1
|
Faraji N, Payami B, Ebadpour N, Gorji A. Vagus nerve stimulation and gut microbiota interactions: A novel therapeutic avenue for neuropsychiatric disorders. Neurosci Biobehav Rev 2024; 169:105990. [PMID: 39716559 DOI: 10.1016/j.neubiorev.2024.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
The rising prevalence of treatment-resistant neuropsychiatric disorders underscores the need for innovative and effective treatment strategies. The gut microbiota (GM) plays a pivotal role in the progression of these diseases, influencing the brain and mental health through the gut-brain axis (GBA). The vagus nerve plays a significant role in the GBA, making it a key area of focus for potential novel therapeutic interventions. Vagus nerve stimulation (VNS) was introduced and approved as a treatment for refractory forms of some neuropsychological disorders, such as depression and epilepsy. Considering its impact on several brain regions that play a vital part in mood, motivation, affection, and cognitive function, the VNS has shown significant therapeutic potential for treating a variety of neuropsychiatric disorders. Using VNS to target the bidirectional communication pathways linking the GM and the VN could present an exciting and novel approach to treating neuropsychological disorders. Imbalances in the GM, such as dysbiosis, can impair the communication pathways between the gut and the brain, contributing to the development of neuropsychological disorders. VNS shows potential for modulating these interconnected systems, helping to restore balance. Interestingly, the composition of the GM may also influence the effectiveness of VNS, as it has the potential to modify the brain's response to this therapeutic approach. This study provides a comprehensive analysis of a relatively unexplored but noteworthy interaction between VNS and GM in the treatment of neuropsychiatric disorders. In addition, we discussed the mechanisms, therapeutic potential, and clinical implications of VNS on the GBA across neuropsychiatric disorders.
Collapse
Affiliation(s)
- Navid Faraji
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Payami
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Epilepsy Research Center, Department of Neurosurgery, Münster University, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
2
|
Jin K, Chen B, Han S, Dong J, Cheng S, Qin B, Lu J. Repetitive Transcranial Magnetic Stimulation (rTMS) Improves Cognitive Impairment and Intestinal Microecological Dysfunction Induced by High-Fat Diet in Rats. RESEARCH (WASHINGTON, D.C.) 2024; 7:0384. [PMID: 38826566 PMCID: PMC11140411 DOI: 10.34133/research.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 06/04/2024]
Abstract
Consuming a high-fat diet (HFD) is widely recognized to cause obesity and result in chronic brain inflammation that impairs cognitive function. Repetitive transcranial magnetic stimulation (rTMS) has shown effectiveness in both weight loss and cognitive improvement, although the exact mechanism is still unknown. Our study examined the effects of rTMS on the brain and intestinal microecological dysfunction. rTMS successfully reduced cognitive decline caused by an HFD in behavioral assessments involving the Y maze and novel object recognition. This was accompanied by an increase in the number of new neurons and the transcription level of genes related to synaptic plasticity (spindlin 1, synaptophysin, and postsynaptic protein-95) in the hippocampus. It was reached that rTMS decreased the release of high mobility group box 1, activation of microglia, and inflammation in the brains of HFD rats. rTMS also reduced hypothalamic hypocretin levels and improved peripheral blood lipid metabolism. In addition, rTMS recovered the HFD-induced gut microbiome imbalances, metabolic disorders, and, in particular, reduced levels of the microvirus. Our research emphasized that rTMS enhanced cognitive abilities, resulting in positive impacts on brain inflammation, neurodegeneration, and the microbiota in the gut, indicating the potential connection between the brain and gut, proposing that rTMS could be a new approach to addressing cognitive deficits linked to obesity.
