1
|
Masoumi M, Manavi MA, Mohammad Jafari R, Mirzaei A, Hedayatyanfard K, Beigmohammadi MT, Dehpour AR. Cannabidiol Anticonvulsant Effects Against Lithium-Pilocarpine-Induced Status Epilepticus in Male Rats Are Mediated by Neuroinflammation Modulation and Cannabinoids 1 (CB1), But Not CB2 and GABA A Receptors. Cannabis Cannabinoid Res 2024; 9:797-808. [PMID: 37976207 DOI: 10.1089/can.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Background: Status epilepticus (SE) is a series of seizures that can lead to serious neurological damages. Cannabidiol (CBD) is extracted from the cannabis plant, which has been approved as an antiseizure medication. This study aimed to determine the efficacy of various doses of CBD on lithium-pilocarpine-induced SE in rats and possible involvement of multiple pharmacological pathways. We hypothesized that cannabinoid receptors type 1 (CB1) and CB2, as well as GABAA receptors, might have important roles in the anticonvulsant effects of CBD against SE by its anti-inflammatory effects. Methods: SE was induced by intraperitoneal (i.p.) injection of lithium (127 mg/kg, i.p.) and pilocarpine (60 mg/kg, i.p., 20 h after lithium). Forty-two male rats were divided into seven groups (including control and sham groups), and the treated groups received different doses of CBD (1, 3, 5, 10, and 25 mg/kg, i.p.). SE score was recorded over the next 2 h following pilocarpine injection. Then, we measured the levels of pro-inflammatory cytokines, including interleukin (IL)-lβ and tumor necrosis factor (TNF)-α, using ELISA kits. Also we analyzed the expression of CB1, CB2, and GABAA receptors using the Western blot technique. Results: CBD at 5 mg/kg significantly reduced Racine's scale and duration of seizures, and increased the onset time of seizure. Moreover, CBD 5 mg/kg caused significant reductions in the elevated levels of IL-lβ and TNF-α, as well as a significant increase in the decreased level of CB1 receptor expression compared to the control group. In other word, CBD reverted the effects of SE in terms of neuroinflammation and CB1 receptor. Based on the obtained results, CBD was not able to restore the declined levels of CB2 or GABAA receptors. Conclusion: Our study found anticonvulsant effects of CBD on the SE rat model induced by lithium-pilocarpine with probable involvement of CB1 receptors and anti-inflammatory effects by reducing IL-1β and TNF-α markers independent of CB2 and GABAA receptors.
Collapse
Affiliation(s)
- Mahla Masoumi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Keshvad Hedayatyanfard
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Beigmohammadi
- Department of Intensive Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Mashabela MD, Kappo AP. Anti-Cancer and Anti-Proliferative Potential of Cannabidiol: A Cellular and Molecular Perspective. Int J Mol Sci 2024; 25:5659. [PMID: 38891847 PMCID: PMC11171526 DOI: 10.3390/ijms25115659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Cannabinoids, the bioactive compounds found in Cannabis sativa, have been used for medicinal purposes for centuries, with early discoveries dating back to the BC era (BCE). However, the increased recreational use of cannabis has led to a negative perception of its medicinal and food applications, resulting in legal restrictions in many regions worldwide. Recently, cannabinoids, notably Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), have gained renewed interest in the medical field due to their anti-cancer properties. These properties include the inhibition of tumour growth and cell invasion, anti-inflammatory effects, and the induction of autophagy and apoptosis. As a result, the use of cannabinoids to treat chemotherapy-associated side effects, like nausea, vomiting, and pain, has increased, and there have been suggestions to implement the large-scale use of cannabinoids in cancer therapy. However, these compounds' cellular and molecular mechanisms of action still need to be fully understood. This review explores the recent evidence of CBD's efficacy as an anti-cancer agent, which is of interest due to its non-psychoactive properties. The current review will also provide an understanding of CBD's common cellular and molecular mechanisms in different cancers. Studies have shown that CBD's anti-cancer activity can be receptor-dependent (CB1, CB2, TRPV, and PPARs) or receptor-independent and can be induced through molecular mechanisms, such as ceramide biosynthesis, the induction of ER stress, and subsequent autophagy and apoptosis. It is projected that these molecular mechanisms will form the basis for the therapeutic applications of CBD. Therefore, it is essential to understand these mechanisms for developing and optimizing pre-clinical CBD-based therapies.
Collapse
Affiliation(s)
- Manamele Dannies Mashabela
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway, P.O. Box 524, Johannesburg 2006, South Africa;
| | | |
Collapse
|
3
|
Moreira FA, de Oliveira ACP, Santos VR, Moraes MFD. Cannabidiol and epilepsy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:135-147. [PMID: 39029983 DOI: 10.1016/bs.irn.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Cannabidiol (CBD) has been investigated as a pharmacological approach for treating a myriad of neurological and psychiatric disorders, the most successful of them being its use as an antiseizure drug (ASD). Indeed, CBD has reached the clinics for the treatment of certain epileptic syndromes. This chapter aims to overview the pharmacology of CBD and its potential mechanisms of action as an ASD. First, we give an outline of the concepts, mechanisms and pharmacology pertaining to the field of study of epilepsy and epileptic seizures. In the second section, we will summarize the effects of CBD as an ASD. Next, we will discuss its potential mechanisms of action to alleviate epileptic seizures, which seem to entail multiple neurotransmitters, receptors and intracellular pathways. Finally, we will conclude and present some limitations and perspectives for future studies.
