1
|
Mohammadkhani A, Mitchell C, James MH, Borgland SL, Dayas CV. Contribution of hypothalamic orexin (hypocretin) circuits to pathologies of motivation. Br J Pharmacol 2024; 181:4430-4449. [PMID: 39317446 PMCID: PMC11458361 DOI: 10.1111/bph.17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 09/26/2024] Open
Abstract
The orexin (also known as hypocretin) system, consisting of neuropeptides orexin-A and orexin-B, was discovered over 25 years ago and was immediately identified as a central regulator of sleep and wakefulness. These peptides interact with two G-protein coupled receptors, orexin 1 (OX1) and orexin 2 (OX2) receptors which are capable of coupling to all heterotrimeric G-protein subfamilies, but primarily transduce increases in calcium signalling. Orexin neurons are regulated by a variety of transmitter systems and environmental stimuli that signal reward availability, including food and drug related cues. Orexin neurons are also activated by anticipation, stress, cues predicting motivationally relevant information, including those predicting drugs of abuse, and engage neuromodulatory systems, including dopamine neurons of the ventral tegmental area (VTA) to respond to these signals. As such, orexin neurons have been characterized as motivational activators that coordinate a range of functions, including feeding and arousal, that allow the individual to respond to motivationally relevant information, critical for survival. This review focuses on the role of orexins in appetitive motivation and highlights a role for these neuropeptides in pathologies characterized by inappropriately high levels of motivated arousal (overeating, anxiety and substance use disorders) versus those in which motivation is impaired (depression).
Collapse
Affiliation(s)
- Aida Mohammadkhani
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Caitlin Mitchell
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- The Hunter Medical Research, New Lambton Heights, New South Wales, Australia
| | - Morgan H James
- Department of Psychiatry and Brain Health Institute, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- The Hunter Medical Research, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
2
|
Krause GM, Chirich Barreira LM, Albrecht A. Spatial mRNA expression patterns of orexin receptors in the dorsal hippocampus. Sci Rep 2024; 14:24788. [PMID: 39433837 PMCID: PMC11494061 DOI: 10.1038/s41598-024-76237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Orexins are wake-promoting neuropeptides that originate from hypothalamic neurons projecting to widespread brain areas throughout the central nervous system. They modulate various physiological functions via their orexin 1 (OXR1) and 2 (OXR2) receptors, including sleep-wake rhythm but also cognitive functions such as memory formation. Here, we provide a detailed analysis of OXR1 and OXR2 mRNA expression profiles in the dorsal hippocampus as a key region for memory formation, using RNAscope multiplex in situ hybridization. Interconnected subareas relevant for cognition and memory such as the medial prefrontal cortex and the nucleus reuniens of the thalamus were assessed as well. Both receptor types display distinct profiles, with the highest percentage of OXR1 mRNA-positive cells in the hilus of the dentate gyrus. Here, the content of OXR1 mRNA per cell was slightly modulated at selected time points over a 12 h light/ 12 dark light phase. Using RNAScope and quantitative polymerase chain reaction approaches, we began to address a cell-type specific expression of OXR1 in hilar GABAergic interneurons. The distinct expression profiles of both receptor subtypes within hippocampal subareas and circuits provide an interesting basis for future interventional studies on orexin receptor function in spatial and contextual memory.
Collapse
Affiliation(s)
- Gina Marie Krause
- Institute of Anatomy, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | | | - Anne Albrecht
- Institute of Anatomy, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, 39106, Magdeburg, Germany.
