1
|
Fan L, Liu B, Yao R, Gao X, Wang H, Jiang S, Zheng X, Chen H, Hou H, Liu Y, Hu Q. Nicotine-induced transcriptional changes and mitochondrial dysfunction in the ventral tegmental area revealed by single-nucleus transcriptomics. J Genet Genomics 2024; 51:1237-1251. [PMID: 39244085 DOI: 10.1016/j.jgg.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Nicotine is widely recognized as the primary contributor to tobacco dependence. Previous studies have indicated that molecular and behavioral responses to nicotine are primarily mediated by ventral tegmental area (VTA) neurons, and accumulating evidence suggests that glia play prominent roles in nicotine addiction. However, VTA neurons and glia have yet to be characterized at the transcriptional level during the progression of nicotine self-administration. Here, a male mouse model of nicotine self-administration is established and the timing of three critical phases (pre-addiction, addicting, and post-addiction phase) is characterized. Single-nucleus RNA sequencing in the VTA at each phase is performed to comprehensively classify specific cell subtypes. Adaptive changes occurred during the addicting and post-addiction phases, with the addicting phase displaying highly dynamic neuroplasticity that profoundly impacts the transcription in each cell subtype. Furthermore, significant transcriptional changes in energy metabolism-related genes are observed, accompanied by notable structural alterations in neuronal mitochondria during the progression of nicotine self-administration. The results provide insights into mechanisms underlying the progression of nicotine addiction, serving as an important resource for identifying potential molecular targets for nicotine cessation.
Collapse
Affiliation(s)
- Lei Fan
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230000, China; University of Science and Technology of China, Hefei, Anhui 230000, China; Beijing Life Science Academy, Beijing 100000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan 450000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, Henan 450000, China
| | - Boxin Liu
- BGI Genomics, BGI-Shenzhen, Guangdong 518018, China
| | - Ru Yao
- BGI Genomics, BGI-Shenzhen, Guangdong 518018, China
| | - Xia Gao
- Beijing Life Science Academy, Beijing 100000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan 450000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, Henan 450000, China
| | - Hongjuan Wang
- Beijing Life Science Academy, Beijing 100000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan 450000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, Henan 450000, China
| | - Sanjie Jiang
- BGI Genomics, BGI-Shenzhen, Guangdong 518018, China
| | | | - Huan Chen
- Beijing Life Science Academy, Beijing 100000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan 450000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, Henan 450000, China.
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing 100000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan 450000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, Henan 450000, China.
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230000, China; University of Science and Technology of China, Hefei, Anhui 230000, China.
| | - Qingyuan Hu
- Beijing Life Science Academy, Beijing 100000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan 450000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, Henan 450000, China.
| |
Collapse
|
2
|
Goutal S, Tran T, Leroy C, Benhamouda N, Leterrier S, Saba W, Lafont B, Tartour É, Roelens M, Tournier N. Brain Glucose Metabolism as a Readout of the Central Nervous System Impact of Cigarette Smoke Exposure and Withdrawal and the Effects of NFL-101, as an Immune-Based Drug Candidate for Smoking Cessation Therapy. ACS Chem Neurosci 2024; 15:2520-2531. [PMID: 38875216 DOI: 10.1021/acschemneuro.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Neuroimaging biomarkers are needed to investigate the impact of smoking withdrawal on brain function. NFL-101 is a denicotinized aqueous extract of tobacco leaves currently investigated as an immune-based smoking cessation therapy in humans. However, the immune response to NFL-101 and its ability to induce significant changes in brain function remain to be demonstrated. Brain glucose metabolism was investigated using [18F]fluoro-deoxy-glucose ([18F]FDG) PET imaging in a mouse model of cigarette smoke exposure (CSE, 4-week whole-body inhalation, twice daily). Compared with control animals, the relative uptake of [18F]FDG in CSE mice was decreased in the thalamus and brain stem (p < 0.001, n = 14 per group) and increased in the hippocampus, cortex, cerebellum, and olfactory bulb (p < 0.001). NFL-101 induced a humoral immune response (specific IgGs) in mice and activated human natural-killer lymphocytes in vitro. In CSE mice, but not in control mice, single-dose NFL-101 significantly increased [18F]FDG uptake in the thalamus (p < 0.01), thus restoring normal brain glucose metabolism after 2-day withdrawal in this nicotinic receptor-rich region. In tobacco research, [18F]FDG PET imaging provides a quantitative method to evaluate changes in the brain function associated with the withdrawal phase. This method also showed the CNS effects of NFL-101, with translational perspectives for future clinical evaluation in smokers.