Collapse
Affiliation(s)
- Fabrício A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Antônio C P de Oliveira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor R Santos
- Department of Morphology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Márcio F D Moraes
- Department of Physiology and Biophysics, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Javadzadeh Y, Santos A, Aquilino MS, Mylvaganam S, Urban K, Carlen PL. Cannabidiol Exerts Anticonvulsant Effects Alone and in Combination with Δ 9-THC through the 5-HT1A Receptor in the Neocortex of Mice. Cells 2024; 13:466. [PMID: 38534310 DOI: 10.3390/cells13060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Cannabinoids have shown potential in drug-resistant epilepsy treatment; however, we lack knowledge on which cannabinoid(s) to use, dosing, and their pharmacological targets. This study investigated (i) the anticonvulsant effect of Cannabidiol (CBD) alone and (ii) in combination with Delta-9 Tetrahydrocannabinol (Δ9-THC), as well as (iii) the serotonin (5-HT)1A receptor's role in CBD's mechanism of action. Seizure activity, induced by 4-aminopyridine, was measured by extracellular field recordings in cortex layer 2/3 of mouse brain slices. The anticonvulsant effect of 10, 30, and 100 µM CBD alone and combined with Δ9-THC was evaluated. To examine CBD's mechanism of action, slices were pre-treated with a 5-HT1A receptor antagonist before CBD's effect was evaluated. An amount of ≥30 µM CBD alone exerted significant anticonvulsant effects while 10 µM CBD did not. However, 10 µM CBD combined with low-dose Δ9-THC (20:3 ratio) displayed significantly greater anticonvulsant effects than either phytocannabinoid alone. Furthermore, blocking 5-HT1A receptors before CBD application significantly abolished CBD's effects. Thus, our results demonstrate the efficacy of low-dose CBD and Δ9-THC combined and that CBD exerts its effects, at least in part, through 5-HT1A receptors. These results could address drug-resistance while providing insight into CBD's mechanism of action, laying the groundwork for further testing of cannabinoids as anticonvulsants.
Collapse
Affiliation(s)
- Yasaman Javadzadeh
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Alexandra Santos
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
| | - Mark S Aquilino
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Shanthini Mylvaganam
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
| | | | - Peter L Carlen
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Medicine (Neurology), University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
5
|
Huang L, Xiao W, Wang Y, Li J, Gong J, Tu E, Long L, Xiao B, Yan X, Wan L. Metabotropic glutamate receptors (mGluRs) in epileptogenesis: an update on abnormal mGluRs signaling and its therapeutic implications. Neural Regen Res 2024; 19:360-368. [PMID: 37488891 PMCID: PMC10503602 DOI: 10.4103/1673-5374.379018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by high morbidity, high recurrence, and drug resistance. Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity. Dysregulated mGluR signaling has been associated with various neurological disorders, and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy. In this review, we first introduce the three groups of mGluRs and their associated signaling pathways. Then, we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis. In addition, strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized. We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| |
Collapse
|
6
|
Bachari A, Nassar N, Schanknecht E, Telukutla S, Piva TJ, Mantri N. Rationalizing a prospective coupling effect of cannabinoids with the current pharmacotherapy for melanoma treatment. WIREs Mech Dis 2024; 16:e1633. [PMID: 37920964 DOI: 10.1002/wsbm.1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Terrence Jerald Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Fusse EJ, Scarante FF, Vicente MA, Marrubia MM, Turcato F, Scomparin DS, Ribeiro MA, Figueiredo MJ, Brigante TAV, Guimarães FS, Campos AC. Anxiogenic doses of rapamycin prevent URB597-induced anti-stress effects in socially defeated mice. Neurosci Lett 2024; 818:137519. [PMID: 37852528 DOI: 10.1016/j.neulet.2023.137519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Repeated exposure to psychosocial stress modulates the endocannabinoid system, particularly anandamide (AEA) signaling in brain regions associated with emotional distress. The mTOR protein regulates various neuroplastic processes in the brain disrupted by stress, including adult hippocampal neurogenesis. This kinase has been implicated in multiple effects of cannabinoid drugs and the anti-stress behavioral effects of psychoactive drugs. Therefore, our hypothesis is that enhancing AEA signaling via pharmacological inhibition of the fatty acid amide hydrolase (FAAH) enzyme induces an anti-stress behavioral effect through an mTOR-dependent mechanism. To test this hypothesis, male C57Bl6 mice were exposed to social defeat stress (SDS) for 7 days and received daily treatment with either vehicle or different doses of the FAAH inhibitor, URB597 (0.1; 0.3; 1 mg/Kg), alone or combined with rapamycin. The results suggested that URB597 induced an inverted U-shaped dose-response curve in mice subjected to SDS (with the intermediate dose of 0.3 mg/kg being anxiolytic, and the higher tested dose of 1 mg/Kg being anxiogenic). In a second independent experiment, rapamycin treatment induced an anxiogenic-like response in control mice. However, in the presence of rapamycin, the anxiolytic dose of URB597 treatment failed to reduce stress-induced anxiety behaviors in mice. SDS exposure altered the hippocampal expression of the mTOR scaffold protein Raptor. Furthermore, the anxiogenic dose of URB597 decreased the absolute number of migrating doublecortin (DCX)-positive cells in the dentate gyrus, suggesting an anti-anxiety effect independent of newly generated/immature neurons. Therefore, our results indicate that in mice exposed to repeated psychosocial stress, URB597 fails to counteract the anxiogenic-like response induced by the pharmacological dampening of mTOR signaling.
