1
|
Wang K, Li Y, Zhang T, Liu H, Luo J. Potential benefits and mechanisms of physical exercise and rTMS in improving brain function in people with drug use disorders. Gen Hosp Psychiatry 2025; 93:61-66. [PMID: 39826308 DOI: 10.1016/j.genhosppsych.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Improving brain function impairment in people with substance use disorders (PSUD) is considered to be important in regulating their cyclic drug use impulse and relapse behavior. Physical exercise (PE) and repetitive transcranial magnetic stimulation (rTMS) may improve brain functional impairment in PSUD, respectively, but few studies have focused on the benefits and mechanisms of the combined use of the two. This editorial presents: 1) Both PE and rTMS alone appear to have positive effects on PSUD's reward system, cognitive function, and emotional regulation to varying degrees. 2) The mode of PE combined with rTMS seems to have a superimposed benefit on the brain function of PSUD by promoting the dynamic regulation of neurotransmitters and receptors, plasticity changes in neurogenesis and synapses, and the reversible development of brain structure and functional connections in PSUD. However, although this combination model provides a reference for subsequent targeted intervention therapy for drug use disorders, further studies are needed to provide more direct evidence of the corresponding benefits and mechanisms.
Collapse
Affiliation(s)
- Kun Wang
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing 400715, China
| | - Yan Li
- College of Liberal Studies (Sports Work Department), Chongqing Industry Polytechnic College, Chongqing 401120, China
| | - Tingran Zhang
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing 400715, China
| | - Hengxu Liu
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing 400715, China
| | - Jiong Luo
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Cao HL, Wei W, Meng YJ, Tao YJ, Yang X, Li T, Guo WJ. Association of altered cortical gyrification and working memory in male early abstinent alcohol-dependent individuals. Brain Res Bull 2025; 220:111166. [PMID: 39667504 DOI: 10.1016/j.brainresbull.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Alcohol dependence (AD) is an addictive disorder with multifaceted neurobiological features. Recent research on the pathophysiological mechanisms of AD has emphasized the important role of dysconnectivity. Cortical gyrification is known to be a reliable marker of neural connectivity. This study aimed to explore cortical gyrification using the local gyrification index (LGI) between alcohol-dependent patients and controls. METHODS Magnetic resonance images were collected from 60 early abstinent patients with AD (5-12 days after stopping alcohol consumption) and 59 controls and preprocessed using FreeSurfer, followed by surface-based morphometry (SBM) analysis to compare the LGI between the two groups. Cognitive performance was assessed using the Spatial Working Memory (SWM) test in the Cambridge Neuropsychological Test Automated Battery (CANTAB). The relationship between LGI, cognitive performance, and clinical variables was also explored in the patient group. RESULTS Compared with controls, patients with AD exhibited significantly decreased LGI in several regions, including the postcentral gyrus, precentral gyrus, middle frontal, superior temporal, middle temporal, insula, superior parietal, and inferior parietal cortex. AD patients did worse than controls in several SWM measures. Furthermore, decreased LGI in the left postcentral was negatively correlated with working memory performance after multiple comparison corrections in the patient group. CONCLUSION Alcohol-dependent individuals exhibit abnormal patterns of cortical gyrification, which may be underlying neurobiological markers of AD. Our findings further indicate that working memory deficits may be related to abnormalities in cortical gyrification in alcohol addiction.
Collapse
Affiliation(s)
- Hai-Ling Cao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310063, China
| | - Ya-Jing Meng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu-Jie Tao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xia Yang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310063, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Wan-Jun Guo
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310063, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China.
| |
Collapse
|
3
|
Fan L, Su C, Li Y, Guo J, Huang Z, Zhang W, Liu T, Wang J. The alterations of repetitive transcranial magnetic stimulation on the energy landscape of resting-state networks differ across the human cortex. Hum Brain Mapp 2024; 45:e70029. [PMID: 39465912 PMCID: PMC11514123 DOI: 10.1002/hbm.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 10/29/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising intervention tool for the noninvasive modulation of brain activity and behavior in neuroscience research and clinical settings. However, the resting-state dynamic evolution of large-scale functional brain networks following rTMS has rarely been investigated. Here, using resting-state fMRI images collected from 23 healthy individuals before (baseline) and after 1 Hz rTMS of the left frontal (FRO) and occipital (OCC) lobes, we examined the different effects of rTMS on brain dynamics across the human cortex. By fitting a pairwise maximum entropy model (pMEM), we constructed an energy landscape for the baseline and poststimulus conditions by fitting a pMEM. We defined dominant brain states (local minima) in the energy landscape with synergistic activation and deactivation patterns of large-scale functional networks. We calculated state dynamics including appearance probability, transitions and duration. The results showed that 1 Hz rTMS induced increased and decreased state probability, transitions and duration when delivered to the FRO and OCC targets, respectively. Most importantly, the shortest path and minimum cost between dominant brain states were altered after stimulation. The absolute sum of the costs from the source states to the destinations was lower after OCC stimulation than after FRO stimulation. In conclusion, our study characterized the dynamic trajectory of state transitions in the energy landscape and suggested that local rTMS can induce significant dynamic perturbation involving stimulated and distant functional networks, which aligns with the modern view of the dynamic and complex brain. Our results suggest low-dimensional mapping of rTMS-induced brain adaption, which will contribute to a broader and more effective application of rTMS in clinical settings.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Chunwang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jinjia Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Zi‐Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
- The Key Laboratory of Neuro‐informatics & Rehabilitation Engineering of Ministry of Civil AffairsXi'anShaanxiP. R. China
| |
Collapse
|
4
|
Ballester J, Marchand WR, Philip NS. Transcranial magnetic stimulation for methamphetamine use disorder: A scoping review within the neurocircuitry model of addiction. Psychiatry Res 2024; 338:115995. [PMID: 38852478 PMCID: PMC11209858 DOI: 10.1016/j.psychres.2024.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The use of methamphetamine in the United States is increasing, contributing now to the "fourth wave" in the national opioid epidemic crisis. People who suffer from methamphetamine use disorder (MUD) have a higher risk of death. No pharmacological interventions are approved by the FDA and psychosocial interventions are only moderately effective. Transcranial Magnetic Stimulation (TMS) is a relatively novel FDA-cleared intervention for the treatment of Major Depressive Disorder (MDD) and other neuropsychiatric conditions. Several lines of research suggest that TMS could be useful for the treatment of addictive disorders, including MUD. We will review those published clinical trials that show potential effects on craving reduction of TMS when applied over the dorsolateral prefrontal cortex (DLPFC) also highlighting some limitations that affect their generalizability and applicability. We propose the use of the Koob and Volkow's neurocircuitry model of addiction as a frame to explain the brain effects of TMS in patients with MUD. We will finally discuss new venues that could lead to a more individualized and effective treatment of this complex disorder including the use of neuroimaging, the exploration of different areas of the brain such as the frontopolar cortex or the salience network and the use of biomarkers.