Collapse
Affiliation(s)
- Sébastien Goutal
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | - Thi Tran
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Claire Leroy
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | - Nadine Benhamouda
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Sarah Leterrier
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | - Wadad Saba
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| | | | - Éric Tartour
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Marie Roelens
- Université Paris Cité, INSERM, PARCC, Paris 75015, France
- Department of Immunology, APHP, Hôpital Européen Georges Pompidou (HEGP), Hôpital Necker, Paris 75015,France
| | - Nicolas Tournier
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay 91401, France
| |
Collapse
|
3
|
Soares AR, Picciotto MR. Nicotinic regulation of microglia: potential contributions to addiction. J Neural Transm (Vienna) 2024; 131:425-435. [PMID: 37778006 PMCID: PMC11189589 DOI: 10.1007/s00702-023-02703-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Clinical and preclinical studies have identified immunosuppressive effects of nicotine, with potential implications for treating nicotine addiction. Here we review how nicotine can regulate microglia, the resident macrophages in the brain, and corresponding effects of nicotine on neuroimmune signaling. There is significant evidence that activation of α7 nicotinic acetylcholine receptors (nAChRs) on microglia can trigger an anti-inflammatory cascade that alters microglial polarization and activity, cytokine release, and intracellular calcium concentrations, leading to neuroprotection. These anti-inflammatory effects of nicotine-dependent α7 nAChR signaling are lost during withdrawal, suggesting that neuroimmune signaling is potentiated during abstinence, and thus, heightened microglial activity may drive circuit disruption that contributes to withdrawal symptoms and hyperkatifeia. In sum, the clinical literature has highlighted immunomodulatory effects of nicotine and the potential for anti-inflammatory compounds to treat addiction. The preclinical literature investigating the underlying mechanisms points to a role of microglial engagement in the circuit dysregulation and behavioral changes that occur during nicotine addiction and withdrawal, driven, at least in part, by activation of α7 nAChRs on microglia. Specifically targeting microglial signaling may help alleviate withdrawal symptoms in people with nicotine dependence and help to promote abstinence.
Collapse
Affiliation(s)
- Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA.
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA.
| |
Collapse
|
4
|
Sun Y, Che J, Zhang J. Emerging non-proinflammatory roles of microglia in healthy and diseased brains. Brain Res Bull 2023; 199:110664. [PMID: 37192719 DOI: 10.1016/j.brainresbull.2023.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
Microglia, the resident myeloid cells of the central nervous system, are the first line of defense against foreign pathogens, thereby confining the extent of brain injury. However, the role of microglia is not limited to macrophage-like functions. In addition to proinflammatory response mediation, microglia are involved in neurodevelopmental remodeling and homeostatic maintenance in the absence of disease. An increasing number of studies have also elucidated microglia-mediated regulation of tumor growth and neural repair in diseased brains. Here, we review the non-proinflammatory roles of microglia, with the aim of promoting a deeper understanding of the functions of microglia in healthy and diseased brains and contributing to the development of novel therapeutics that target microglia in neurological disorders.
Collapse
Affiliation(s)
- Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China; Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai China.
| |
Collapse
|
5
|
Saravia R, Ten-Blanco M, Pereda-Pérez I, Berrendero F. New Insights in the Involvement of the Endocannabinoid System and Natural Cannabinoids in Nicotine Dependence. Int J Mol Sci 2021; 22:13316. [PMID: 34948106 PMCID: PMC8715672 DOI: 10.3390/ijms222413316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Nicotine, the main psychoactive component in tobacco smoke, plays a major role in tobacco addiction, producing a high morbidity and mortality in the world. A great amount of research has been developed to elucidate the neural pathways and neurotransmitter systems involved in such a complex addictive behavior. The endocannabinoid system, which has been reported to participate in the addictive properties of most of the prototypical drugs of abuse, is also implicated in nicotine dependence. This review summarizes and updates the main behavioral and biochemical data involving the endocannabinoid system in the rewarding properties of nicotine as well as in nicotine withdrawal and relapse to nicotine-seeking behavior. Promising results from preclinical studies suggest that manipulation of the endocannabinoid system could be a potential therapeutic strategy for treating nicotine addiction.