Collapse
Affiliation(s)
- Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Bing Chen
- Department of Psychiatry, the First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou City 310003, China
| | - Jingyi Dong
- School of Life Sciences,
Zhejiang Chinese Medical University, Hangzhou, China
| | - Shangping Cheng
- Department of Psychiatry, the First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Bin Qin
- School of Life Sciences,
Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| |
Collapse
|
3
|
Aljeradat B, Kumar D, Abdulmuizz S, Kundu M, Almealawy YF, Batarseh DR, Atallah O, Ennabe M, Alsarafandi M, Alan A, Weinand M. Neuromodulation and the Gut-Brain Axis: Therapeutic Mechanisms and Implications for Gastrointestinal and Neurological Disorders. PATHOPHYSIOLOGY 2024; 31:244-268. [PMID: 38804299 PMCID: PMC11130832 DOI: 10.3390/pathophysiology31020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
The gut-brain axis (GBA) represents a complex, bidirectional communication network that intricately connects the gastrointestinal tract with the central nervous system (CNS). Understanding and intervening in this axis opens a pathway for therapeutic advancements for neurological and gastrointestinal diseases where the GBA has been proposed to play a role in the pathophysiology. In light of this, the current review assesses the effectiveness of neuromodulation techniques in treating neurological and gastrointestinal disorders by modulating the GBA, involving key elements such as gut microbiota, neurotrophic factors, and proinflammatory cytokines. Through a comprehensive literature review encompassing PubMed, Google Scholar, Web of Science, and the Cochrane Library, this research highlights the role played by the GBA in neurological and gastrointestinal diseases, in addition to the impact of neuromodulation on the management of these conditions which include both gastrointestinal (irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gastroesophageal reflux disease (GERD)) and neurological disorders (Parkinson's disease (PD), Alzheimer's disease (AD), autism spectrum disorder (ASD), and neuropsychiatric disorders). Despite existing challenges, the ability of neuromodulation to adjust disrupted neural pathways, alleviate pain, and mitigate inflammation is significant in improving the quality of life for patients, thereby offering exciting prospects for future advancements in patient care.
Collapse
Affiliation(s)
- Baha’ Aljeradat
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Danisha Kumar
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Dow Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Sulaiman Abdulmuizz
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- College of Health Sciences, University of Ilorin, Ilorin 240003, Kwara, Nigeria
| | - Mrinmoy Kundu
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar 751029, India
| | - Yasser F. Almealawy
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Faculty of Medicine, University of Kufa, Kufa P.O. Box 21, Iraq
| | - Dima Ratib Batarseh
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Oday Atallah
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany
| | - Michelle Ennabe
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- College of Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Muath Alsarafandi
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- College of Medicine, Islamic University of Gaza, Rafa Refugee Camp, Rafa P.O. Box 108, Palestine
- Faculty of Medicine, Islamic University of Gaza, Gaza P.O. Box 108, Palestine
| | - Albert Alan
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Department of Neurosurgery, University of Arizona, Tucson, AZ 85724, USA;
- College of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85004, USA
| | - Martin Weinand
- Department of Neurosurgery, University of Arizona, Tucson, AZ 85724, USA;
- College of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85004, USA
| |
Collapse
|
4
|
He H, He H, Mo L, Yuan Q, Xiao C, Ma Q, Yi S, Zhou T, You Z, Zhang J. Gut microbiota regulate stress resistance by influencing microglia-neuron interactions in the hippocampus. Brain Behav Immun Health 2024; 36:100729. [PMID: 38317780 PMCID: PMC10840119 DOI: 10.1016/j.bbih.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Communication among the brain, gut and microbiota in the gut is known to affect the susceptibility to stress, but the mechanisms involved are unclear. Here we demonstrated that stress resistance in mice was associated with more abundant Lactobacillus and Akkermansia in the gut, but less abundant Bacteroides, Alloprevotella, Helicobacter, Lachnoclostridium, Blautia, Roseburia, Colidextibacter and Lachnospiraceae NK4A136. Stress-sensitive animals showed higher permeability and stronger immune responses in their colon, as well as higher levels of pro-inflammatory cytokines in serum. Their hippocampus also showed more extensive microglial activation, abnormal interactions between microglia and neurons, and lower synaptic plasticity. Transplanting fecal microbiota from stress-sensitive mice into naïve ones perturbed microglia-neuron interactions and impaired synaptic plasticity in the hippocampus, translating to more depression-like behavior after stress exposure. Conversely, transplanting fecal microbiota from stress-resistant mice into naïve ones protected microglia from activation and preserved synaptic plasticity in the hippocampus, leading to less depression-like behavior after stress exposure. These results suggested that gut microbiota may influence resilience to chronic psychological stress by regulating microglia-neuron interactions in the hippocampus.