Collapse
Affiliation(s)
- J Ballester
- Substance Abuse Residential Rehabilitation Treatment Program, VA Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA; Department of Psychiatry, School of Medicine, University of Utah, 501 Chipeta Way, Salt Lake City, UT 84108, USA.
| | - W R Marchand
- Department of Psychiatry, School of Medicine, University of Utah, 501 Chipeta Way, Salt Lake City, UT 84108, USA; VISN-19 Whole Health Flagship Site, VA Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA; Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA
| | - N S Philip
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
| |
Collapse
|
5
|
Maser J, Morrison MF, Khalid HP, Cunningham R, Yu D, Walters MI, Lu X, Bolo NR. Clavulanic Acid-Mediated Increases in Anterior Cingulate Glutamate Levels are Associated With Decreased Cocaine Craving and Brain Network Functional Connectivity Changes. CURRENT THERAPEUTIC RESEARCH 2024; 101:100751. [PMID: 39045086 PMCID: PMC11261246 DOI: 10.1016/j.curtheres.2024.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 07/25/2024]
Abstract
Background There is an urgent need for pharmacological treatment for cocaine (COC) use disorder (CUD). Glutamatergic transmission in the prefrontal cortex is affected by addictive behaviors. Clavulanic acid (CLAV), a glutamate transporter GLT-1 (excitatory amino acid transporter) activator, is a clinical-stage medication that has potential for treating CUD. Methods In a pilot study, nine participants with CUD received 500 mg CLAV with dose escalations to 750 mg and 1000 mg over 10 days. In 5 separate magnetic resonance imaging (MRI) sessions, brain anterior cingulate cortex (ACC) glutamate level and resting state network (RSN) functional connectivity (FC) were assessed using MR spectroscopy and functional MRI. Craving was assessed at the same time points, between baseline (before CLAV), 6 days, and 10 days of CLAV. Independent component analysis with dual regression was used to identify RSN FC changes from baseline to Days 6 and 10. Relationships among glutamate, craving, and resting state FC values were analyzed. Results Participants who achieved high ACC glutamate levels after CLAV treatment had robust decreases in COC craving (r = -0.90, P = 0.0009, n = 9). The salience network (SN) and executive control network (ECN) demonstrated an association between increased FC after CLAV treatment and low baseline ACC Glu levels (SN CLAV 750 mg, r = -0.82, P = 0.007) (ECN CLAV 1000 mg, r = -0.667, P = 0.050; n = 9). Conclusions Glutamate associated changes in craving and FC of the salience and executive control brain networks support CLAV as a potentially efficacious pharmacological treatment for CUD.
Collapse
Affiliation(s)
- Joya Maser
- Department of Psychiatry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Mary F. Morrison
- Department of Psychiatry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Psychiatry, Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Helene Philogene Khalid
- Department of Psychiatry, Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Ronan Cunningham
- Department of Psychiatry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Daohai Yu
- Department of Biomedical Education and Data Science, Center for Biostatistics & Epidemiology, Philadelphia, Pennsylvania
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - M. Ingre Walters
- Department of Psychiatry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Xiaoning Lu
- Department of Biomedical Education and Data Science, Center for Biostatistics & Epidemiology, Philadelphia, Pennsylvania
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Nicolas R. Bolo
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Yang L, Yang W, Tang F, Yuan K, Zhang J, Liu J. Hereditary and cortical morphological biomarker of sensitivity to reward in short-term withdrawal methamphetamine abusers. Cereb Cortex 2024; 34:bhae169. [PMID: 38679482 DOI: 10.1093/cercor/bhae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Higher sensitivity to reward (SR) and weaker sensitivity to punishment (SP) construct the fundamental craving characteristics of methamphetamine abuse. However, few studies have appraised relationships between SR/SP (SR or SP) and cortical morphological alterations in methamphetamine abusers and whether hereditary factors take effects on SR/SP is unclear. Based on surface-based morphometric analysis, cortical discrepancy was investigated between 38 methamphetamine abusers and 37 healthy controls. Within methamphetamine abusers, correlation profiling was performed to discover associations among aberrant neuroimaging substrates, SR, SP, and craving. According to nine single nucleotide polymorphism sites of dopamine-related genes, we conducted univariate general linear model to find different effects of genotypes on cortical alterations and SR/SP/craving (SR, SP, or craving). Ultimately, mediation analyses were conducted among single nucleotide polymorphism sites, SR/SP/craving, and cortical morphological alterations to discover their association pathways. Compared to healthy controls, thinner cortices in inferior temporal gyrus, lateral orbitofrontal cortex, medial orbitofrontal cortex, inferior parietal lobule, and lateral occipital cortex in the left hemisphere were found in methamphetamine abusers (P < 0.05, family-wise error corrected). Cortical thickness in the inferior temporal gyrus was negatively correlated with SR scores. We found that rs1800497 A-containing genotypes had lower cortical thickness in the left inferior parietal lobule than the GG genotype. The rs5751876 had effects on SR scores. This study would provide convincing biomarkers for SR in methamphetamine abusers and offer potential genetic targets for personalizing relapse prevention.
Collapse
Affiliation(s)
- Longtao Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan 410011, PR China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan 410011, PR China
| | - Fei Tang
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan 410011, PR China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, No. 266 Xinglong Section of Xifeng Road, Xi'an, Shaanxi 710126, PR China
| | - Jun Zhang
- Hunan Judicial Police Academy, No. 9 Broad Third Road, Changsha Economic and Technological Development Zone, Changsha, Hunan 410138, PR China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan 410011, PR China
- Clinical Research Center for Medical Imaging in Hunan Province, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan 410011, PR China
- Department of Radiology Quality Control Center in Hunan Province, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan 410011, PR China
| |
Collapse
|
7
|
Mehta DD, Praecht A, Ward HB, Sanches M, Sorkhou M, Tang VM, Steele VR, Hanlon CA, George TP. A systematic review and meta-analysis of neuromodulation therapies for substance use disorders. Neuropsychopharmacology 2024; 49:649-680. [PMID: 38086901 PMCID: PMC10876556 DOI: 10.1038/s41386-023-01776-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 02/21/2024]
Abstract
While pharmacological, behavioral and psychosocial treatments are available for substance use disorders (SUDs), they are not always effective or well-tolerated. Neuromodulation (NM) methods, including repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and deep brain stimulation (DBS) may address SUDs by targeting addiction neurocircuitry. We evaluated the efficacy of NM to improve behavioral outcomes in SUDs. A systematic literature search was performed on MEDLINE, PsychINFO, and PubMed databases and a list of search terms for four key concepts (SUD, rTMS, tDCS, DBS) was applied. Ninety-four studies were identified that examined the effects of rTMS, tDCS, and DBS on substance use outcomes (e.g., craving, consumption, and relapse) amongst individuals with SUDs including alcohol, tobacco, cannabis, stimulants, and opioids. Meta-analyses were performed for alcohol and tobacco studies using rTMS and tDCS. We found that rTMS reduced substance use and craving, as indicated by medium to large effect sizes (Hedge's g > 0.5). Results were most encouraging when multiple stimulation sessions were applied, and the left dorsolateral prefrontal cortex (DLPFC) was targeted. tDCS also produced medium effect sizes for drug use and craving, though they were highly variable and less robust than rTMS; right anodal DLPFC stimulation appeared to be most efficacious. DBS studies were typically small, uncontrolled studies, but showed promise in reducing misuse of multiple substances. NM may be promising for the treatment of SUDs. Future studies should determine underlying neural mechanisms of NM, and further evaluate extended treatment durations, accelerated administration protocols and long-term outcomes with biochemical verification of substance use.
