1
|
Guldager MB, Biojone C, da Silva NR, Godoy LD, Joca S. New insights into the involvement of serotonin and BDNF-TrkB signalling in cannabidiol's antidepressant effect. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111029. [PMID: 38762160 DOI: 10.1016/j.pnpbp.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cannabidiol (CBD) is a phytocannabinoid devoid of psychostimulant properties and is currently under investigation as a potential antidepressant drug. However, the mechanisms underlying CBD's antidepressant effects are not yet well understood. CBD targets include a variety of receptors, enzymes, and transporters, with different binding-affinities. Neurochemical and pharmacological evidence indicates that both serotonin and BDNF-TrkB signalling in the prefrontal cortex are necessary for the antidepressant effects induced by CBD in animal models. Herein, we reviewed the current literature to dissect if these are independent mechanisms or if CBD-induced modulation of the serotonergic neurotransmission could mediate its neuroplastic effects through subsequent regulation of BDNF-TrkB signalling, thus culminating in rapid neuroplastic changes. It is hypothesized that: a) CBD interaction with serotonin receptors on neurons of the dorsal raphe nuclei and the resulting disinhibition of serotonergic neurons would promote rapid serotonin release in the PFC and hence its neuroplastic and antidepressant effects; b) CBD facilitates BDNF-TRKB signalling, especially in the PFC, which rapidly triggers neurochemical and neuroplastic effects. These hypotheses are discussed with perspectives for new drug development and clinical applications.
Collapse
Affiliation(s)
- Matti Bock Guldager
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Caroline Biojone
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nicole Rodrigues da Silva
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Livea Dornela Godoy
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Guldager MB, Chaves Filho AM, Biojone C, Joca S. Therapeutic potential of cannabidiol in depression. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:251-293. [PMID: 39029987 DOI: 10.1016/bs.irn.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Major depressive disorder (MDD) is a widespread and debilitating condition affecting a significant portion of the global population. Traditional treatment for MDD has primarily involved drugs that increase brain monoamines by inhibiting their uptake or metabolism, which is the basis for the monoaminergic hypothesis of depression. However, these treatments are only partially effective, with many patients experiencing delayed responses, residual symptoms, or complete non-response, rendering the current view of the hypothesis as reductionist. Cannabidiol (CBD) has shown promising results in preclinical models and human studies. Its mechanism is not well-understood, but may involve monoamine and endocannabinoid signaling, control of neuroinflammation and enhanced neuroplasticity. This chapter will explore CBD's effects in preclinical and clinical studies, its molecular mechanisms, and its potential as a treatment for MDD.
Collapse
Affiliation(s)
- Matti Bock Guldager
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark
| | | | - Caroline Biojone
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Health Faculty, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Health Faculty, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Zhao X, Du Y, Yao Y, Dai W, Yin Y, Wang G, Li Y, Zhang L. Psilocybin promotes neuroplasticity and induces rapid and sustained antidepressant-like effects in mice. J Psychopharmacol 2024; 38:489-499. [PMID: 38680011 DOI: 10.1177/02698811241249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND Psilocybin offers new hope for treating mood disorders due to its rapid and sustained antidepressant effects, as standard medications require weeks or months to exert their effects. However, the mechanisms underlying this action of psilocybin have not been identified. AIMS To investigate whether psilocybin has rapid and sustained antidepressant-like effects in mice and investigate whether its potential mechanisms of action are related to promoted neuroplasticity. METHODS We first examined the antidepressant-like effects of psilocybin in normal mice by the forced swimming test and in chronic corticosterone (CORT)-exposed mice by the sucrose preference test and novelty-suppressed feeding test. Furthermore, to explore the role of neuroplasticity in mediating the antidepressant-like effects of psilocybin, we measured structural neuroplasticity and neuroplasticity-associated protein levels in the prefrontal cortex (PFC) and hippocampus. RESULTS We observed that a single dose of psilocybin had rapid and sustained antidepressant-like effects in both healthy mice and chronic CORT-exposed mice. Moreover, psilocybin ameliorated chronic CORT exposure-induced inhibition of neuroplasticity in the PFC and hippocampus, including by increasing neuroplasticity (total number of dendritic branches and dendritic spine density), synaptic protein (p-GluA1, PSD95 and synapsin-1) levels, BDNF-mTOR signalling pathway activation (BDNF, TrkB and mTOR levels), and promoting neurogenesis (number of DCX-positive cells). CONCLUSIONS Our results demonstrate that psilocybin elicits robust, rapid and sustained antidepressant-like effects which is accompanied by the promotion of neuroplasticity in the PFC and hippocampus.