Collapse
Affiliation(s)
- Eduardo J Fusse
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Franciele F Scarante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Maria A Vicente
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Mariana M Marrubia
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Flávia Turcato
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Davi S Scomparin
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Melissa A Ribeiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Maria J Figueiredo
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Tamires A V Brigante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Alline C Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil.
| |
Collapse
|
8
|
Myint ZW, St. Clair WH, Strup SE, Yan D, Li N, Allison DB, McLouth LE, Ellis CS, Wang P, James AC, Hensley PJ, Otto DE, Arnold SM, DiPaola RS, Kolesar JM. A Phase I Dose Escalation and Expansion Study of Epidiolex (Cannabidiol) in Patients with Biochemically Recurrent Prostate Cancer. Cancers (Basel) 2023; 15:2505. [PMID: 37173971 PMCID: PMC10177512 DOI: 10.3390/cancers15092505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
PURPOSE Cannabinoids (CBD) have anti-tumor activity against prostate cancer (PCa). Preclinical studies have demonstrated a significant decrease in prostate specific antigen (PSA) protein expression and reduced tumor growth in xenografts of LNCaP and DU-145 cells in athymic mice when treated with CBD. Over-the-counter CBD products may vary in activity without clear standardization, and Epidiolex is a standardized FDA-approved oral CBD solution for treatment of certain types of seizures. We aimed to assess the safety and preliminary anti-tumor activity of Epidiolex in patients with biochemically recurrent (BCR) PCa. EXPERIMENTAL DESIGN This was an open-label, single center, phase I dose escalation study followed by a dose expansion in BCR patients after primary definitive local therapy (prostatectomy +/- salvage radiotherapy or primary definitive radiotherapy). Eligible patients were screened for urine tetrahydrocannabinol prior to enrollment. The starting dose level of Epidiolex was 600 mg by mouth once daily and escalated to 800 mg daily with the use of a Bayesian optimal interval design. All patients were treated for 90 days followed by a 10-day taper. The primary endpoints were safety and tolerability. Changes in PSA, testosterone levels, and patient-reported health-related quality of life were studied as secondary endpoints. RESULTS Seven patients were enrolled into the dose escalation cohort. There were no dose-limiting toxicities at the first two dose levels (600 mg and 800 mg). An additional 14 patients were enrolled at the 800 mg dose level into the dose expansion cohort. The most common adverse events were 55% diarrhea (grade 1-2), 25% nausea (grade 1-2), and 20% fatigue (grade 1-2). The mean PSA at baseline was 2.9 ng/mL. At the 12-week landmark time-point, 16 out of 18 (88%) had stable biochemical disease, one (5%) had partial biochemical response with the greatest measurable decline being 41%, and one (5%) had PSA progression. No statistically significant changes were observed in patient-reported outcomes (PROs), but PROs changed in the direction of supporting the tolerability of Epidiolex (e.g., emotional functioning improved). CONCLUSION Epidiolex at a dose of 800 mg daily appears to be safe and tolerable in patients with BCR prostate cancer supporting a safe dose for future studies.
Collapse
Affiliation(s)
- Zin W. Myint
- Department of Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - William H. St. Clair
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Stephen E. Strup
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Urology, University of Kentucky, Lexington, KY 40536, USA
| | - Donglin Yan
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Ning Li
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Derek B. Allison
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Laurie E. McLouth
- Department of Behavioral Science, University of Kentucky, Lexington, KY 40536, USA
| | - Carleton S. Ellis
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Peng Wang
- Department of Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Andrew C. James
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Urology, University of Kentucky, Lexington, KY 40536, USA
| | - Patrick J. Hensley
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Urology, University of Kentucky, Lexington, KY 40536, USA
| | - Danielle E. Otto
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Susanne M. Arnold
- Department of Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Robert S. DiPaola
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jill M. Kolesar
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
9
|
Golub V, Ramakrishnan S, Reddy DS. Isobolographic analysis of adjunct antiseizure activity of the FDA-approved cannabidiol with neurosteroids and benzodiazepines in adult refractory focal onset epilepsy. Exp Neurol 2023; 360:114294. [PMID: 36493860 PMCID: PMC9884179 DOI: 10.1016/j.expneurol.2022.114294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Epilepsy is a serious neurological disorder associated with recurrent and unpredictable seizures and extensive neuropsychiatric comorbidities. There is no cure for epilepsy, and over one third of epileptic patients have been diagnosed with drug-refractory epilepsy, indicating the critical need for novel antiseizure medications (ASMs). Cannabidiol (CBD) has been shown to decrease seizures in pediatric epilepsies, such as Dravet and Lennox-Gastaut syndromes; however, it has not been rigorously tested for adult seizures or in models of refractory focal epilepsy. Although the exact mechanism is unknown, it is likely to act in a way that is unique to certain GABA-A receptor-modulating drugs, such as neurosteroids and benzodiazepines. In this study, we sought to determine the adjunct antiseizure activity of a clinical CBD product in an adult 6-Hz model of focal refractory epilepsy. CBD was evaluated alone in both a dose-response and time-course manner and in an adjunct combination with two ASMs ganaxolone (neurosteroid) and midazolam (benzodiazepine) against 6-Hz-induced refractory focal onset, generalized seizures. In pharmacological studies, CBD produced dose-dependent protection against seizures (ED50, 53 mg/kg, i.p.) without any side effects. CBD significantly reduced both electrographic activity and behavioral ictal responses with no apparent sex differences. CBD was evaluated in an isobologram design in conjunction with ganaxolone or midazolam at three standard ratios (1:1, 1:3, 3:1). Isobolographic analysis shows the combination regimens of CBD + ganaxolone and CBD + midazolam exerted combination index of 0.313 and 0.164, indicating strong synergism for seizure protection, with little to no toxicity. Together, these results demonstrate the therapeutic potential of CBD monotherapy and as an adjunct therapy for adult focal refractory epilepsy in combination with GABAergic ASMs.