Collapse
Affiliation(s)
- Dhvani D Mehta
- Addictions Division, CAMH, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Angela Praecht
- Addictions Division, CAMH, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Heather B Ward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Maryam Sorkhou
- Addictions Division, CAMH, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Victor M Tang
- Addictions Division, CAMH, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vaughn R Steele
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Tony P George
- Addictions Division, CAMH, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Zhang M, Chen L, Ren Z, Wang Z, Luo W. Applications of TMS in individuals with methamphetamine use disorder: A review. Heliyon 2024; 10:e25565. [PMID: 38420394 PMCID: PMC10900420 DOI: 10.1016/j.heliyon.2024.e25565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Methamphetamine abuse results in a host of social and medical issues. Methamphetamine use disorder (MUD) can hinder the brain and impair cognitive functions and mental health. Transcranial magnetic stimulation (TMS) is a non-invasive approach in the treatment of MUD. Recent studies have demonstrated encouraging and positive effects of TMS on the craving, affective symptoms, sleep quality, and cognitive functions in individuals with MUD. The regulation of specific brain activities through TMS has also been found to be a contributing factor to these positive outcomes. It is essential to employ more techniques, participants, and stimulation parameters and targets in the future.
Collapse
Affiliation(s)
- Mingming Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Lei Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Ziwei Ren
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Zhiyan Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| |
Collapse
|
9
|
Tian W, Zhao D, Ding J, Zhan S, Zhang Y, Etkin A, Wu W, Yuan TF. An electroencephalographic signature predicts craving for methamphetamine. Cell Rep Med 2024; 5:101347. [PMID: 38151021 PMCID: PMC10829728 DOI: 10.1016/j.xcrm.2023.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/17/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Craving is central to methamphetamine use disorder (MUD) and both characterizes the disease and predicts relapse. However, there is currently a lack of robust and reliable biomarkers for monitoring craving and diagnosing MUD. Here, we seek to identify a neurobiological signature of craving based on individual-level functional connectivity pattern differences between healthy control and MUD subjects. We train high-density electroencephalography (EEG)-based models using data recorded during the resting state and then calculate imaginary coherence features between the band-limited time series across different brain regions of interest. Our prediction model demonstrates that eyes-open beta functional connectivity networks have significant predictive value for craving at the individual level and can also identify individuals with MUD. These findings advance the neurobiological understanding of craving through an EEG-tailored computational model of the brain connectome. Dissecting neurophysiological features provides a clinical avenue for personalized treatment of MUD.
Collapse
Affiliation(s)
- Weiwen Tian
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Di Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Jinjun Ding
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Shulu Zhan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Yi Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Amit Etkin
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA; Alto Neuroscience, Inc., Los Altos, CA 94022, USA
| | - Wei Wu
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA; Alto Neuroscience, Inc., Los Altos, CA 94022, USA.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China; Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
10
|
Gong H, Huang Y, Zhu X, Lu W, Cai Z, Zhu N, Huang J, Jin Y, Sun X. Impact of combination of intermittent theta burst stimulation and methadone maintenance treatment in individuals with opioid use disorder: A comparative study. Psychiatry Res 2023; 327:115411. [PMID: 37574603 DOI: 10.1016/j.psychres.2023.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Prior studies indicate that subjects undergoing methadone maintenance therapy (MMT) may experience anxiety, depression and cravings. This study aimed to explore the impact of intermittent theta burst stimulation (iTBS)-MMT combination on craving and emotional symptoms of opioid use disorder. This comparative study included subjects with opioid use disorder at the Methadone Maintenance Clinic of Pudong New Area between September 2019 and March 2020. The subjects were divided into two groups: those who received iTBS-MMT combination treatment (iTBS-MMT) and those who received MMT treatment and sham stimulation treatment (MMT). Outcomes were reduction rate of anxiety, depression and craving. Anxiety was measured by Hamilton Anxiety (HAMA) scale, depression was determined by Hamilton Depression (HAMD) scale and craving was analyzed using visual analog scale. A total of 76 subjects completed the treatment, with 38 subjects in each group. Twenty days after treatment, subjects in the iTBS-MMT group had significant improvement of anxiety (HAMA reduction rate), depression (HAMD reduction rate) and craving (Craving reduction rate) reduction rate compared with MMT group. iTBS-MMT combination treatment may produce better drug craving reduction and emotional improvement than MMT alone.
Collapse
Affiliation(s)
- Hengfen Gong
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China; Clinical Research Center for Mental Disorders, School of Medicine, Tongji University, Shanghai, China.
| | - Ying Huang
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China; Clinical Research Center for Mental Disorders, School of Medicine, Tongji University, Shanghai, China
| | - Xingjia Zhu
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Wei Lu
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Zhengyi Cai
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Na Zhu
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Juan Huang
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Ying Jin
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China; Clinical Research Center for Mental Disorders, School of Medicine, Tongji University, Shanghai, China.
| | - Xirong Sun
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China; Clinical Research Center for Mental Disorders, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
11
|
Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, Shmuel A, Yao Z, Ma G, Zhang B. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur J Radiol Open 2023; 10:100495. [PMID: 37396489 PMCID: PMC10311181 DOI: 10.1016/j.ejro.2023.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Jixin Luan
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Amir Shmuel
- Montreal Neurological Institute, McGill University, Canada
| | - Zeshan Yao
- Biomedical Engineering Institute, Jingjinji National Center of Technology Innovation, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| |
Collapse
|
12
|
Guo Y, Zhao X, Zhang X, Li M, Liu X, Lu L, Liu J, Li Y, Zhang S, Yue L, Li J, Liu J, Zhu Y, Zhu Y, Sheng X, Yu D, Yuan K. Effects on resting-state EEG phase-amplitude coupling in insomnia disorder patients following 1 Hz left dorsolateral prefrontal cortex rTMS. Hum Brain Mapp 2023; 44:3084-3093. [PMID: 36919444 PMCID: PMC10171521 DOI: 10.1002/hbm.26264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Despite burgeoning evidence for cortical hyperarousal in insomnia disorder, the existing results on electroencephalography spectral features are highly heterogeneous. Phase-amplitude coupling, which refers to the modulation of the low-frequency phase to a high-frequency amplitude, is probably a more sensitive quantitative measure for characterizing abnormal neural oscillations and explaining the therapeutic effect of repetitive transcranial magnetic stimulation in the treatment of patients with insomnia disorder. Sixty insomnia disorder patients were randomly divided into the active and sham treatment groups to receive 4 weeks of repetitive transcranial magnetic stimulation treatment. Behavioral assessments, resting-state electroencephalography recordings, and sleep polysomnography recordings were performed before and after repetitive transcranial magnetic stimulation treatment. Forty good sleeper controls underwent the same assessment. We demonstrated that phase-amplitude coupling values in the frontal and temporal lobes were weaker in Insomnia disorder patients than in those with good sleeper controls at baseline and that phase-amplitude coupling values near the intervention area were significantly enhanced after active repetitive transcranial magnetic stimulation treatment. Furthermore, the enhancement of phase-amplitude coupling values was significantly correlated with the improvement of sleep quality. This study revealed the potential of phase-amplitude coupling in assessing the severity of insomnia disorder and the efficacy of repetitive transcranial magnetic stimulation treatment, providing new insights on the abnormal physiological mechanisms and future treatments for insomnia disorder.