Collapse
Affiliation(s)
- Xiangting Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| | - Yingjie Du
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yishan Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Dai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongyu Yin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guyan Wang
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yunfeng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Liming Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
4
|
Domingos LB, Müller HK, da Silva NR, Filiou MD, Nielsen AL, Guimarães FS, Wegener G, Joca S. Repeated cannabidiol treatment affects neuroplasticity and endocannabinoid signaling in the prefrontal cortex of the Flinders Sensitive Line (FSL) rat model of depression. Neuropharmacology 2024; 248:109870. [PMID: 38401791 DOI: 10.1016/j.neuropharm.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Delayed therapeutic responses and limited efficacy are the main challenges of existing antidepressant drugs, thereby incentivizing the search for new potential treatments. Cannabidiol (CBD), non-psychotomimetic component of cannabis, has shown promising antidepressant effects in different rodent models, but its mechanism of action remains unclear. Herein, we investigated the antidepressant-like effects of repeated CBD treatment on behavior, neuroplasticity markers and lipidomic profile in the prefrontal cortex (PFC) of Flinders Sensitive Line (FSL), a genetic animal model of depression, and their control counterparts Flinders Resistant Line (FRL) rats. Male FSL animals were treated with CBD (10 mg/kg; i.p.) or vehicle (7 days) followed by Open Field Test (OFT) and the Forced Swimming Test (FST). The PFC was analyzed by a) western blotting to assess markers of synaptic plasticity and cannabinoid signaling in synaptosome and cytosolic fractions; b) mass spectrometry-based lipidomics to investigate endocannabinoid levels (eCB). CBD attenuated the increased immobility observed in FSL, compared to FRL in FST, without changing the locomotor behavior in the OFT. In synaptosomes, CBD increased ERK1, mGluR5, and Synaptophysin, but failed to reverse the reduced CB1 and CB2 levels in FSL rats. In the cytosolic fraction, CBD increased ERK2 and decreased mGluR5 expression in FSL rats. Surprisingly, there were no significant changes in eCB levels in response to CBD treatment. These findings suggest that CBD effects in FSL animals are associated with changes in synaptic plasticity markers involving mGluR5, ERK1, ERK2, and synaptophysin signaling in the PFC, without increasing the levels of endocannabinoids in this brain region.
Collapse
Affiliation(s)
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | | | | | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Vitor-Vieira F, Patriarcha PP, Rojas VCT, Parreiras SS, Giusti FCV, Giusti-Paiva A. Influence of maternal immune activation on autism-like symptoms and coping strategies in male offspring. Physiol Behav 2024; 275:114432. [PMID: 38081404 DOI: 10.1016/j.physbeh.2023.114432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Maternal immune activation (MIA) caused by exposure to pathogens or inflammation during critical periods of gestation increased susceptibility to neurodevelopmental disorders, including autism, in the offspring. In the present work, we aimed to provide characterization of the long-term consequences on anxiety-like behavior and cardiovascular stress response of MIA in the offspring. This study aimed to evaluate the effect of MIA by lipopolysaccharide (LPS) in adult male offspring. In our study, the animals were subjected to a range of behavioral and physiological tests, including the elevated plus maze, social interaction, cat odor response, open field behavior, contextual fear conditioning, and cardiovascular responses during restraint stress. In the offspring of MIA, our study unveiled distinct anxious behaviors. This was evident by fewer entries into the open arms of the maze, diminished anti-thigmotaxis in the open field, and a decrease in social interaction time. Moreover, these rats showed heightened sensitivity to cat odor, exhibited prolonged freezing during fear conditioning, and presented elevated 22 Hz ultrasonic vocalizations. Notably, during restraint stress, these animals manifested an augmented blood pressure response, and this was associated with an increase in c-fos expression in the locus coeruleus compared to the control group. These findings collectively underline the extensive behavioral and physiological alterations stemming from MIA. This study deepens our understanding of the significance of maternal health in predisposing offspring to neurobehavioral deficits and psychiatric disorders.