Collapse
Affiliation(s)
- Victoria Golub
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University, Bryan, TX, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
10
|
Efficacy of the FDA-approved cannabidiol on the development and persistence of temporal lobe epilepsy and complex focal onset seizures. Exp Neurol 2023; 359:114240. [PMID: 36216124 DOI: 10.1016/j.expneurol.2022.114240] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Presently there is no drug therapy for curing epilepsy. Despite many advancements in epilepsy research, nearly 30% of people with epilepsy remain refractory to current antiseizure medications (ASM). Cannabidiol (CBD) has recently been approved as an ASM for pediatric refractory seizures, but it has not been widely tested for adult epileptogenesis and focal onset seizures. In this study, we investigated the efficacy of the FDA-approved CBD in controlling epileptogenesis and complex focal onset seizures using the mouse kindling model of human temporal lobe epilepsy. We also tested combination regimens of CBD with other ASMs. The two primary outcome measures were disease modification and suppression of generalized seizures. In the epileptogenesis study, CBD had a striking effect in attenuating kindling development, with a dose-dependent decrease in behavioral and electrographic seizure activity. In the retention study, mice previously treated with CBD had significantly reduced overall seizure burden, suggesting disease modification. In a fully-kindled seizure study, CBD produced rapid and atypical U-shaped dose-dependent protection against generalized seizures (ED50, 52 mg/kg, i.p.). In a time-course study, CBD showed a maximal protective effect within 1 h of injection, and it declined within 4 h with a biphasic response. In the combination study, CBD produced synergistic/ additive protection when given with midazolam and ganaxolone but not with tiagabine, indicating its strong potential as an adjunct ASM. Finally, the protective effects of CBD were not associated with motor and functional impairments. These preclinical findings demonstrate the potential of adjunct CBD for controlling adult complex focal onset seizure conditions.
Collapse
|
11
|
Uczay M, Pflüger P, Picada JN, de Oliveira JDM, da SilvaTorres IL, Medeiros HR, Vendruscolo MH, von Poser G, Pereira P. Geniposide and asperuloside alter the COX-2 and GluN2B receptor expression after pilocarpine-induced seizures in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:951-962. [PMID: 36536207 DOI: 10.1007/s00210-022-02367-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Asperuloside (ASP) and geniposide (GP) are iridoids that have shown various biological properties, such as reduction of inflammation, oxidative stress, and neuroprotection. The aim of this study was to investigate the mechanism of action of ASP and GP through the experimental model of pilocarpine-induced seizures. Mice were treated daily with saline, valproic acid (VPA), GP (5, 25, or 50 mg/kg), or ASP (20 or 40 mg/kg) for 8 days. Pilocarpine (PILO) treatment was administered after the last day of treatment, and the epileptic behavior was recorded for 1 h and analyzed by an adapted scale. Afterward, the hippocampus and blood samples were collected for western blot analyses, ELISA and comet assay, and bone marrow to the micronucleus test. We evaluated the expression of the inflammatory marker cyclooxygenase-2 (COX-2), GluN2B, a subunit of the NMDA receptor, pGluR1, an AMPA receptor, and the enzyme GAD-1 by western blot and the cytokine TNF-α by ELISA. The treatments with GP and ASP were capable to decrease the latency to the first seizure, although they did not change the latency to status epilepticus (SE). ASP demonstrated a genotoxic potential analyzed by comet assay; however, the micronuclei frequency was not increased in the bone marrow. The GP and ASP treatments were capable to reduce COX-2 and GluN2B receptor expression after PILO exposure. This study suggests that GP and ASP have a protective effect on PILO-induced seizures, decreasing GluN2B receptor and COX-2 expression.
Collapse
Affiliation(s)
- Mariana Uczay
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil
| | - Pricila Pflüger
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil
| | | | | | - Iraci Lucena da SilvaTorres
- Laboratory of Pain Pharmacology and Neuromodulation, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil
| | - Helouise Richardt Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil
| | - Maria Helena Vendruscolo
- Laboratory of Pharmacognosy, College of Pharmacy, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, 90050-170, Brazil
| | - Gilsane von Poser
- Laboratory of Pharmacognosy, College of Pharmacy, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, 90050-170, Brazil
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
12
|
Zavala-Tecuapetla C, Luna-Munguia H, López-Meraz ML, Cuellar-Herrera M. Advances and Challenges of Cannabidiol as an Anti-Seizure Strategy: Preclinical Evidence. Int J Mol Sci 2022; 23:ijms232416181. [PMID: 36555823 PMCID: PMC9783044 DOI: 10.3390/ijms232416181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The use of Cannabis for medicinal purposes has been documented since ancient times, where one of its principal cannabinoids extracted from Cannabis sativa, cannabidiol (CBD), has emerged over the last few years as a promising molecule with anti-seizure potential. Here, we present an overview of recent literature pointing out CBD's pharmacological profile (solubility, metabolism, drug-drug interactions, etc.,), CBD's interactions with multiple molecular targets as well as advances in preclinical research concerning its anti-seizure effect on both acute seizure models and chronic models of epilepsy. We also highlight the recent attention that has been given to other natural cannabinoids and to synthetic derivatives of CBD as possible compounds with therapeutic anti-seizure potential. All the scientific research reviewed here encourages to continue to investigate the probable therapeutic efficacy of CBD and its related compounds not only in epilepsy but also and specially in drug-resistant epilepsy, since there is a dire need for new and effective drugs to treat this disease.