Collapse
Affiliation(s)
- Yongjian Guo
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Xumeng Zhao
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaozi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Minpeng Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaoyang Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Ling Lu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Jiayi Liu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yan Li
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Shan Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Lirong Yue
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Jun Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yifei Zhu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaona Sheng
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, People's Republic of China
| | - Kai Yuan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, People's Republic of China.,Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, People's Republic of China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, People's Republic of China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Jin L, Yuan M, Zhang W, Wang L, Chen J, Wang F, Zhu J, Liu T, Wei Y, Li Y, Wang W, Li Q, Wei L. Default mode network mechanisms of repeated transcranial magnetic stimulation in heroin addiction. Brain Imaging Behav 2023; 17:54-65. [PMID: 36418675 DOI: 10.1007/s11682-022-00741-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/27/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) has been shown to reduce cravings in heroin-dependent (HD) individuals, but the mechanisms underlying the anti-craving effects of rTMS are unknown. Abnormalities in the default mode network (DMN) are known to be consistent findings in HD individuals and are involved in cravings. We assessed the effect of rTMS on DMN activity and its relationship to the treatment response. Thirty HD individuals were included in this self-controlled study, and all HD participants received 10-Hz rTMS 7-session during a week. Data for cravings and withdrawal symptoms and resting-state functional magnetic resonance imaging data were collected before and after rTMS treatment. Thirty demographically matched healthy individuals who did not receive rTMS were included as controls. We focused on changes in coupling seeded from the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and bilateral inferior parietal lobe (IPL), which are the core regions of the DMN. The craving and withdrawal symptom score of HD individuals decreased significantly after rTMS treatment. The left IPL-left middle frontal gyrus coupling and the left IPL-right inferior occipital gyrus coupling decreased significantly, and the changes in the left IPL-left middle frontal gyrus coupling were positively correlated with changes in drug-cue induced cravings. rTMS could modulate the coupling between the DMN and executive control network (ECN). Alterations of the left IPL-left middle frontal gyrus coupling may play an important mechanistic role in reducing drug cue-induced cravings.
Collapse
Affiliation(s)
- Long Jin
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Menghui Yuan
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Wei Zhang
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Lei Wang
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Jiajie Chen
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Fan Wang
- Department of Radiology, Qinhuang Hospital, Xi'an, Shaanxi, China
| | - Jia Zhu
- Department of Radiology, Qinhuang Hospital, Xi'an, Shaanxi, China
| | - Tao Liu
- Department of Radiology, Qinhuang Hospital, Xi'an, Shaanxi, China
| | - Yixin Wei
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Yunbo Li
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Wei Wang
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China.
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China.
| | - Longxiao Wei
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China.
| |
Collapse
|
14
|
Tang Z, Zhu Z, Xu J. Psychological Effects of Repetitive Transcranial Magnetic Stimulation on Individuals With Methamphetamine Use Disorder: A Systematic Review and Meta-Analysis. Biol Res Nurs 2023; 25:117-128. [PMID: 35999040 DOI: 10.1177/10998004221122522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate the effects of rTMS on drug craving, depression, anxiety, sleep, and cognitive function in methamphetamine (MA) dependent individuals. DATA SOURCES AND METHODS Randomized controlled trials (RCTs) of rTMS interventions for MA-dependent patients were searched through PubMed, Embase, Cochrane Library, Web of Science, Chinese National Knowledge Infrastructure (CNKI), Wanfang database, Chongqing Vipers (VIP) and China Biomedical Literature Database (CBLD). The included literature was statistically processed using Revman 5.4, and STATA 16.0 for sensitivity and bias analysis. RESULTS A total of 13 papers were included, and the results of the meta-analysis showed that rTMS was effective in reducing craving scores (SMD = -1.53, 95%CI:-2.08 ∼ -0.98, p < 0.00001), improving depression (SMD = -0.32, 95%CI:-0.58 ∼ -0.07, p = 0.01) and sleep scores (WMD = -1.26, 95%CI:-2.26 ∼ -0.27, p = 0.01), but had no effect on anxiety scores (SMD = -0.42, 95%CI:-0.88 ∼ 0.03, p = 0.07); in terms of cognitive function, there were improvements in the international shopping list task (ISL), Groton maze learning task (GML) and continuous paired association learning task (CPAL), except for no effect on the social emotional cognition task (SEC) and two back task (TWOB). Subgroup analysis showed significant differences in the effects of different intervention period on craving in MA-dependent individuals. CONCLUSION rTMS was effective in reducing MA dependent individuals' cravings, alleviating depressive symptoms, improving sleep quality and language learning, collaborative learning and executive skills. Due to the small sample size of this study, a large number of RCTs are needed to validate this.
Collapse
Affiliation(s)
| | - Zhicheng Zhu
- Institute of Sports Medicine and Health, 66446Chengdu Sports University, China
| | - Jisheng Xu
- Institute of Sports Medicine and Health, 66446Chengdu Sports University, China
| |
Collapse
|
15
|
Wu MK, Satogami K, Liang CS, Stubbs B, Carvalho AF, Brunoni AR, Su KP, Tu YK, Wu YC, Chen TY, Li DJ, Lin PY, Hsu CW, Chen YW, Suen MW, Zeng BY, Takahashi S, Tseng PT, Li CT. Multiple comparison of different noninvasive brain stimulation and pharmacologic interventions in patients with methamphetamine use disorders: A network meta-analysis of randomized controlled trials. Psychiatry Clin Neurosci 2022; 76:633-643. [PMID: 35876620 DOI: 10.1111/pcn.13452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
AIM In recent decades, the prevalence of amphetamine and methamphetamine use disorders has at least doubled in some regions/countries, with accompanying high risks of drug overdose-associated mortality. Noninvasive brain stimulation (NIBS) methods may be effective treatments. However, the comparative efficacy of the NIBS protocol for amphetamine/methamphetamine use disorder (AUD/MUD) remains unknown to date. The aim of this network meta-analysis (NMA) was to compare the efficacy and acceptability of various NIBS methods/protocols for AUD/MUD management. METHODS A frequentist model-based NMA was conducted. We included randomized controlled trials (RCTs) that investigated the efficacy of NIBS and guideline-recommended pharmacologic treatments to reduce craving severity in patients with either AUD or MUD. RESULTS Twenty-two RCTs including 1888 participants met the eligibility criteria. Compared with the sham/placebo group (study = 19, subjects = 891), a combination of intermittent theta burst stimulation over the left dorsolateral prefrontal cortex (DLPFC) and continuous TBS over the left ventromedial prefrontal cortex (study = 1, subjects = 19) was associated with the largest decreases in craving severity [standardized mean difference (SMD) = -1.50; 95% confidence intervals (95%CIs) = -2.70 to -0.31]. High-frequency repetitive transcranial magnetic stimulation over the left DLPFC was associated with the largest improvements in depression and quality of sleep (study = 3, subjects = 86) (SMD = -2.48; 95%CIs = -3.25 to -1.71 and SMD = -2.43; 95%CIs = -3.38 to -1.48, respectively). The drop-out rate of most investigated treatments did not significantly differ between groups. CONCLUSION The combined TBS protocol over the prefrontal cortex was associated with the greatest improvement in craving severity. Since few studies were available for inclusion, additional large-scale randomized controlled trials are warranted.