Collapse
Affiliation(s)
- Fernando Vitor-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Pedro P Patriarcha
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Viviana Carolina T Rojas
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Sheila S Parreiras
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | | | - Alexandre Giusti-Paiva
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
6
|
Rech TDST, Strelow DN, Krüger LD, Neto JSS, Blödorn GB, Alves D, Brüning CA, Bortolatto CF. Pharmacological evidence for glutamatergic pathway involvement in the antidepressant-like effects of 2-phenyl-3-(phenylselanyl)benzofuran in male Swiss mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3033-3044. [PMID: 37160481 DOI: 10.1007/s00210-023-02508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Depression is a multifactorial and heterogeneous disease with several neurobiological mechanisms underlying its pathophysiology, including dysfunctional glutamatergic neurotransmission, which makes the exploration of the glutamate pathway an interesting strategy for developing novel rapid-acting antidepressant treatments. In the present study, we aimed to evaluate the possible glutamatergic pathway relation in the antidepressant-like action of 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1) in Swiss mice employing the tail suspension test (TST). Male Swiss mice received drugs targeting glutamate receptors before acute SeBZF1 administration at effective (50 mg/kg) or subeffective (1 mg/kg) doses by intragastric route (ig). TST and the open-field test (OFT) were employed in all behavioral experiments. The pretreatment of mice with N-methyl-D-aspartate (NMDA) (0.1 pmol/site, intracerebroventricular, icv, a selective agonist of the NMDA receptors), D-serine (30 µg/site, icv, a co-agonist at the NMDA receptor), arcaine (1 mg/kg, intraperitoneal, ip, an antagonist of the polyamine-binding site at the NMDA receptor), and 6,7-dinitroquinoxaline-2,3-dione (DNQX) (2,5 µg/site, icv, an antagonist of the AMPA/kainate type of glutamate receptors) inhibited the antidepressant-like effects of SeBZF1 (50 mg/kg, ig) in the TST. Coadministration of a subeffective dose of SeBZF1 with low doses of MK-801 (0.001 mg/kg, ip, a non-competitive NMDA receptor antagonist) or ketamine (0.1 mg/kg, ip, a non-selective antagonist of the NMDA receptors) produced significant antidepressant-like effects (synergistic action). These findings suggest the involvement of the glutamatergic system, probably through modulation of ionotropic glutamate receptors, in the antidepressant-like action of SeBZF1 in mice and contribute to a better understanding of the mechanisms underlying its pharmacological effects.
Collapse
Affiliation(s)
- Taís da Silva Teixeira Rech
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | - Dianer Nornberg Strelow
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | - Letícia Devantier Krüger
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | | | - Gustavo Bierhals Blödorn
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | - Diego Alves
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil
| | - César Augusto Brüning
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil.
| | - Cristiani Folharini Bortolatto
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), RS, CEP 96010-900, Pelotas, Brazil.