Collapse
Affiliation(s)
- Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Mexico City 14269, Mexico
- Correspondence:
| | - Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro 76230, Mexico
| | - María-Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa 91190, Mexico
| | - Manola Cuellar-Herrera
- Epilepsy Clinic, Hospital General de México Dr. Eduardo Liceaga, Dr. Balmis 148, Doctores, Mexico City 06720, Mexico
| |
Collapse
|
13
|
Potschka H, Bhatti SFM, Tipold A, McGrath S. Cannabidiol in canine epilepsy. Vet J 2022; 290:105913. [PMID: 36209995 DOI: 10.1016/j.tvjl.2022.105913] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
The anticonvulsant effect of cannabidiol (CBD), which has been confirmed by findings from animal models and human trials, has attracted the interest of veterinary practitioners and dog owners. Moreover, social media and public pressure has sparked a renewed awareness of cannabinoids, which have been used for epilepsy since ancient times. Unfortunately, at this moment veterinarians and veterinary neurologists have difficulty prescribing cannabinoids because of the paucity of sound scientific studies. Pharmacokinetic studies in dogs have demonstrated a low oral bioavailability of CBD and a high first-pass effect through the liver. Administering CBD in oil-based formulations and/or with food has been shown to enhance the bioavailability in dogs, rats and humans. Tolerability studies in healthy dogs and dogs with epilepsy have demonstrated that CBD was safe and well tolerated with only mild to moderate adverse effects. In this context, it should be noted that the quality of available CBD varies widely, underscoring the importance of pharmaceutical quality and its control. One clinical trial in dogs with drug-resistant idiopathic epilepsy failed to confirm a difference in response rates between the CBD group and the placebo group, while in another cross-over trial a ≥ 50 % reduction in epileptic seizure frequency was found in six of 14 dogs in the treatment phase, a reduction that was not observed during the placebo phase. Based on the current state of knowledge it is not possible to provide clear-cut recommendations for the use of CBD in canine epilepsy. Randomized controlled canine trials with large sample sizes are needed to determine the range of therapeutic plasma concentrations, develop evidence-based dosing regimens, determine the efficacy of cannabidiol in drug-refractory epilepsy, and explore potential associations between treatment effects and different etiologies, epilepsy types, and drug combinations.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| | - Sofie F M Bhatti
- Small Animal Department, Small Animal Teaching Hospital, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Andrea Tipold
- Department Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Stephanie McGrath
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Colorado, USA
| |
Collapse
|
14
|
Cannabidiol effect in pentylenetetrazole-induced seizures depends on PI3K. Pharmacol Rep 2022; 74:1099-1106. [DOI: 10.1007/s43440-022-00391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
|
15
|
Neuroprotection of Cannabidiol, Its Synthetic Derivatives and Combination Preparations against Microglia-Mediated Neuroinflammation in Neurological Disorders. Molecules 2022; 27:molecules27154961. [PMID: 35956911 PMCID: PMC9370304 DOI: 10.3390/molecules27154961] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022] Open
Abstract
The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines. Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer’s disease. A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD’s effects on neuroinflammation appear to be complex and are poorly understood. This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-β-JAK-STAT pathways. We also illustrate the pharmacological action of CBD’s derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules. The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components.
Collapse
|
16
|
Victor TR, Hage Z, Tsirka SE. Prophylactic administration of cannabidiol reduces microglial inflammatory response to kainate-induced seizures and neurogenesis. Neuroscience 2022; 500:1-11. [PMID: 35700815 DOI: 10.1016/j.neuroscience.2022.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Microglia, the dynamic innate immune cells of the central nervous system, become activated in epilepsy. The process of microglial activation in epilepsy results in the creation of an inflammatory environment around the site of seizure onset, which contributes to the epileptogenic process and epilepsy progression. Cannabidiol (CBD) has been effective for use as an adjunctive treatment for two severe pediatric seizure disorders. Newly recognized as an Food and Drug Administration (FDA)-approved drug treatment in epilepsy, it has gained in popularity primarily for pain management. Although CBD is readily available in stores and online retailers, its mechanism of action and specifically its effects on microglia and their functions are yet fully understood. In this study, we examine the effects of commercially available CBD on microglia inflammatory activation and neurogenic response, in the presence and absence of seizures. We use systemic administration of kainate to elicit seizures in mice, which are assessed behaviorally. Artisanal CBD is given in different modes of administration and timing to dissect its effect on seizure intensity, microglial activation and aberrant seizure-related neurogenesis. CBD significantly dampens microglial migration and accumulation to the hippocampus. While long term artisanal CBD use does not prevent or lessen seizure severity, CBD is a promising adjunctive partner for its ability to depress epileptogenic processes. These studies indicate that artisanal CBD is beneficial as it both decreases inflammation in the CNS and reduces the number of ectopic neurons deposited in the hippocampal area post seizure.
Collapse
Affiliation(s)
- Tanya R Victor
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Zachary Hage
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Stella E Tsirka
- Molecular and Cellular Pharmacology Graduate Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, United States.