Collapse
Affiliation(s)
- Haili He
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hui He
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Li Mo
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Qingsong Yuan
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Qiman Ma
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Saini Yi
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Zili You
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
5
|
Feng P, Zhang Y, Zhao Y, Zhao P, Li E. Combined repetitive transcranial magnetic stimulation and gut microbiota modulation through the gut-brain axis for prevention and treatment of autism spectrum disorder. Front Immunol 2024; 15:1341404. [PMID: 38455067 PMCID: PMC10918007 DOI: 10.3389/fimmu.2024.1341404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental conditions characterized by enduring impairments in social communication and interaction together with restricted repetitive behaviors, interests, and activities. No targeted pharmacological or physical interventions are currently available for ASD. However, emerging evidence has indicated a potential association between the development of ASD and dysregulation of the gut-brain axis. Repetitive transcranial magnetic stimulation (rTMS), a noninvasive diagnostic and therapeutic approach, has demonstrated positive outcomes in diverse psychiatric disorders; however, its efficacy in treating ASD and its accompanying gastrointestinal effects, particularly the effects on the gut-brain axis, remain unclear. Hence, this review aimed to thoroughly examine the existing research on the application of rTMS in the treatment of ASD. Additionally, the review explored the interplay between rTMS and the gut microbiota in children with ASD, focusing on the gut-brain axis. Furthermore, the review delved into the integration of rTMS and gut microbiota modulation as a targeted approach for ASD treatment based on recent literature. This review emphasizes the potential synergistic effects of rTMS and gut microbiota interventions, describes the underlying mechanisms, and proposes a potential therapeutic strategy for specific subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The American Psychiatric Association, Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonghong Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Bai J, Wei JQ, Tian Q, Xue F, Zhang W, He H. The impact of electroacupuncture on anxiety-like behavior and gut microbiome in a mouse model of chronic restraint stress. Front Behav Neurosci 2023; 17:1292835. [PMID: 38033481 PMCID: PMC10687179 DOI: 10.3389/fnbeh.2023.1292835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Electroacupuncture (EA) is a beneficial physiotherapy approach for addressing neuropsychiatric disorders. Nevertheless, the impact of EA on the gut microbiome in relation to anxiety disorders remains poorly understood. Methods To address this gap, we conducted a study using a chronic restraint stress (CRS) mouse model to investigate the anti-anxiety outcome of EA and its influence on gut microbiota. Our research involved behavioral tests and comprehensive sequencing of full-length 16S rRNA microbiomes. Results Our findings revealed that CRS led to significant anxiety-like behaviors and an imbalance in the gut microbiota. Specifically, we identified 13 species that exhibited changes associated with anxiety-like behaviors. Furthermore, EA partially alleviated both behaviors related to anxiety and the dysbiosis induced by CRS. Discussion In summary, this study sheds light on the alterations in gut microbiota species resulting from CRS treatment and brings new light into the connection between EA's anti-anxiety effects and the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong He
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, China
| |
Collapse
|
7
|
Zhou C, Chen Y, Xue S, Shi Q, Guo L, Yu H, Xue F, Cai M, Wang H, Peng Z. rTMS ameliorates depressive-like behaviors and regulates the gut microbiome and medium- and long-chain fatty acids in mice exposed to chronic unpredictable mild stress. CNS Neurosci Ther 2023; 29:3549-3566. [PMID: 37269082 PMCID: PMC10580350 DOI: 10.1111/cns.14287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) is a clinically useful therapy for depression. However, the effects of rTMS on the metabolism of fatty acids (FAs) and the composition of gut microbiota in depression are not well established. METHODS Mice received rTMS (15 Hz, 1.26 T) for seven consecutive days after exposure to chronic unpredictable mild stress (CUMS). The subsequent depressive-like behaviors, the composition of gut microbiota of stool samples, as well as medium- and long-chain fatty acids (MLCFAs) in the plasma, prefrontal cortex (PFC), and hippocampus (HPC) were evaluated. RESULTS CUMS induced remarkable changes in gut microbiotas and fatty acids, specifically in community diversity of gut microbiotas and PUFAs in the brain. 15 Hz rTMS treatment alleviates depressive-like behaviors and partially normalized CUMS induced alterations of microbiotas and MLCFAs, especially the abundance of Cyanobacteria, Actinobacteriota, and levels of polyunsaturated fatty acids (PUFAs) in the hippocampus and PFC. CONCLUSION These findings revealed that the modulation of gut microbiotas and PUFAs metabolism might partly contribute to the antidepressant effect of rTMS.
Collapse
Affiliation(s)
- Cui‐Hong Zhou
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Yi‐Huan Chen
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Shan‐Shan Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Qing‐Qing Shi
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Lin Guo
- Department of PsychiatryChang'an HospitalXi'anChina
| | - Huan Yu
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Fen Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Min Cai
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Hua‐Ning Wang
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Zheng‐Wu Peng
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
8
|
Hashimoto K. Neuroinflammation through the vagus nerve-dependent gut–microbiota–brain axis in treatment-resistant depression. PROGRESS IN BRAIN RESEARCH 2023. [DOI: 10.1016/bs.pbr.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|