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Magdeburg, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany.
| |
Collapse
|
3
|
Bjorness TE, Greene RW. Orexin-mediated motivated arousal and reward seeking. Peptides 2024; 180:171280. [PMID: 39159833 DOI: 10.1016/j.peptides.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The neuromodulator orexin has been identified as a key factor for motivated arousal including recent evidence that sleep deprivation-induced enhancement of reward behavior is modulated by orexin. While orexin is not necessary for either reward or arousal behavior, orexin neurons' broad projections, ability to sense the internal state of the animal, and high plasticity of signaling in response to natural rewards and drugs of abuse may underlie heightened drug seeking, particularly in a subset of highly motivated reward seekers. As such, orexin receptor antagonists have gained deserved attention for putative use in addiction treatments. Ongoing and future clinical trials are expected to identify individuals most likely to benefit from orexin receptor antagonist treatment to promote abstinence, such as those with concurrent sleep disorders or high craving, while attention to methodological considerations will aid interpretation of the numerous preclinical studies investigating disparate aspects of the role of orexin in reward and arousal.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
4
|
Zamanirad F, Fattahi M, Amirteymori H, Mousavi Z, Haghparast A. The role of orexin-1 receptors within the ventral tegmental area in the extinction and reinstatement of methamphetamine place preference. Behav Brain Res 2023; 453:114608. [PMID: 37532004 DOI: 10.1016/j.bbr.2023.114608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Targeting the orexin system has recently been identified as one of the promising options for treating drug addiction. It may be more feasible and achievable if we investigate the accurate function of the orexin system in brain areas implicated in reward and addiction, such as the ventral tegmental area (VTA) by animal reward models. This study investigated the contribution of the orexin system, mainly the orexin-1 receptors (OX1R) in the VTA, in the extinction and reinstatement of methamphetamine (METH) related memories in the conditioned place preference (CPP) model. Animals after the acquisition of METH place preference were subjected to two separate sets of extinction and reinstatement experiments to receive various concentrations of selective OX1R antagonist, SB334867 into the bilateral VTA before extinction sessions (1, 3, and 10 nmol/0.3 μl DMSO per side) or only on the reinstatement phase (3, 10, and 30 nmol/0.3 μl DMSO per side), respectively. Intra-VTA infusion of SB334867 throughout the extinction phase could remarkably facilitate the extinction process and decrease the maintenance of reinforcing effects of METH at the highest dosage (10 nmol; p < 0.0001). Data also indicated a single microinfusion of SB334867 into the VTA before reinstatement of the METH-seeking behavior could considerably prevent the relapse of previously formed reward-context memories (10 nmol; p < 0.01 and 30 nmol; p < 0.001). The present study provided evidence supporting the potential therapeutic effects of the orexin system modulation, specifically in the VTA, on different stages of METH-induced place preference.
Collapse
Affiliation(s)
- Ferdos Zamanirad
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran
| | - Mojdeh Fattahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Haleh Amirteymori
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Zahra Mousavi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, the Islamic Republic of Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, the Islamic Republic of Iran.
| |
Collapse
|
5
|
Passeri A, Municchi D, Cavalieri G, Babicola L, Ventura R, Di Segni M. Linking drug and food addiction: an overview of the shared neural circuits and behavioral phenotype. Front Behav Neurosci 2023; 17:1240748. [PMID: 37767338 PMCID: PMC10520727 DOI: 10.3389/fnbeh.2023.1240748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Despite a lack of agreement on its definition and inclusion as a specific diagnosable disturbance, the food addiction construct is supported by several neurobiological and behavioral clinical and preclinical findings. Recognizing food addiction is critical to understanding how and why it manifests. In this overview, we focused on those as follows: 1. the hyperpalatable food effects in food addiction development; 2. specific brain regions involved in both food and drug addiction; and 3. animal models highlighting commonalities between substance use disorders and food addiction. Although results collected through animal studies emerged from protocols differing in several ways, they clearly highlight commonalities in behavioral manifestations and neurobiological alterations between substance use disorders and food addiction characteristics. To develop improved food addiction models, this heterogeneity should be acknowledged and embraced so that research can systematically investigate the role of specific variables in the development of the different behavioral features of addiction-like behavior in preclinical models.