Collapse
Affiliation(s)
- Ming-Kung Wu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kazumi Satogami
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | - Andre F Carvalho
- Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, National Institute of Biomarkers in Psychiatry, Laboratory of Neurosciences (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil.,Departamento de Ciências Médicas, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil
| | - Kuan-Pin Su
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dian-Jeng Li
- Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan
| | - Mein-Woei Suen
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Gender Equality Education and Research Center, Asia University, Taichung, Taiwan.,Department of Medical Research, Asia University Hospital, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Bing-Yan Zeng
- Department of Internal Medicine, E-Da Dachang Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan.,Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan.,Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan.,Clinical Research and Education Center, Asakayama General Hospital, Sakai, Japan
| | - Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
16
|
Garland EL, Hanley AW, Hudak J, Nakamura Y, Froeliger B. Mindfulness-induced endogenous theta stimulation occasions self-transcendence and inhibits addictive behavior. SCIENCE ADVANCES 2022; 8:eabo4455. [PMID: 36223472 PMCID: PMC9555770 DOI: 10.1126/sciadv.abo4455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/24/2022] [Indexed: 05/26/2023]
Abstract
Self-regulation is instantiated by theta oscillations (4 to 8 Hz) in neurons of frontal midline brain regions. Frontal midline theta (FMΘ) is inversely associated with default mode network (DMN) activation, which subserves self-referential processing. Addiction involves impaired self-regulation and DMN dysfunction. Mindfulness is an efficacious self-regulatory practice for treating addiction, but little is known about the mechanisms by which mindfulness reduces addictive behavior. In this mechanistic study of long-term opioid users (N = 165), we assessed meditation-induced FMΘ as a mediator of changes in opioid misuse. Relative to a supportive psychotherapy control, participants treated with Mindfulness-Oriented Recovery Enhancement (MORE) exhibited increased FMΘ during a laboratory-based meditation session. FMΘ during meditation was associated with self-transcendent experiences characterized by ego dissolution, nondual awareness, and bliss. MORE's effects on decreasing opioid misuse were mediated by increased FMΘ. Given the role of aberrant self-referential processing in addiction, mindfulness-induced endogenous theta stimulation might "reset" DMN dysfunction to inhibit addictive behavior.
Collapse
Affiliation(s)
- Eric L. Garland
- Center on Mindfulness and Integrative Health Intervention Development, College of Social Work, University of Utah, Salt Lake City, UT, USA
- Veterans Health Care Administration VISN 19 Whole Health Flagship site located at the VA Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Adam W. Hanley
- Center on Mindfulness and Integrative Health Intervention Development, College of Social Work, University of Utah, Salt Lake City, UT, USA
| | - Justin Hudak
- Center on Mindfulness and Integrative Health Intervention Development, College of Social Work, University of Utah, Salt Lake City, UT, USA
| | - Yoshio Nakamura
- Department of Anesthesiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Brett Froeliger
- Department of Psychology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
17
|
Ikeda-Murakami K, Ikeda T, Watanabe M, Tani N, Ishikawa T. Central nervous system stimulants promote nerve cell death under continuous hypoxia. Hum Cell 2022; 35:1391-1407. [PMID: 35737220 DOI: 10.1007/s13577-022-00734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
Intake of central nervous system (CNS) stimulants causes hypoxia and brain edema, which results in nerve cell death. However, no study has yet investigated the direct and continuous effects on nerve cells of CNS stimulants under hypoxia. Thus, based on autopsy cases, the effects of CNS stimulant drugs on the CNS were examined. The pathological changes in cultured nerve cells when various CNS stimulants were added under a hypoxic condition were also investigated. Five groups (Group A, stimulants; Group B, stimulants with psychiatric drugs; Group C, caffeine; Group D, psychiatric drugs; and Group E, no drugs) according to the detected drugs in autopsy cases were compared, and brain edema was evaluated using morphological findings. Furthermore, the number of dead cultured nerve cells was counted after the addition of drugs (4-aminopyridine (4-AP), caffeine, and ephedrine) under hypoxia (3% O2). Staining with anti-receptor-interacting protein 3 (RIP3) and other associated stains was also performed to investigate the neuronal changes in the brain. Group A showed significantly more brain edema than the other groups. In the culture experiments, the ratio of nerve cell death after the addition of 4-AP was the highest in the hypoxic condition. Groups with stimulants detected were stained more strongly by RIP3 immunostaining than by other staining. Addition of stimulants to cultured nerve cells in a persistent hypoxic condition led to severe cytotoxicity and nerve cell death. These findings suggest that necroptosis is involved in nerve cell death due to the addition of CNS stimulants in the hypoxic condition.
Collapse
Affiliation(s)
- Kei Ikeda-Murakami
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan.
| | - Tomoya Ikeda
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center, Department of Legal Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
| | - Miho Watanabe
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, Health and Medical Science Innovation Laboratory 403, University of Tsukuba, Tsukuba City, Ibaraki, 305-8575, Japan
| | - Naoto Tani
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center, Department of Legal Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center, Department of Legal Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
| |
Collapse
|
18
|
Song S, Zilverstand A, Gui W, Pan X, Zhou X. Reducing craving and consumption in individuals with drug addiction, obesity or overeating through neuromodulation intervention: a systematic review and meta-analysis of its follow-up effects. Addiction 2022; 117:1242-1255. [PMID: 34514666 DOI: 10.1111/add.15686] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Non-invasive brain stimulation has shown potential in clinical applications aiming at reducing craving and consumption levels in individuals with drug addiction or overeating behaviour. However, it is unclear whether these intervention effects are maintained over time. This study aimed to measure the immediate, short- and long-term effects of excitatory transcranial direct current stimulation (tDCS) and high-frequency repetitive transcranial magnetic stimulation (rTMS) targeting at dorsolateral prefrontal cortex (dlPFC) in people with drug addiction or overeating. METHODS A systematic review and random effects meta-analysis. We included 20 articles (total of 22 studies using randomized controlled trials: 3 alcohol dependence, 3 drug dependence, 12 smoking, 4 overeating; total: 720 participants) from January 2000 to June 2020, which reported at least one follow-up assessment of craving, consumption or abstinence levels after the intervention. We compared effects of active versus sham stimulation immediately after the intervention and at the last follow-up assessment, as compared with baseline. RESULTS Excitatory neuromodulation of dlPFC activity reduced craving and consumption immediately after the intervention (craving: g = 0.734, CI = 0.447-1.021, P < 0.001; consumption: g = 0.527, CI = 0.309-0.745; P < 0.001), as well as during short-, mid- and long-term abstinence (craving: g = 0.677, CI = 0.440-0.914, P < 0.001; consumption: g = 0.445, CI = 0.245-0.645, P < 0.001; abstinence levels: g = 0.698, CI = 0.433-0.963, P < 0.001; average time of follow-up: 84 ± 83 days after last stimulation). Additional analysis demonstrated that the intervention effects were sustained in all populations studied (food, nicotine, alcohol or drug abuse) and with both stimulation techniques used (rTMS, tDCS). Interventions targeting at the left (vs right) hemisphere may be more effective. CONCLUSIONS Excitatory neuromodulation targeting the dorsolateral prefrontal cortex appears to lead to a sustained reduction of craving and consumption in individuals with addiction or overeating behaviour.