| |
Collapse
|
7
|
Gobira PH, LaMar J, Marques J, Sartim A, Silveira K, Santos L, Wegener G, Guimaraes FS, Mackie K, Lu HC, Joca S. CB1 Receptor Silencing Attenuates Ketamine-Induced Hyperlocomotion Without Compromising Its Antidepressant-Like Effects. Cannabis Cannabinoid Res 2023; 8:768-778. [PMID: 36067014 PMCID: PMC10771879 DOI: 10.1089/can.2022.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The antidepressant properties of ketamine have been extensively demonstrated in experimental and clinical settings. However, the psychotomimetic side effects still limit its wider use as an antidepressant. It was recently observed that endocannabinoids are inolved in ketamine induced reward properties. As an increase in endocannabinoid signaling induces antidepressant effects, this study aimed to investigate the involvement of cannabinoid type 1 receptors (CB1R) in the antidepressant and psychostimulant effects induced by ketamine. Methods: We tested the effects of genetic and pharmacological inhibition of CB1R in the hyperlocomotion and antidepressant-like properties of ketamine. The effects of ketamine (10-20 mg/kg) were assessed in the open-field and the forced swim tests (FSTs) in CB1R knockout (KO) and wild-type (WT) mice (male and female), and mice pre-treated with rimonabant (CB1R antagonist, 3-10 mg/kg). Results: We found that the motor hyperactivity elicited by ketamine was impaired in CB1R male and female KO mice. A similar effect was observed upon pharmacological blockade of CB1R in WT mice. However, genetic CB1R deletion did not modify the antidepressant effect of ketamine in male mice submitted to the FST. Surprisingly, pharmacological blockade of CB1R induced an antidepressant-like effect in both male and female mice, which was not further potentiated by ketamine. Conclusions: Our results support the hypothesis that CB1R mediate the psychostimulant side effects induced by ketamine, but not its antidepressant properties.
Collapse
Affiliation(s)
- Pedro Henrique Gobira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jacob LaMar
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| | - Jade Marques
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ariandra Sartim
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kennia Silveira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luana Santos
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | | | - Ken Mackie
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
- Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| | - Sâmia Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Ferri BG, de Novais CO, Bonani RS, de Barros WA, de Fátima Â, Vilela FC, Giusti-Paiva A. Psychoactive substances 25H-NBOMe and 25H-NBOH induce antidepressant-like behavior in male rats. Eur J Pharmacol 2023; 955:175926. [PMID: 37479015 DOI: 10.1016/j.ejphar.2023.175926] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Ring-substituted phenethylamines are believed to induce psychedelic effects primarily by interacting with 5-hydroxytryptamine 2 (5-HT2A) receptors in the brain. We assessed the effect of the psychedelic substances 25H-NBOMe and 25H-NBOH on the depressive-like behavior of male adult rats. Naive Wistar rats were divided into groups to assess the effects of different doses (0.1 mg/kg, 1 mg/kg, and 3 mg/kg) of 25H-NBOMe and 25H-NBOH. The substances were administered intraperitoneally and the hallucinogenic properties were evaluated using the head twitch response test (HTR). Additionally, we assessed their locomotor activity in the open field test (OFT) and depressive-like behavior in the forced swimming test (FST). Our data demonstrated that all doses of synthetic psychedelic substances evaluated exhibited hallucinogenic effects. Interestingly, we observed that both 25H-NBOMe and 25H-NBOH produced a significantly greater motivation to escape in the FST, compared to the control group. Furthermore, we found no significant differences in locomotor activity during the OFT, except for the dose of 3 mg/kg, which induced a reduction in locomotion. This study provides new insights into a potential psychedelic substance, specifically by demonstrating the previously unknown antidepressant properties of a single dose of both 25H-NBOMe and 25H-NBOH. These findings contribute to the ongoing progress of experimental psychiatry toward developing safe and effective clinical practices in the field of psychedelics research.