| |
Collapse
|
17
|
Antiseizure Effects of Cannabidiol Leading to Increased Peroxisome Proliferator-Activated Receptor Gamma Levels in the Hippocampal CA3 Subfield of Epileptic Rats. Pharmaceuticals (Basel) 2022; 15:ph15050495. [PMID: 35631322 PMCID: PMC9147091 DOI: 10.3390/ph15050495] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/13/2022] Open
Abstract
We evaluated the effects of cannabidiol (CBD) on seizures and peroxisome proliferator-activated receptor gamma (PPARγ) levels in an animal model of temporal lobe epilepsy (TLE). Adult male Sprague-Dawley rats were continuously monitored by video-electrocorticography up to 10 weeks after an intraperitoneal kainic acid (15 mg/kg) injection. Sixty-seven days after the induction of status epilepticus and the appearance of spontaneous recurrent seizures in all rats, CBD was dissolved in medium-chain triglyceride (MCT) oil and administered subcutaneously at 120 mg/kg (n = 10) or 12 mg/kg (n = 10), twice a day for three days. Similarly, the vehicle was administered to ten epileptic rats. Brain levels of PPARγ immunoreactivity were compared to those of six healthy controls. CBD at 120 mg/kg abolished the seizures in 50% of rats (p = 0.033 vs. pre-treatment, Fisher’s exact test) and reduced total seizure duration (p < 0.05, Tukey Test) and occurrence (p < 0.05). PPARγ levels increased with CBD in the hippocampal CA1 subfield and subiculum (p < 0.05 vs. controls, Holm−Šidák test), but only the highest dose increased the immunoreactivity in the hippocampal CA3 subfield (p < 0.001), perirhinal cortex, and amygdala (p < 0.05). Overall, these results suggest that the antiseizure effects of CBD are associated with upregulation of PPARγ in the hippocampal CA3 region.
Collapse
|
18
|
Development of New Thiophene-Containing Triaryl Pyrazoline Derivatives as PI3Kγ Inhibitors. Molecules 2022; 27:molecules27082404. [PMID: 35458602 PMCID: PMC9027920 DOI: 10.3390/molecules27082404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
A series of new thiophene-containing triaryl pyrazoline derivatives, 3a–3t, were synthesized and evaluated regarding PI3K inhibition activity and anti-tumor potency based on a trial of introducing significant moieties, including pyrazoline and thiophene, and simplifying the parallel ring structures. Most of the tested compounds indicated potent PI3K inhibitory potency, with this series of compounds showing more potency for PI3Kγ than PI3Kα. The top hit 3s seemed more potent than the positive control LY294002 on inhibiting PI3Kγ (IC50 values: 0.066 μM versus 0.777 μM) and more selective from PI3Kα (Index values: 645 versus 1.74). It could be inferred that the combination of para- and meta-, as well as the modification of the electron-donating moieties, led to the improvement in potency. The anti-proliferation inhibitory activity and the enzymatic inhibition potency indicated consistent tendencies. The top hit 3s could inhibit the phosphorylation of Akt by inhibiting PI3K through the PI3K-Akt-mTOR pathway. The molecular docking simulation indicated that the binding pattern of 3s into PI3Kγ was preferable than that of PI3Kα, with more hydrogen bond, more π-involved interactions, and fewer π-sulfur interactions. The information in this work is referable for the further development of selective inhibitors for specific isoforms of PI3K.
Collapse
|
19
|
Landucci E, Mazzantini C, Lana D, Giovannini MG, Pellegrini-Giampietro DE. Neuronal and Astrocytic Morphological Alterations Driven by Prolonged Exposure with Δ9-Tetrahydrocannabinol but Not Cannabidiol. TOXICS 2022; 10:toxics10020048. [PMID: 35202235 PMCID: PMC8879505 DOI: 10.3390/toxics10020048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022]
Abstract
Cannabis derivatives are largely used in the general population for recreational and medical purposes, with the highest prevalence among adolescents, but chronic use and abuse has raised medical concerns. We investigated the prolonged effects of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in organotypic hippocampal slices from P7 rats cultured for 2 weeks. Cell death in the CA1 subregion of slices was quantified by propidium iodide (PI) fluorescence, pre-synaptic and post-synaptic marker proteins were analysed by Western blotting and neurodegeneration and astrocytic alterations by NeuN and GFAP by immunofluorescence and confocal laser microscopy. The statistical significance of differences was analysed using ANOVA with a post hoc Dunnett w-test (PI fluorescence intensities and Western blots) or Newman–Keuls (immunohistochemistry data) for multiple comparisons. A probability value (P) of < 0.05 was considered significant. Prolonged (72 h) THC or CBD incubation did not induce cell death but caused modifications in the expression of synaptic proteins and morphological alterations in neurons and astrocytes. In particular, the expression of PSD95 was reduced following incubation for 72 h with THC and was increased following incubation with CBD. THC for 72 h caused disorganisation of CA1 stratum pyramidalis (SP) and complex morphological modifications in a significant number of pyramidal neurons and in astrocytes. Our results suggest that THC or CBD prolonged exposure induce different effects in the hippocampus. In particular, 72 h of THC exposure induced neuronal and glia alterations that must draw our attention to the effects that relatively prolonged use might cause, especially in adolescents.
Collapse
|
20
|
Sugaya Y, Kano M. Endocannabinoid-Mediated Control of Neural Circuit Excitability and Epileptic Seizures. Front Neural Circuits 2022; 15:781113. [PMID: 35046779 PMCID: PMC8762319 DOI: 10.3389/fncir.2021.781113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023] Open
Abstract
Research on endocannabinoid signaling has greatly advanced our understanding of how the excitability of neural circuits is controlled in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses excitability by inhibiting glutamate release, while that at inhibitory synapses promotes excitability by inhibiting GABA release, although there are some exceptions in genetically epileptic animal models. In the epileptic brain, the physiological distributions of endocannabinoid signaling molecules are disrupted during epileptogenesis, contributing to the occurrence of spontaneous seizures. However, it is still unknown how endocannabinoid signaling changes during seizures and how the redistribution of endocannabinoid signaling molecules proceeds during epileptogenesis. Recent development of cannabinoid sensors has enabled us to investigate endocannabinoid signaling in much greater spatial and temporal details than before. Application of cannabinoid sensors to epilepsy research has elucidated activity-dependent changes in endocannabinoid signaling during seizures. Furthermore, recent endocannabinoid research has paved the way for the clinical use of cannabidiol for the treatment of refractory epilepsy, such as Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. Cannabidiol significantly reduces seizures and is considered to have comparable tolerability to conventional antiepileptic drugs. In this article, we introduce recent advances in research on the roles of endocannabinoid signaling in epileptic seizures and discuss future directions.