Collapse
Affiliation(s)
- Alice Passeri
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Giulia Cavalieri
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | | | - Rossella Ventura
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| |
Collapse
|
6
|
Yates JR. Quantifying conditioned place preference: a review of current analyses and a proposal for a novel approach. Front Behav Neurosci 2023; 17:1256764. [PMID: 37693282 PMCID: PMC10484009 DOI: 10.3389/fnbeh.2023.1256764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Conditioned place preference (CPP) is used to measure the conditioned rewarding effects of a stimulus, including food, drugs, and social interaction. Because various analytic approaches can be used to quantify CPP, this can make direct comparisons across studies difficult. Common methods for analyzing CPP involve comparing the time spent in the CS+ compartment (e.g., compartment paired with drug) at posttest to the time spent in the CS+ compartment at pretest or to the CS- compartment (e.g., compartment paired with saline) at posttest. Researchers can analyze the time spent in the compartment(s), or they can calculate a difference score [(CS+post - CS+pre) or (CS+post - CS-post)] or a preference ratio (e.g., CS+post/(CS+post + CS-post)). While each analysis yields results that are, overall, highly correlated, there are situations in which different analyses can lead to discrepant interpretations. The current paper discusses some of the limitations associated with current analytic approaches and proposes a novel method for quantifying CPP, the adjusted CPP score, which can help resolve the limitations associated with current approaches. The adjusted CPP score is applied to both hypothetical and previously published data. Another major topic covered in this paper is methodologies for determining if individual subjects have met criteria for CPP. The paper concludes by highlighting ways in which researchers can increase transparency and replicability in CPP studies.
Collapse
Affiliation(s)
- Justin R. Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, United States
| |
Collapse
|
7
|
Zhou M, Li Y. Effect of different doses of almorexant on learning and memory in 8-month-old APP/PS1 (AD) mice. Peptides 2023; 167:171044. [PMID: 37330110 DOI: 10.1016/j.peptides.2023.171044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE To explore the effects of different doses of almorexant (an dual orexin receptor antagonist) on learning and memory in Alzheimer's disease (AD) mice. METHODS Forty-four APP/PS1 (model of Alzheimer's disease; AD) mice were randomly divided into 4 groups: the control group (CON) and those that received 10mg/kg almorexant (low dose; LOW), 30mg/kg almorexant (medium dose; MED) and 60mg/kg almorexant (high dose; HIGH). During the 28-day intervention period, mice received an intraperitoneal injection at the beginning of the light period (6:00 am). The effects of different doses of almorexant on learning and memory and 24-hour sleep-wake behaviour were assessed by immunohistochemical staining. The above continuous variables are expressed as the mean ± standard deviation (SD), and then univariate regression analysis and generalized estimating equations were performed to compare the groups; these results are expressed as the mean difference (MD) and 95% confidence interval (CI). The statistical software used STATA 17.0 MP. RESULTS Forty-one mice completed the experiment (3 died: 2 mice in the HIGH group and 1 mouse in the CON group). Compared with the CON group, the LOW group (MD=6,803s, 95% CI: 4,470 to 9,137s), MED group (MD=14,473s, 95% CI: 12,140 to 16,806s) and the HIGH group (MD=24,505s, 95% CI: 22,052 to 26,959s) had significantly longer sleep durations. The Y maze results showed that LOW group (MD=0.14,95%CI: 0.078 to 0.20) and MED group (MD=0.14,95%CI = 0.074 to 0.20) mice compared to the CON group, and the low-medium dose of Almorexant did not damage the short-term learning and memory performance of APP / PS1 (AD) mice.Compared with the CON, LOW, and MED groups, the HIGH group exhibited a significant decrease in the Aβ plaque-positive area in the cortex (MD= -0.030, 95% CI: -0.035 to -0.025; MD=-0.049, 95% CI: -0.054 to -0.044; and MD=-0.07, 95% CI: -0.076 to -0.066, respectively). CONCLUSION The moderate dose of almorexant (30mg/kg) prolonged the sleep duration of APP/PS1 (AD) mice to a greater extent than the low dose (10mg/kg) without altering learning and memory. The MED mice showed a good sleep response and a small residual effect on the next day. High-dose (60mg / kg) almorexant impaired behavioral learning and memory performance in mice.Compared to the CON group and the LOW group, the MED group exhibited improved working memory. Thus, treatment with almorexant may reduce β-amyloid deposition in AD, slowing neurodegeneration. Additional studies are needed to determine the mechanism of action.