Collapse
Affiliation(s)
- Barbara G Ferri
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas (PPGMCF), Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Cintia O de Novais
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas (PPGMCF), Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Raquel S Bonani
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Wellington A de Barros
- Instituto de Química da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Instituto de Química da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fabiana C Vilela
- Programa de Pós-Graduação Em Biociências (PPGB), Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil
| | - Alexandre Giusti-Paiva
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas (PPGMCF), Universidade Federal de Alfenas (Unifal-MG), Alfenas, MG, Brazil; Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas da Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
9
|
Hartmann A, Vila-Verde C, Guimarães FS, Joca SR, Lisboa SF. The NLRP3 Inflammasome in Stress Response: Another Target for the Promiscuous Cannabidiol. Curr Neuropharmacol 2023; 21:284-308. [PMID: 35410608 PMCID: PMC10190150 DOI: 10.2174/1570159x20666220411101217] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/22/2022] Open
Abstract
Many psychiatric patients do not respond to conventional therapy. There is a vast effort to investigate possible mechanisms involved in treatment resistance, trying to provide better treatment options, and several data points toward a possible involvement of inflammatory mechanisms. Microglia, glial, and resident immune cells are involved in complex responses in the brain, orchestrating homeostatic functions, such as synaptic pruning and maintaining neuronal activity. In contrast, microglia play a major role in neuroinflammation, neurodegeneration, and cell death. Increasing evidence implicate microglia dysfunction in neuropsychiatric disorders. The mechanisms are still unclear, but one pathway in microglia has received increased attention in the last 8 years, i.e., the NLRP3 inflammasome pathway. Stress response and inflammation, including microglia activation, can be attenuated by Cannabidiol (CBD). CBD has antidepressant, anti-stress, antipsychotic, anti-inflammatory, and other properties. CBD effects are mediated by direct or indirect modulation of many receptors, enzymes, and other targets. This review will highlight some findings for neuroinflammation and microglia involvement in stress-related psychiatric disorders, particularly addressing the NLRP3 inflammasome pathway. Moreover, we will discuss evidence and mechanisms for CBD effects in psychiatric disorders and animal models and address its potential effects on stress response via neuroinflammation and NLRP3 inflammasome modulation.
Collapse
Affiliation(s)
- Alice Hartmann
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Carla Vila-Verde
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Francisco S. Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Sâmia R. Joca
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sabrina F. Lisboa
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
- BioMolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP);
| |
Collapse
|
10
|
Rapid treatments for depression: Endocannabinoid system as a therapeutic target. Neurosci Biobehav Rev 2022; 137:104635. [PMID: 35351488 DOI: 10.1016/j.neubiorev.2022.104635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Current first-line treatments for major depressive disorder (MDD), i.e., antidepressant drugs and psychotherapy, show delayed onset of therapeutic effect as late as 2-3 weeks or more. In the clinic, the speed of beginning of the actions of antidepressant drugs or other interventions is vital for many reasons. Late-onset means that depression, its related disability, and the potential danger of suicide remain a threat for some patients. There are some rapid-acting antidepressant interventions, such as sleep deprivation, ketamine, acute exercise, which induce a significant response, ranging from a few hours to maximally one week, and most of them share a common characteristic that is the activation of the endocannabinoid (eCB) system. Activation of this system, i.e., augmentation of eCB signaling, appears to have anti-depressant-like actions. This article puts the idea forward that the activation of eCB signaling represents a critical mechanism of rapid-acting therapeutic interventions in MDD, and this system might contribute to the development of novel rapid-acting treatments for MDD.
Collapse
|
11
|
Calapai F, Cardia L, Calapai G, Di Mauro D, Trimarchi F, Ammendolia I, Mannucci C. Effects of Cannabidiol on Locomotor Activity. Life (Basel) 2022; 12:life12050652. [PMID: 35629320 PMCID: PMC9144881 DOI: 10.3390/life12050652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Cannabidiol (CBD) is the second cannabinoid, in order of importance after Δ9-tetrahydrocannabinol (THC), from Cannabis sativa. Unlike THC, CBD does not cause psychotomimetic effects, and although these compounds have the same chemical formula, their pharmacological characteristics are not equivalent. Preclinical studies suggest that CBD has anti-inflammatory, analgesic, anxiolytic, antiemetic, anticonvulsant, and antipsychotic properties and influences the sleep–wake cycle. The evaluation of effects on spontaneous motor activity is crucial in experimental pharmacology, and the careful measurement of laboratory animal movement is an established method to recognize the effects of stimulant and depressant drugs. The potential influence of CBD on locomotor activity has been investigated through numerous in vivo experiments. However, there is no clear picture of the impact of CBD on these issues, even though it is administered alone for medical uses and sold with THC as a drug for pain caused by muscle spasms in multiple sclerosis, and it was recently licensed as a drug for severe forms of infantile epilepsy. On this basis, with the aim of developing deeper knowledge of this issue, scientific data on CBD’s influence on locomotor activity are discussed here. We conducted research using PubMed, Scopus, Google Scholar, and a search engine for literature between January 2009 and December 2021 on life sciences and biomedical topics using the keywords “motor activity”, “locomotor activity”, and “locomotion” in combination with “cannabidiol”. In this article, we discuss findings describing the effects on locomotor activity of the CBD precursor cannabidiolic acid and of CBD alone or in combination with THC, together with the effects of CBD on locomotor modifications induced by diseases and on locomotor changes induced by other substances.