Collapse
Affiliation(s)
- Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- *Correspondence: Masanobu Kano,
| |
Collapse
|
21
|
Kim J, Choi H, Kang EK, Ji GY, Kim Y, Choi IS. In Vitro Studies on Therapeutic Effects of Cannabidiol in Neural Cells: Neurons, Glia, and Neural Stem Cells. Molecules 2021; 26:molecules26196077. [PMID: 34641624 PMCID: PMC8512311 DOI: 10.3390/molecules26196077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
(‒)-Cannabidiol (CBD) is one of the major phytocannabinoids extracted from the Cannabis genus. Its non-psychoactiveness and therapeutic potential, partly along with some anecdotal—if not scientific or clinical—evidence on the prevention and treatment of neurological diseases, have led researchers to investigate the biochemical actions of CBD on neural cells. This review summarizes the previously reported mechanistic studies of the CBD actions on primary neural cells at the in vitro cell-culture level. The neural cells are classified into neurons, microglia, astrocytes, oligodendrocytes, and neural stem cells, and the CBD effects on each cell type are described. After brief introduction on CBD and in vitro studies of CBD actions on neural cells, the neuroprotective capability of CBD on primary neurons with the suggested operating actions is discussed, followed by the reported CBD actions on glia and the CBD-induced regeneration from neural stem cells. A summary section gives a general overview of the biochemical actions of CBD on neural cells, with a future perspective. This review will provide a basic and fundamental, but crucial, insight on the mechanistic understanding of CBD actions on neural cells in the brain, at the molecular level, and the therapeutic potential of CBD in the prevention and treatment of neurological diseases, although to date, there seem to have been relatively limited research activities and reports on the cell culture-level, in vitro studies of CBD effects on primary neural cells.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Hyunwoo Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Eunhye K. Kang
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Gil Yong Ji
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Youjeong Kim
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Insung S. Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
- Correspondence:
| |
Collapse
|
22
|
Singh K, Nassar N, Bachari A, Schanknecht E, Telukutla S, Zomer R, Piva TJ, Mantri N. The Pathophysiology and the Therapeutic Potential of Cannabinoids in Prostate Cancer. Cancers (Basel) 2021; 13:4107. [PMID: 34439262 PMCID: PMC8392233 DOI: 10.3390/cancers13164107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is the second most frequently occurring cancer diagnosed among males. Recent preclinical evidence implicates cannabinoids as powerful regulators of cell growth and differentiation. In this review, we focused on studies that demonstrated anticancer effects of cannabinoids and their possible mechanisms of action in prostate cancer. Besides the palliative effects of cannabinoids, research from the past two decades has demonstrated their promising potential as antitumor agents in a wide variety of cancers. This analysis may provide pharmacological insights into the selection of specific cannabinoids for the development of antitumor drugs for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Kanika Singh
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
| | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
| | - Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
| | - Srinivasareddy Telukutla
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, WA 6005, Australia;
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (K.S.); (A.B.); (E.S.); (S.T.)
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
23
|
Scarante FF, Ribeiro MA, Almeida-Santos AF, Guimarães FS, Campos AC. Glial Cells and Their Contribution to the Mechanisms of Action of Cannabidiol in Neuropsychiatric Disorders. Front Pharmacol 2021; 11:618065. [PMID: 33613284 PMCID: PMC7890128 DOI: 10.3389/fphar.2020.618065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD) is a phytocannabinoid with a broad-range of therapeutic potential in several conditions, including neurological (epilepsy, neurodegenerative diseases, traumatic and ischemic brain injuries) and psychiatric disorders (schizophrenia, addiction, major depressive disorder, and anxiety). The pharmacological mechanisms responsible for these effects are still unclear, and more than 60 potential molecular targets have been described. Regarding neuropsychiatric disorders, most studies investigating these mechanisms have focused on neuronal cells. However, glial cells (astrocytes, oligodendrocytes, microglia) also play a crucial role in keeping the homeostasis of the central nervous system. Changes in glial functions have been associated with neuropathological conditions, including those for which CBD is proposed to be useful. Mostly in vitro studies have indicated that CBD modulate the activation of proinflammatory pathways, energy metabolism, calcium homeostasis, and the proliferative rate of glial cells. Likewise, some of the molecular targets proposed for CBD actions are f expressed in glial cells, including pharmacological receptors such as CB1, CB2, PPAR-γ, and 5-HT1A. In the present review, we discuss the currently available evidence suggesting that part of the CBD effects are mediated by interference with glial cell function. We also propose additional studies that need to be performed to unveil the contribution of glial cells to CBD effects in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Franciele F. Scarante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Melissa A. Ribeiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana F. Almeida-Santos
- Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Francisco S. Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alline C. Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
24
|
Franco V, Bialer M, Perucca E. Cannabidiol in the treatment of epilepsy: Current evidence and perspectives for further research. Neuropharmacology 2021; 185:108442. [PMID: 33347884 DOI: 10.1016/j.neuropharm.2020.108442] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
The therapeutic potential of cannabidiol (CBD) in seizure disorders has been known for many years, but it is only in the last decade that major progress has been made in characterizing its preclinical and clinical properties as an antiseizure medication. The mechanisms responsible for protection against seizures are not fully understood, but they are likely to be multifactorial and to include, among others, antagonism of G protein-coupled receptor, desensitization of transient receptor potential vanilloid type 1 channels, potentiation of adenosine-mediated signaling, and enhancement of GABAergic transmission. CBD has a low and highly variable oral bioavailability, and can be a victim and perpetrator of many drug-drug interactions. A pharmaceutical-grade formulation of purified CBD derived from Cannabis sativa has been evaluated in several randomized placebo-controlled adjunctive-therapy trials, which resulted in its regulatory approval for the treatment of seizures associated with Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. Interpretation of results of these trials, however, has been complicated by the occurrence of an interaction with clobazam, which leads to a prominent increase in the plasma concentration of the active metabolite N-desmethylclobazam in CBD-treated patients. Despite impressive advances, significant gaps in knowledge still remain. Areas that require further investigation include the mechanisms underlying the antiseizure activity of CBD in different syndromes, its pharmacokinetic profile in infants and children, potential relationships between plasma drug concentration and clinical response, interactions with other co-administered medications, potential efficacy in other epilepsy syndromes, and magnitude of antiseizure effects independent from interactions with clobazam. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Valentina Franco
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia and IRCCS Mondino Foundation (member of the ERN EpiCARE), Pavia, Italy
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel and David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Emilio Perucca
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia and IRCCS Mondino Foundation (member of the ERN EpiCARE), Pavia, Italy.