Collapse
Affiliation(s)
- Rocio Saravia
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain;
| | - Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| |
Collapse
|
6
|
Rosa MLDP, Machado CA, Oliveira BDS, Toscano ECDB, Asth L, de Barros JLVM, Teixeira AL, Moreira FA, de Miranda AS. Role of cytokine and neurotrophic factors in nicotine addiction in the conditioned place preference paradigm. Neurosci Lett 2021; 764:136235. [PMID: 34508846 DOI: 10.1016/j.neulet.2021.136235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022]
Abstract
The mechanisms involved in the maintenance of cigarette smoking and nicotine reward remain unclear. Immune response might play an important role in this context. Nicotine may induce both central and systemic inflammatory responses as well as changes in the regulation of brain-derived neurotrophic factor (BDNF). The conditioned place preference (CPP) is a method used for the evaluation of nicotine-induced reward, reproducing nicotine-seeking behavior in humans. So far, there are no studies investigating the relationship between neuroinflammation and nicotine-induced CPP. This study aimed to evaluate the levels of inflammatory mediators and neurotrophic factors in key areas of the central nervous system (CNS) of mice subject to nicotine-induced CPP. CPP was induced with an intraperitoneal administration of 0.5 mg/kg of nicotine in male Swiss mice, using an unbiased protocol. Control group received vehicle by the same route. The levels of cytokines, chemokines, and neurotrophic factors were measured using Enzyme-Linked Immunosorbent Assay (ELISA) in the brain after CPP test. As expected, nicotine induced place preference behavior. In parallel, we observed increased peripheral levels of IL-6 and IL-10 alongside increased hippocampal levels of NGF but decreased GDNF in mice treated with nicotine compared to controls. In the striatum, nicotine promoted decrease of IL-1ß, IL-10 and GDNF levels, while the levels of all the mediators were similar between groups in the pre-frontal cortex. Our results provide evidence on the role of cytokines and neurotrophic factors in nicotine-induced CPP in mice.
Collapse
Affiliation(s)
- Magda Luciana de Paula Rosa
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Caroline Amaral Machado
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Bruna da Silva Oliveira
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Eliana Cristina de Brito Toscano
- Laboratório de Patologia Celular e Molecular, Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Laila Asth
- Departmento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - João Luís Vieira Monteiro de Barros
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
| | - Fabrício A Moreira
- Departmento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Aline Silva de Miranda
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| |
Collapse
|
7
|
Papke RL, De Biasi M, Damaj MI. Nicotine: Understanding the big picture while also studying the details. Neuropharmacology 2021; 196:108715. [PMID: 34271018 DOI: 10.1016/j.neuropharm.2021.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610-0267, USA.
| | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| |
Collapse
|
8
|
Rahmadi M, Suasana D, Lailis SR, Ratri DMN, Ardianto C. The effects of quercetin on nicotine-induced reward effects in mice. J Basic Clin Physiol Pharmacol 2021; 32:327-333. [PMID: 34214359 DOI: 10.1515/jbcpp-2020-0418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/21/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Tobacco smoking remains the primary cause of preventable mortality and morbidity in the world. The complexity of the nicotine dependency process included the withdrawal effect that triggers recurrence being the main problem. Quercetin, known as an antioxidant, binds free radicals and modulates endogenous antioxidants through Nrf2 activations is expected as a potential agent to reduce the risk of nicotine dependence. This research aims to evaluate quercetin's effects on reducing the risk of nicotine addiction. METHODS Conditioned Place Preference (CPP) with a biased design was used to evaluate nicotine's reward effects in male Balb/C mice. Preconditioning test was performed on day 1; conditioning test was done twice daily on day 2-4 by administering quercetin (i.p.) 50 mg/kg along with nicotine (s.c.) 0.5 mg/kg or Cigarette Smoke Extract (CSE) (s.c.) contained nicotine 0.5 mg/kg; and postconditioning test was performed on day 5 continue with extinction test on day 6, 8, 10, 12, and reinstatement test on day 13. The duration spent in each compartment was recorded and analyzed. RESULTS Nicotine 0.5 mg/kg and CSE 0.5 mg/kg significantly induced reward effects (p<0.05). There was no decrease of reward effect during the extinction-reinstatement stage of the postconditioning phase (p>0.05), while quercetin 50 mg/kg both induced along with nicotine or CSE was able to inhibit the reward effect of nicotine (p>0.05). CONCLUSIONS Quercetin reduced the risk of nicotine dependence and has a potential effect to use as a therapy for nicotine dependence, especially as a preventive agent.
Collapse
Affiliation(s)
- Mahardian Rahmadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Dian Suasana
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Silvy Restuning Lailis
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | | | - Chrismawan Ardianto
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| |
Collapse
|