Collapse
Affiliation(s)
- Sensen Song
- Department of Psychology, School of Humanities, Tongji University, Shanghai, China
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Wenjun Gui
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuefei Pan
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Xiaolin Zhou
- Department of Psychology, School of Humanities, Tongji University, Shanghai, China
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
19
|
Jin L, Yuan M, Zhang W, Su H, Wang F, Zhu J, Liu T, Wei Y, Li Y, Bai Q, Wang W, Wei L, Li Q. Repetitive transcranial magnetic stimulation modulates coupling among large-scale brain networks in heroin-dependent individuals: A randomized resting-state functional magnetic resonance imaging study. Addict Biol 2022; 27:e13121. [PMID: 34841633 DOI: 10.1111/adb.13121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The abnormal interactions of three key large-scale brain networks (default mode [DMN], salience and executive control [ECN]) were showed underlie dysfunctions in heroin addiction. Repetitive transcranial magnetic stimulation (rTMS) targeting the left dorsolateral prefrontal cortex (DLPFC) is a potential treatment for heroin addiction. It is unclear whether impaired coupling among the large-scale brain networks would be improved by rTMS in treated heroin-dependent individuals. Thirty-five heroin-dependent individuals were included in this sham-controlled, randomized study. The patients received either active or sham rTMS for 1 week. The craving for heroin and resting-state functional magnetic resonance imaging data were collected before and after 1-week rTMS. Twenty-two healthy subjects were included as controls not receiving rTMS. After 1-week rTMS, only the active rTMS group showed a significant decrease in spontaneous and heroin cue-induced craving. The coupling between left DLPFC (a key node of left ECN) and left parahippocampal gyrus (PHG, included in DMN) significantly increased for the active group with a tendency towards that of controls. The coupling between the right precentral gyrus and three key regions included in DMN (posterior cingulate cortex/precuneus and bilateral inferior parietal cortex) significantly decreased for the active group with a tendency towards that of healthy controls. For the active rTMS individuals, the left DLPFC-PHG coupling negatively correlated with the spontaneous craving and the drug cue-induced craving. It suggested that the rTMS could reduce heroin craving, which might be related to the modulation of ECN-DMN coupling. This finding might shed light on the mechanism of rTMS for heroin addiction treatment.
Collapse
Affiliation(s)
- Long Jin
- Department of Nuclear Medicine, Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Menghui Yuan
- Department of Nuclear Medicine, Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Wei Zhang
- Department of Nuclear Medicine, Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Hang Su
- Shanghai Mental Health Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Fan Wang
- Department of Radiology, Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Jia Zhu
- Department of Radiology, Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Tao Liu
- Department of Radiology, Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Yixin Wei
- Department of Nuclear Medicine, Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Yunbo Li
- Department of Nuclear Medicine, Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Qianrong Bai
- Department of Nuclear Medicine, Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Wei Wang
- Department of Nuclear Medicine, Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Longxiao Wei
- Department of Nuclear Medicine, Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Qiang Li
- Department of Radiology, Tangdu Hospital Fourth Military Medical University Xi'an China
| |
Collapse
|
20
|
Aceves-Serrano L, Neva JL, Doudet DJ. Insight Into the Effects of Clinical Repetitive Transcranial Magnetic Stimulation on the Brain From Positron Emission Tomography and Magnetic Resonance Imaging Studies: A Narrative Review. Front Neurosci 2022; 16:787403. [PMID: 35264923 PMCID: PMC8899094 DOI: 10.3389/fnins.2022.787403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a therapeutic tool to alleviate symptoms for neurological and psychiatric diseases such as chronic pain, stroke, Parkinson’s disease, major depressive disorder, and others. Although the therapeutic potential of rTMS has been widely explored, the neurological basis of its effects is still not fully understood. Fortunately, the continuous development of imaging techniques has advanced our understanding of rTMS neurobiological underpinnings on the healthy and diseased brain. The objective of the current work is to summarize relevant findings from positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques evaluating rTMS effects. We included studies that investigated the modulation of neurotransmission (evaluated with PET and magnetic resonance spectroscopy), brain activity (evaluated with PET), resting-state connectivity (evaluated with resting-state functional MRI), and microstructure (diffusion tensor imaging). Overall, results from imaging studies suggest that the effects of rTMS are complex and involve multiple neurotransmission systems, regions, and networks. The effects of stimulation seem to not only be dependent in the frequency used, but also in the participants characteristics such as disease progression. In patient populations, pre-stimulation evaluation was reported to predict responsiveness to stimulation, while post-stimulation neuroimaging measurements showed to be correlated with symptomatic improvement. These studies demonstrate the complexity of rTMS effects and highlight the relevance of imaging techniques.
Collapse
Affiliation(s)
- Lucero Aceves-Serrano
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Lucero Aceves-Serrano,
| | - Jason L. Neva
- École de Kinésiologie et des Sciences de l’Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Doris J. Doudet
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Kim J, Cha B, Lee D, Kim JM, Kim M. Effect of Cognition by Repetitive Transcranial Magnetic Stimulation on Ipsilesional Dorsolateral Prefrontal Cortex in Subacute Stroke Patients. Front Neurol 2022; 13:823108. [PMID: 35185773 PMCID: PMC8848770 DOI: 10.3389/fneur.2022.823108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Objective To demonstrate the efficacy of high-frequency repetitive transcranial magnetic stimulation (rTMS) over the ipsilesional dorsolateral prefrontal cortex (DLPFC) on neurological recovery in patients with subacute phase stroke. Methods Patients with supratentorial hemispheric stroke who were hospitalized for intensive rehabilitation in the subacute phase were enrolled for this retrospective analysis. Two groups of patients were selected: the rTMS group who received high-frequency (20 Hz) rTMS ≥ 5 times over the ipsilesional DLPFC, and a control group who did not receive any rTMS. The patients were further divided into groups with right- or left-side brain lesions. Functional measurements for cognitive ability, mood, speech, and activities of daily living, which were assessed at baseline and at the 1-month follow-up as a routine clinical practice, were used for analyses. Results Among 270 patients with available clinical data, 133 (women, 51; age, 61.0 ± 13.8 years) met the inclusion criteria and were enrolled for analysis. There were no differences in demographic data and functional scores at baseline between the rTMS (n = 49) and control (n = 84) groups. The rTMS group showed a higher gain in the mini-mental status examination (MMSE) total score and subscores of all domains, forward digit span, and FIM-cognition than the control group (P < 0.05). Among the patients with left hemispheric lesions (n = 57), the rTMS group showed better outcomes in cognition and depression through scores of total and “attention and concentration” subscores of MMSE, FIM-cognition, and the geriatric depression scale (P < 0.05). Among the patients with right hemispheric lesions (n = 76), the rTMS group showed better outcomes in cognition through the MMSE total score and subscores of “attention and concentration,” “registration,” and “recall,” and scores of both forward and backward digit spans (P < 0.05). Conclusion High-frequency rTMS over the ipsilesional DLPFC has beneficial effects on the recovery of cognition on both sides as well as mood in patients with left-sided hemispheric lesions.