| |
Collapse
|
25
|
Kundrick ER, Marrero-Rosado BM, de Araujo Furtado M, Stone M, Schultz CR, Lumley LA. Cannabidiol reduces soman-induced lethality and seizure severity in female plasma carboxylesterase knockout mice treated with midazolam. Neurotoxicology 2020; 82:130-136. [PMID: 33290784 DOI: 10.1016/j.neuro.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022]
Abstract
Cannabidiol, approved for treatment of pediatric refractory epilepsy, has anti-seizure effects in various animal seizure models. Chemical warfare nerve agents, including soman, are organophosphorus chemicals that can induce seizure and death if untreated or if treatment is delayed. Our objective was to evaluate whether cannabidiol would ameliorate soman-induced toxicity using a mouse model that similar to humans lacks plasma carboxylesterase. In the present study, adult female plasma carboxylesterase knockout (Es1-/-) mice were pre-treated with cannabidiol (20-150 mg/kg) or vehicle 1 h prior to exposure to a seizure-inducing dose of soman and evaluated for survival and seizure activity. The muscarinic antagonist atropine sulfate and the oxime HI-6 were administered at 1 min after exposure, and the benzodiazepine midazolam was administered at 30 min after seizure onset. Cannabidiol (150 mg/kg) pre-treatment led to a robust increase in survival rate and attenuated body weight loss in soman-exposed mice treated with medical countermeasures, compared to mice pre-treated with vehicle. In addition, mice pretreated with cannabidiol (150 mg/kg) had a modest reduction in seizure severity after midazolam treatment compared to vehicle-pretreated. These findings of improved outcome with cannabidiol administration in a severe seizure model of soman exposure provide additional pre-clinical support for the benefits of cannabidiol against exposure to seizure-inducing chemical agents and suggest cannabidiol may augment the anti-seizure effects of midazolam.
Collapse
Affiliation(s)
- Erica R Kundrick
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States
| | - Brenda M Marrero-Rosado
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States
| | - Marcio de Araujo Furtado
- Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, United States; BioSEaD, LLC, Rockville, MD, 20850, United States
| | - Michael Stone
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States
| | - Caroline R Schultz
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States
| | - Lucille A Lumley
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States.
| |
Collapse
|
26
|
Medeiros DDC, Cota VR, Oliveira ACP, Moreira FA, Moraes MFD. The Endocannabinoid System Activation as a Neural Network Desynchronizing Mediator for Seizure Suppression. Front Behav Neurosci 2020; 14:603245. [PMID: 33281577 PMCID: PMC7691588 DOI: 10.3389/fnbeh.2020.603245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023] Open
Abstract
The understanding that hyper-excitability and hyper-synchronism in epilepsy are indissociably bound by a cause-consequence relation has only recently been challenged. Thus, therapeutic strategies for seizure suppression have often aimed at inhibiting excitatory circuits and/or activating inhibitory ones. However, new approaches that aim to desynchronize networks or compromise abnormal coupling between adjacent neural circuitry have been proven effective, even at the cost of enhancing local neuronal activation. Although most of these novel perspectives targeting circuitry desynchronization and network coupling have been implemented by non-pharmacological devices, we argue that there may be endogenous neurochemical systems that act primarily in the desynchronization component of network behavior rather than dampening excitability of individual neurons. This review explores the endocannabinoid system as one such possible pharmacological landmark for mimicking a form of "on-demand" desynchronization analogous to those proposed by deep brain stimulation in the treatment of epilepsy. This essay discusses the evidence supporting the role of the endocannabinoid system in modulating the synchronization and/or coupling of distinct local neural circuitry; which presents obvious implications on the physiological setting of proper sensory-motor integration. Accordingly, the process of ictogenesis involves pathological circuit coupling that could be avoided, or at least have its spread throughout the containment of other areas, if such endogenous mechanisms of control could be activated or potentiated by pharmacological intervention. In addition, we will discuss evidence that supports not only a weaker role played on neuronal excitability but the potential of the endocannabinoid system strengthening its modulatory effect, only when circuitry coupling surpasses a level of activation.
Collapse
Affiliation(s)
- Daniel de Castro Medeiros
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinícius Rosa Cota
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica, Universidade Federal de São João Del-Rei, São João Del-Rei, Brazil
| | - Antonio Carlos P Oliveira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabricio A Moreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|