accepted: 09/28/2020] [Indexed: 11/27/2022] Open
Abstract
Many studies have demonstrated the clinical utility and importance of epilepsy gene panel testing to confirm the specific aetiology of disease, enable appropriate therapeutic interventions, and inform accurate family counselling. Previously, SCN9A gene variants, in particular a c.1921A>T p.(Asn641Tyr) substitution, have been identified as a likely autosomal dominant cause of febrile seizures/febrile seizures plus and other monogenic seizure phenotypes indistinguishable from those associated with SCN1A, leading to inclusion of SCN9A on epilepsy gene testing panels. Here we present serendipitous findings of genetic studies that identify the SCN9A c.1921A>T p.(Asn641Tyr) variant at high frequency in the Amish community in the absence of such seizure phenotypes. Together with findings in UK Biobank these data refute an association of SCN9A with epilepsy, which has important clinical diagnostic implications.
Collapse
Affiliation(s)
- James Fasham
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, United Kingdom
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital, Gladstone Road, Exeter, United Kingdom
| | - Joseph S. Leslie
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, United Kingdom
| | - Jamie W. Harrison
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, United Kingdom
- University of Exeter, Department of Biosciences, Exeter, United Kingdom
| | - James Deline
- Center for Special Children, La Farge Medical Clinic-VMH, La Farge, Wisconsin, United States of America
| | - Katie B. Williams
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ashley Kuhl
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jessica Scott Schwoerer
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Harold E. Cross
- Department of Ophthalmology, University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Andrew H. Crosby
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, United Kingdom
| | - Emma L. Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, United Kingdom
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital, Gladstone Road, Exeter, United Kingdom
| |
Collapse
|
33
|
Galer PD, Ganesan S, Lewis-Smith D, McKeown SE, Pendziwiat M, Helbig KL, Ellis CA, Rademacher A, Smith L, Poduri A, Seiffert S, von Spiczak S, Muhle H, van Baalen A, Thomas RH, Krause R, Weber Y, Helbig I, Thomas RH, Krause R, Weber Y, Helbig I. Semantic Similarity Analysis Reveals Robust Gene-Disease Relationships in Developmental and Epileptic Encephalopathies. Am J Hum Genet 2020; 107:683-697. [PMID: 32853554 PMCID: PMC7536581 DOI: 10.1016/j.ajhg.2020.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
More than 100 genetic etiologies have been identified in developmental and epileptic encephalopathies (DEEs), but correlating genetic findings with clinical features at scale has remained a hurdle because of a lack of frameworks for analyzing heterogenous clinical data. Here, we analyzed 31,742 Human Phenotype Ontology (HPO) terms in 846 individuals with existing whole-exome trio data and assessed associated clinical features and phenotypic relatedness by using HPO-based semantic similarity analysis for individuals with de novo variants in the same gene. Gene-specific phenotypic signatures included associations of SCN1A with “complex febrile seizures” (HP: 0011172; p = 2.1 × 10−5) and “focal clonic seizures” (HP: 0002266; p = 8.9 × 10−6), STXBP1 with “absent speech” (HP: 0001344; p = 1.3 × 10−11), and SLC6A1 with “EEG with generalized slow activity” (HP: 0010845; p = 0.018). Of 41 genes with de novo variants in two or more individuals, 11 genes showed significant phenotypic similarity, including SCN1A (n = 16, p < 0.0001), STXBP1 (n = 14, p = 0.0021), and KCNB1 (n = 6, p = 0.011). Including genetic and phenotypic data of control subjects increased phenotypic similarity for all genetic etiologies, whereas the probability of observing de novo variants decreased, emphasizing the conceptual differences between semantic similarity analysis and approaches based on the expected number of de novo events. We demonstrate that HPO-based phenotype analysis captures unique profiles for distinct genetic etiologies, reflecting the breadth of the phenotypic spectrum in genetic epilepsies. Semantic similarity can be used to generate statistical evidence for disease causation analogous to the traditional approach of primarily defining disease entities through similar clinical features.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Rhys H Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; Royal Victoria Infirmary, Newcastle-upon-Tyne NE1 4LP, UK
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Yvonne Weber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany; Department of Epileptology and Neurology, University of Aachen, 52074 Aachen, Germany
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Han JY, Lee HJ, Lee YM, Park J. Identification of Missense ADGRV1 Mutation as a Candidate Genetic Cause of Familial Febrile Seizure 4. CHILDREN (BASEL, SWITZERLAND) 2020; 7:children7090144. [PMID: 32962041 PMCID: PMC7552766 DOI: 10.3390/children7090144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023]
Abstract
Febrile seizure (FS) is related to a febrile illness (temperature > 38 °C) not caused by an infection of central nervous system, without neurologic deficits in children aged 6–60 months. The family study implied a polygenic model in the families of proband(s) with single FS, however in families with repeated FS, inheritance was matched to autosomal dominance with reduced disease penetrance. A 20 month-old girl showed recurrent FS and afebrile seizures without developmental delay or intellectual disability. The seizures disappeared after 60 months without anti-seizure medication. The 35 year-old proband’s mother also experienced five episodes of simple FS and two episodes of unprovoked seizures before 5 years old. Targeted exome sequencing was conducted along with epilepsy/seizure-associated gene-filtering to identify the candidate causative mutation. As a result, a heterozygous c.2039A>G of the ADGRV1 gene leading to a codon change of aspartic acid to glycine at the position 680 (rs547076322) was identified. This protein’s glycine residue is highly conserved, and its allele frequency is 0.00002827 in the gnomAD population database. ADGRV1 mutation may have an influential role in the occurrence of genetic epilepsies, especially those with febrile and afebrile seizures. Further investigation of ADGRV1 mutations is needed to prove that it is a significant susceptible gene for febrile and/or afebrile seizures in early childhood.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Hyun Joo Lee
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Young-Mock Lee
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul 06273, Korea;
- Correspondence: (Y.-M.L.); (J.P.); Tel.: +82-2-2019-3354 (Y.-M.L.); +82-42-220-9799 (J.P.); Fax: +82-2-3261-9473 (Y.-M.L.); +82-42-220-9915 (J.P.)
| | - Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea
- Correspondence: (Y.-M.L.); (J.P.); Tel.: +82-2-2019-3354 (Y.-M.L.); +82-42-220-9799 (J.P.); Fax: +82-2-3261-9473 (Y.-M.L.); +82-42-220-9915 (J.P.)
| |
Collapse
|
35
|
Löscher W, Klein P. The feast and famine: Epilepsy treatment and treatment gaps in early 21st century. Neuropharmacology 2020; 170:108055. [PMID: 32199986 DOI: 10.1016/j.neuropharm.2020.108055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| |
Collapse
|