Collapse
Affiliation(s)
- Jongwook Kim
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Byoungwoo Cha
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Doyoung Lee
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Jong Moon Kim
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, South Korea
| | - MinYoung Kim
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, South Korea
- *Correspondence: MinYoung Kim
| |
Collapse
|
22
|
Chang CH, Liou MF, Liu CY, Lu WH, Chen SJ. Efficacy of Repetitive Transcranial Magnetic Stimulation in Patients With Methamphetamine Use Disorder: A Systematic Review and Meta-Analysis of Double-Blind Randomized Controlled Trials. Front Psychiatry 2022; 13:904252. [PMID: 35711590 PMCID: PMC9197111 DOI: 10.3389/fpsyt.2022.904252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has demonstrated therapeutic potential for treating patients with methamphetamine use disorder (MUD). However, the most effective target and stimulation frequency of rTMS for treating MUD remains unclear. This meta-analysis explored the effect of rTMS on MUD. METHODS In this study, PubMed, Cochrane Systematic Reviews, and the Cochrane Collaboration Central Register of Controlled Clinical Trials were searched electronically for double-blind randomized controlled trials that used rTMS for treating MUD. We used published trials to investigate the efficacy of rTMS in MUD up to March 5, 2022, and pooled studies using a random-effect model to compare rTMS treatment effects. Patients who were diagnosed with MUD according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders were recruited. Clinical craving scores between baseline and after rTMS were compared using the standardized mean difference (SMD) with 95% confidence intervals (CIs). The heterogeneity of the included trials was evaluated through a visual inspection of funnel plots and the I2 statistic. RESULTS We identified seven trials with 462 participants with MUD that met the inclusion criteria. All the studies evaluated craving scores, with rTMS demonstrating a more significant effect than the sham treatment on reducing craving scores (SMD = 0.983, CI = 0.620-1.345, p ≤ 0.001). A subgroup meta-analysis revealed that intermittent theta-burst stimulation (iTBS) had a greater positive effect than 10-Hz rTMS. A metaregression revealed that the SMDs increased with the increase in baseline craving scores, whereas they decreased with the increase in the proportion of men and duration of abstinence. CONCLUSION The meta-analysis suggests that rTMS may be associated with treatment effect on craving symptoms in patients with MUD. iTBS may have a greater positive effect on craving reduction than 10-z rTMS.
Collapse
Affiliation(s)
- Chun-Hung Chang
- An Nan Hospital, China Medical University, Tainan City, Taiwan.,Institute of Clinical Medical Science, China Medical University, Taichung City, Taiwan.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung City, Taiwan
| | - Meng-Fen Liou
- An Nan Hospital, China Medical University, Tainan City, Taiwan
| | - Chieh-Yu Liu
- National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.,Biostatistical Consulting Lab, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Wei-Hsin Lu
- Department of Psychiatry, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Shaw-Ji Chen
- Department of Psychiatry, Taitung MacKay Memorial Hospital, Taitung, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
23
|
A transcranial magnetic stimulation protocol for decreasing the craving of methamphetamine-dependent patients. STAR Protoc 2021; 2:100944. [PMID: 34825214 PMCID: PMC8603307 DOI: 10.1016/j.xpro.2021.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique. Many substance use disorders lack effective treatments, and TMS is expected to reduce cravings and risk of relapse by regulating brain function. Here, we introduce three alternative TMS settings and specific operations to interfere with methamphetamine use disorders. Theoretically, this protocol can also be applied to diseases with similar brain damage characteristics. For complete details on the use and execution of this protocol, please refer to Chen et al. (2020).
Collapse
|
24
|
Jeong H, Yoon S, Sung YH, Kim J, Lyoo IK, Yurgelun-Todd DA, Renshaw PF. Effects of cytidine-5'-diphosphate choline on gray matter volumes in methamphetamine-dependent patients: A randomized, double-blind, placebo-controlled study. J Psychiatr Res 2021; 143:215-221. [PMID: 34507102 PMCID: PMC8557135 DOI: 10.1016/j.jpsychires.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/07/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cytidine-5'-diphosphate choline (CDP-choline) has been suggested to exert neuroprotective and neuroreparative effects and may be beneficial for patients with stimulant dependence. This randomized, double-blind, placebo-controlled study in methamphetamine (MA) dependence investigated effects of CDP-choline on the brain structures and their associations with craving and MA use. METHODS MA users (n = 44) were randomized to receive 2 g/day of CDP-choline (n = 22) or placebo (n = 22) for 8 weeks. Patients underwent brain magnetic resonance imaging (MRI) at baseline and 8-week follow-up. Healthy individuals (n = 27) were also examined using brain MRI at the same interval. Voxel-based morphometry analysis was conducted to examine changes in gray matter (GM) volumes and their associations with craving and MA use. RESULTS Craving for MA was significantly reduced after the 8 week-treatment with CDP-choline (p = 0.01), but not with the placebo treatment (p = 0.10). There was no significant difference in the total number of MA-negative urine samples between the two groups (p = 0.19). With CDP-choline treatment, GM volumes in the left middle frontal gyrus (p = 0.001), right hippocampus (p = 0.009), and left precuneus (p = 0.001) were significantly increased compared to the placebo and control groups. Increased GM volumes in the left middle frontal gyrus with CDP-choline treatment were associated with reduced craving for MA (Spearman's ρ = -0.56, p = 0.03). In addition, the right hippocampal volume increases were positively associated with the total number of MA-negative urine results in the CDP-choline group (Spearman's ρ = 0.67, p = 0.006). CONCLUSION Our findings suggest that CDP-choline may increase GM volumes of MA-dependent patients, which may be related to decreases in MA use and craving.
Collapse
Affiliation(s)
- Hyeonseok Jeong
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Nuclear Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Sujung Yoon
- Ewha Brain Institute and Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Young-Hoon Sung
- The Brain Institute and Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Jungyoon Kim
- Ewha Brain Institute and Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute and Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea,The Brain Institute and Department of Psychiatry, University of Utah, Salt Lake City, UT, USA,College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | | | - Perry F. Renshaw
- The Brain Institute and Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
25
|
Neurophysiological correlate of incubation of craving in individuals with methamphetamine use disorder. Mol Psychiatry 2021; 26:6198-6208. [PMID: 34385601 DOI: 10.1038/s41380-021-01252-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
Previous studies both in laboratory animals and humans have reported that abstinence induces incubation of cue-induced drug craving for nicotine, alcohol, cocaine, and methamphetamine. However, current experimental procedures utilized to study incubation of methamphetamine craving do not incorporate the temporal dynamics of neuropsychological measures and electrophysiological activities associated with this incubation process. This study utilized the high-density electroencephalogram (EEG) signals as a rapid, inexpensive, and noninvasive measure of cue-induced craving potential. A total of 156 male individuals with methamphetamine use disorder (MUD) enrolled in this multisite, cross-sectional study. Structured clinical interview data, self-report questionnaires (cued craving, quality of sleep, impulsivity, anxiety, and depression) and resting-state, eye-closed 128 high-density channel EEG signals were collected at 5 abstinence duration time points (<1, 1-3, 3-6, 6-12, and 12-24 months) to track the neuropsychological and neurophysiological signatures. Cue-induced craving was higher after 1-3 months than after the other time points. This incubation effect was also observed for sleep quality but not for anxiety, depression, and impulsivity symptoms, along with exhibited decreased power spectrum for theta (5.5-8 Hz) and alpha (8-13 Hz), and increased in beta (16.5-26.5 Hz) frequency band. Source reconstructed resting-state EEG analysis showed increased synchronization of medial prefrontal cortex (MPFC) for the beta frequency band in 1-3 months abstinent MUD group, and associated with the incubation of craving. Remarkably, the robust incubation-related abnormalities may be driven by beta-band source space connectivity between MPFC and bilateral orbital gyrus (ORB). Our findings suggest the enhancement of beta activity in the incubation period most likely originates from a dysfunction involving frontal brain regions. This neurophysiological signature of incubation of craving can be used to identify individuals who might be most susceptible to relapse, providing a potential insight into future therapeutic interventions for MUD via neuromodulation of beta activity.