Collapse
Affiliation(s)
- Mengzhen Zhou
- Department of Neurology, Qianfo Mountain Hospital affiliated to Shandong First Medical University ,Jinan, Shandong, China.
| | - Yanran Li
- Department of Neurology, Qianfo Mountain Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
8
|
Modaberi S, Amirteymori H, Mesgar S, Eskandari K, Haghparast A. The blockade of orexin receptors within the dentate gyrus of the hippocampus attenuated methamphetamine-induced reward learning during conditioning place preference. Pharmacol Biochem Behav 2023; 226:173559. [PMID: 37100179 DOI: 10.1016/j.pbb.2023.173559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Orexins and orexinergic receptors have been shown to play a critical role in reward processing and drug addiction. Previous studies showed that the orexinergic system in the dentate gyrus (DG) region of the hippocampus affects the conditioning (acquisition) and post-conditioning (expression) phases of morphine-induced conditioned place preference (CPP). The action of each orexin receptor within the DG during conditioning and expression phases for methamphetamine (METH)-induced CPP remains unclear. The present study aimed to determine the role of orexin-1 and -2 receptors in the hippocampal DG in METH CPP acquisition and expression. During the 5-day conditioning phase, rats received an intra-DG microinjection of SB334867, a selective orexin-1 receptor (OX1R) antagonist, or TCS OX2-29, a selective orexin-2 receptor (OX2R) antagonist, before injection of METH (1 mg/kg; sc). In different sets of animals on the expression day, rats received each antagonist before the CPP test. The results showed that SB334867 (3, 10, and 30 nmol) and TCS OX2-29 (3, 10, and 30 nmol) significantly decreased the acquisition of METH CPP during the conditioning phase. Furthermore, administration of SB 334867 (10 and 30 nmol) and TCS OX2-29 (3 and 10 nmol) on the post-conditioning day significantly reduced METH-induced CPP expression. The results also indicated that orexin receptors play a more critical role in the conditioning phase than in the expression phase. In summary, the orexin receptors in the DG play a crucial role in drug learning and memory and are essential for METH reward acquisition and expression.
Collapse
Affiliation(s)
- Shaghayegh Modaberi
- Department of Sport Sciences, Faculty of Social Sciences, Imam Khomeini International University, Qazvin, Iran
| | - Haleh Amirteymori
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somaye Mesgar
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Jamali S, Dezfouli MP, Kalbasi A, Daliri MR, Haghparast A. Selective Modulation of Hippocampal Theta Oscillations in Response to Morphine versus Natural Reward. Brain Sci 2023; 13:322. [PMID: 36831866 PMCID: PMC9953863 DOI: 10.3390/brainsci13020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Despite the overlapping neural circuits underlying natural and drug rewards, several studies have suggested different behavioral and neurochemical mechanisms in response to drug vs. natural rewards. The strong link between hippocampal theta oscillations (4-12 Hz) and reward-associated learning and memory has raised the hypothesis that this rhythm in hippocampal CA1 might be differently modulated by drug- and natural-conditioned place preference (CPP). Time-frequency analysis of recorded local field potentials (LFPs) from the CA1 of freely moving male rats previously exposed to a natural (in this case, food), drug (in this case, morphine), or saline (control) reward cue in the CPP paradigm showed that the hippocampal CA1 theta activity represents a different pattern for entrance to the rewarded compared to unrewarded compartment during the post-test session of morphine- and natural-CPP. Comparing LFP activity in the CA1 between the saline and morphine/natural groups showed that the maximum theta power occurred before entering the unrewarded compartment and after the entrance to the rewarded compartment in morphine and natural groups, respectively. In conclusion, our findings suggest that drug and natural rewards could differently affect the theta dynamic in the hippocampal CA1 region during reward-associated learning and contextual cueing in the CPP paradigm.