Collapse
Affiliation(s)
- Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy;
| | - Luigi Cardia
- Department of Human Pathology of Adult and Childhood “Gaetano Barresi”, University of Messina, Via C. Valeria, 98125 Messina, Italy;
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (D.D.M.); (F.T.); (I.A.); (C.M.)
- Correspondence:
| | - Debora Di Mauro
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (D.D.M.); (F.T.); (I.A.); (C.M.)
| | - Fabio Trimarchi
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (D.D.M.); (F.T.); (I.A.); (C.M.)
| | - Ilaria Ammendolia
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (D.D.M.); (F.T.); (I.A.); (C.M.)
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (D.D.M.); (F.T.); (I.A.); (C.M.)
| |
Collapse
|
12
|
Poulia N, Delis F, Brakatselos C, Ntoulas G, Asprogerakas MZ, Antoniou K. CBD Effects on Motor Profile and Neurobiological Indices Related to Glutamatergic Function Induced by Repeated Ketamine Pre-Administration. Front Pharmacol 2021; 12:746935. [PMID: 34776964 PMCID: PMC8578683 DOI: 10.3389/fphar.2021.746935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Clinical evidence and experimental studies have shown the psychotomimetic properties induced by ketamine. Moreover, acute or chronic ketamine (KET) administration has been widely used for modeling schizophrenia-like symptomatology and pathophysiology. Several studies have reported the antipsychotic potential of cannabidiol (CBD), while there is limited information on the cannabidiol effect on KET-induced schizophrenia-like impairments. Therefore, the goal of the present study was to evaluate neuroplastic changes induced by repeated KET administration, which is used as an experimental model of schizophrenia—with a behavioral focus on positive-like symptomatology– and to assess the modulatory role of CBD treatment. The present findings have shown a robust increase in motor activity in KET-treated rats, following a 10-day period of chronic administration at the sub-anesthetic dose of 30 mg/kg (i.p), that was reversed to normal by subsequent chronic CBD treatment. Concerning the expression of glutamate receptors, the current findings have shown region-dependent KET-induced constitutional alterations in NMDA and AMPA receptors that were modified by subsequent CBD treatment. Additionally, repeated KET administration increased ERK1/2 phosphorylation state in all regions examined, apart from the ventral hippocampus that was modulated by subsequent CBD treatment. The present results show, for the first time, a stimulated motor output coupled with a specific glutamatergic-related status and ERK1/2 activation following chronic KET administration that were attenuated by CBD treatment, in a region-dependent manner. These findings provide novel information concerning the antipsychotic potential of CBD using a specific design of chronic KET administration, thus contributing to experimental approaches that mirror the symptomatology and pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Nafsika Poulia
- Department of Pharmacology, University of Ioannina, Ioannina, Greece
| | - Foteini Delis
- Department of Pharmacology, University of Ioannina, Ioannina, Greece
| | | | - George Ntoulas
- Department of Pharmacology, University of Ioannina, Ioannina, Greece
| | | | - Katerina Antoniou
- Department of Pharmacology, University of Ioannina, Ioannina, Greece
| |
Collapse
|