Collapse
|
26
|
Dong T, Huang Q, Huang S, Xin J, Jia Q, Gao Y, Shen H, Tang Y, Zhang H. Identification of Methamphetamine Abstainers by Resting-State Functional Magnetic Resonance Imaging. Front Psychol 2021; 12:717519. [PMID: 34526937 PMCID: PMC8435858 DOI: 10.3389/fpsyg.2021.717519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
Methamphetamine (MA) can cause brain structural and functional impairment, but there are few studies on whether this difference will sustain on MA abstainers. The purpose of this study is to investigate the correlation of brain networks in MA abstainers. In this study, 47 people detoxified for at least 14 months and 44 normal people took a resting-state functional magnetic resonance imaging (RS-fMRI) scan. A dynamic (i.e., time-varying) functional connectivity (FC) is obtained by applying sliding windows in the time courses on the independent components (ICs). The windowed correlation data for each IC were then clustered by k-means. The number of subjects in each cluster was used as a new feature for individual identification. The results show that the classifier achieved satisfactory performance (82.3% accuracy, 77.7% specificity, and 85.7% sensitivity). We find that there are significant differences in the brain networks of MA abstainers and normal people in the time domain, but the spatial differences are not obvious. Most of the altered functional connections (time-varying) are identified to be located at dorsal default mode network. These results have shown that changes in the correlation of the time domain may play an important role in identifying MA abstainers. Therefore, our findings provide valuable insights in the identification of MA and elucidate the pathological mechanism of MA from a resting-state functional integration point of view.
Collapse
Affiliation(s)
- Tingting Dong
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Qiuping Huang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Institute of Mental Health of Central South University, Chinese National Technology Institute on Mental Disorders, Changsha, China
| | - Shucai Huang
- The Fourth People’s Hospital of Wuhu, Wuhu, China
| | - Jiang Xin
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Qiaolan Jia
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Yang Gao
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Hongxian Shen
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Institute of Mental Health of Central South University, Chinese National Technology Institute on Mental Disorders, Changsha, China
| | - Yan Tang
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Hao Zhang
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
27
|
Wang Y, Qin Y, Li H, Yao D, Sun B, Gong J, Dai Y, Wen C, Zhang L, Zhang C, Luo C, Zhu T. Identifying Internet Addiction and Evaluating the Efficacy of Treatment Based on Functional Connectivity Density: A Machine Learning Study. Front Neurosci 2021; 15:665578. [PMID: 34220426 PMCID: PMC8247769 DOI: 10.3389/fnins.2021.665578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
Although mounting neuroimaging studies have greatly improved our understanding of the neurobiological mechanism underlying internet addiction (IA), the results based on traditional group-level comparisons are insufficient in guiding individual clinical practice directly. Specific neuroimaging biomarkers are urgently needed for IA diagnosis and the evaluation of therapy efficacy. Therefore, this study aimed to develop support vector machine (SVM) models to identify IA and assess the efficacy of cognitive behavior therapy (CBT) based on unbiased functional connectivity density (FCD). Resting-state fMRI data were acquired from 27 individuals with IA before and after 8-week CBT sessions and 30 demographically matched healthy controls (HCs). The discriminative FCDs were computed as the features of the support vector classification (SVC) model to identify individuals with IA from HCs, and the changes in these discriminative FCDs after treatment were further used as features of the support vector regression (SVR) model to evaluate the efficacy of CBT. Based on the informative FCDs, our SVC model successfully differentiated individuals with IA from HCs with an accuracy of 82.5% and an area under the curve (AUC) of 0.91. Our SVR model successfully evaluated the efficacy of CBT using the FCD change ratio with a correlation efficient of 0.59. The brain regions contributing to IA classification and CBT efficacy assessment were the left inferior frontal cortex (IFC), middle frontal cortex (MFC) and angular gyrus (AG), the right premotor cortex (PMC) and middle cingulate cortex (MCC), and the bilateral cerebellum, orbitofrontal cortex (OFC) and superior frontal cortex (SFC). These findings confirmed the FCDs of hyperactive impulsive habit system, hypoactive reflecting system and sensitive interoceptive reward awareness system as potential neuroimaging biomarkers for IA, which might provide objective indexes for the diagnosis and efficacy evaluation of IA.
Collapse
Affiliation(s)
- Yang Wang
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun Qin
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Li
- School of Medicine, Chengdu University, Chengdu, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Sun
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinnan Gong
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Computer Science, Chengdu University of Information Technology, Chengdu, China
| | - Yu Dai
- Department of Chinese Medicine, Chengdu Eighth People’s Hospital, Chengdu, China
| | - Chao Wen
- Department of Rehabilitation, Zigong Fifth People’s Hospital, Zigong, China
| | - Lingrui Zhang
- Department of Medicine, Leshan Vocational and Technical College, Leshan, China
| | - Chenchen Zhang
- Department of Rehabilitation, TCM Hospital of Longquanyi District, Chengdu, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, China
| | - Tianmin Zhu
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Brain responses to drug cues predict craving changes in abstinent heroin users: A preliminary study. Neuroimage 2021; 237:118169. [PMID: 34000396 DOI: 10.1016/j.neuroimage.2021.118169] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Loss of control over drug intake occurring in drug addiction is believed to result from disruption of reward circuits, including reduced responsiveness to natural rewards (e.g., monetary, sex) and heightened responsiveness to drug reward. Yet few studies have assessed reward deficiency and related brain responses in abstinent heroin users with opioid use disorder, and less is known whether the brain responses can predict cue-induced craving changes following by prolonged abstinence. METHOD 31 heroin users (age: 44.13±7.68 years, male: 18 (58%), duration of abstinence: 85.2 ± 52.5 days) were enrolled at a mandatory detoxification center. By employing a cue-reactivity paradigm including three types of cues (drug, sexual, neutral), brain regional activations and circuit-level functional coupling were extracted. Among the 31 heroin users, 15 were followed up longitudinally to assess cue induced craving changes in the ensuing 6 months. RESULTS One way analysis of variance results showed that heroin users have differential brain activations to the three cues (neutral, drug and sexual) in the left dorsolateral prefrontal cortex (DLPFC), insula, orbiotofrontal cortex (OFC) and the bilateral thalamus. Drug cue induced greater activations in left DLPFC, insula and OFC compared to sexual cue. The psychophysiological interactions (PPI) analysis revealed negative couplings of the left DLPFC and the left OFC, bilateral thalamus, putamen in heroin users during drug cue exposure. In the 6-month follow-up study, both drug cue induced activation of the left DLPFC and the functional coupling of the left DLPFC-bilateral thalamus at baseline was correlated with craving reductions, which were not found for sexual cues. CONCLUSION Our preliminary study provided novel evidence for the reward deficiency theory of opioid use disorder. Our findings also have clinical implications, as drug cue induced activation of the left DLPFC and functional coupling of left DLPFC-bilateral thalamus may be potential neuroimaging markers for craving changes during prolonged abstinence. Evidently, the findings in the current preliminary study should be confirmed by large sample size in the future.
Collapse
|