Collapse
Affiliation(s)
- Shole Jamali
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19615-1178, Iran
| | - Mohsen Parto Dezfouli
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran P.O. Box 19395-5531, Iran
| | - AmirAli Kalbasi
- Department of Mechatronics, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran P.O. Box 16315-1355, Iran
| | - Mohammad Reza Daliri
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran P.O. Box 19395-5531, Iran
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran P.O. Box 16846-13114, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19615-1178, Iran
| |
Collapse
|
10
|
Veisi A, Khaleghzadeh-Ahangar H, Fattahi M, Haghparast A. The Role of Orexin-1 Receptors Within the Hippocampal CA1 Area in the Extinction and Reinstatement of Methamphetamine-Seeking Behaviors. Neurochem Res 2023; 48:671-680. [PMID: 36284025 DOI: 10.1007/s11064-022-03793-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
Psychostimulant addiction is a chronic brain disorder with high relapse rates, requiring new therapeutic strategies. The orexin system is highly implicated in processing reward and addiction through connections with critical areas such as the hippocampus. This study investigated the role of orexin-1 receptors (OX1R) within the CA1 subregion of the hippocampus in the extinction and reinstatement of the methamphetamine-induced conditioned place preference. After cannulae implantation, recovery, and establishing the methamphetamine place preference, 98 male Wistar rats received different doses of bilateral intra-CA1 selective OX1R antagonist, SB334867 (1, 3, 10, and 30 nmol/0.5 μl DMSO per side) during the 10-day extinction period (daily) or after extinction phase, just on the reinstatement day (single dose) in separate experimental and control groups. The findings indicated that bilateral microinjection of SB334867 into the CA1 area during the extinction period could significantly reduce the extinction latency and maintenance of rewarding aspects of methamphetamine dose-dependently (3, 10, and 30 nmol). In another set of experiments, a single dose of bilateral intra-CA1 SB334867 administration on the reinstatement phase prevented the methamphetamine-induced reinstatement of drug-seeking behaviors at the high doses (10, and 30 nmol). The present study provided more evidence for the implication of hippocampal OX1R in the maintenance of rewarding and reinforcing properties of methamphetamine and its role in the relapse of methamphetamine-seeking behavior. Further investigations on the role of the orexin system, including the orexin-2 receptors in treating addiction, are needed to introduce its antagonists as effective therapeutic options for psychostimulant addiction.
Collapse
Affiliation(s)
- Ali Veisi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mojdeh Fattahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box 19615-1178, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box 19615-1178, Tehran, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
- Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Ou CY, Yu YH, Wu CW, Kozłowska A, Shyu BC, Huang ACW. Neuronal activity of the medial prefrontal cortex, nucleus accumbens, and basolateral amygdala in conditioned taste aversion and conditioned place preference induced by different doses of morphine administrations in rats. Front Pharmacol 2023; 14:1062169. [PMID: 36762112 PMCID: PMC9902353 DOI: 10.3389/fphar.2023.1062169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
To re-examine the paradoxical effect hypothesis of abused drugs, the present study concerned whether different doses of morphine disparately affect neuronal activity and associations among the subareas of the medial prefrontal cortex (mPFC: cingulate cortex 1-Cg1, prelimbic cortex-PrL, infralimbic cortex-IL), the subregions of the nucleus accumbens (NAc; both core and shell), and the basolateral amygdala (BLA) following conditioned taste aversion (CTA) and conditioned place preference (CPP). All rats were given a 0.1% saccharin solution for 15-min, and they were intraperitoneally injected with saline or 20, 30, or 40 mg/kg morphine to form the aversive CTA learning. Later, half of the rats were tested for CPP (including the CTA and then CPP tests) for 30-min. Finally, the immunohistochemical staining with c-Fos was conducted after the behavioral test. After the CTA test, c-Fos (%) in the Cg1 and PrL (but not the IL) was more in 20-40 mg/kg of the morphine groups; c-Fos (%) in the NAc core, NAc shell, and BLA was more in the 30-40 mg/kg morphine group. After the CPP test, the Cg1, PrL, IL, and BLA showed more c-Fos (%) in 20 mg/kg morphine; the NAc core showed fewer in c-Fos (%) in the 30-40 mg/kg morphine groups. The mPFC subregions (e.g., Cg1, PrL, and IL), NAc subareas (e.g., NAc core and NAc shell), and BLA were involved in the different doses of morphine injections. The correlation analysis showed that a positive correlation was observed between PrL and IL with NAc core with low doses of morphine and with NAc shell with increasing doses of morphine after the CTA test. After the CPP, an association between PrL and NAc core and NAc shell at low doses and between IL and BLA and NAc shell with increasing doses of morphine. Therefore, different neural substrates and the neural connectivity are observed following different doses of morphine and after the CTA and CPP tests. The present data extend the paradoxical effect hypothesis of abused drugs.
Collapse
Affiliation(s)
- Chen Yin Ou
- Department of Psychology, Fo GuangUniversity, Jiaoxi, Yilan County, Taiwan
| | - Ying Hao Yu
- Department of Psychology, Fo GuangUniversity, Jiaoxi, Yilan County, Taiwan,Department of Biotechnology and Animal Science, National ILan University, Yilan, Taiwan
| | - Chi-Wen Wu
- Department of Psychology, Fo GuangUniversity, Jiaoxi, Yilan County, Taiwan,Department of Pharmacy, Keelung Hospital, Ministry of Health and Welfare, Keelung City, Taiwan
| | - Anna Kozłowska
- Department of Human Physiology and Pathology, School Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Bai-Chung Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan,*Correspondence: Bai-Chung Shyu, ; Andrew Chih Wei Huang,
| | - Andrew Chih Wei Huang
- Department of Psychology, Fo GuangUniversity, Jiaoxi, Yilan County, Taiwan,*Correspondence: Bai-Chung Shyu, ; Andrew Chih Wei Huang,
| |
Collapse
|
12
|
Mohammadzadeh L, Alizadeh AM, Feiz MS, Jamali S, Abedi M, Latifi H, Haghparast A. Acute morphine administration, morphine dependence, and naloxone-induced withdrawal syndrome affect the resting-state functional connectivity and local field potentials of the rat prefrontal cortex. Behav Brain Res 2022; 427:113859. [PMID: 35337941 DOI: 10.1016/j.bbr.2022.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/14/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
Opiates are among the widely abused substances worldwide. Also, the clinical use of opioids can cause unwanted and potentially severe consequences such as developing tolerance and dependence. This study simultaneously measured the changes induced after morphine dependence and naloxone-induced withdrawal syndrome on the resting-state functional connectivity (rsFC) and local field potential (LFP) power in the prefrontal cortex of the rat. The obtained results revealed that acute morphine administration significantly increased the LFP power in all frequency bands, as well as the rsFC strength of the prefrontal cortex, and naloxone injection reversed this effect. In contrast, chronic morphine administration reduced neural activity and general correlation values in intrinsic signals, as well as the LFP power in all frequency bands. In morphine-dependent rats, after each morphine administration, the LFP power in all frequency bands and the rsFC strength of the prefrontal cortex were increased, and these effects were further enhanced after naloxone precipitated withdrawal syndrome. The present study concludes that general correlation merely reflects the field activity of the local cortices imaged.
Collapse
Affiliation(s)
- Leila Mohammadzadeh
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-69411, Iran
| | - Amir Mohammad Alizadeh
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Mohammad Sadegh Feiz
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-69411, Iran
| | - Shole Jamali
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mohaddeseh Abedi
- Department of Physics, Shahid Beheshti University, Tehran, 19839-63113, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-69411, Iran; Department of Physics, Shahid Beheshti University, Tehran, 19839-63113, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, P.O.Box 19615-1178, Iran.
| |
Collapse
|