1
|
Haigh SM, Berryhill ME, Kilgore-Gomez A, Dodd M. Working memory and sensory memory in subclinical high schizotypy: An avenue for understanding schizophrenia? Eur J Neurosci 2023; 57:1577-1596. [PMID: 36895099 PMCID: PMC10178355 DOI: 10.1111/ejn.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The search for robust, reliable biomarkers of schizophrenia remains a high priority in psychiatry. Biomarkers are valuable because they can reveal the underlying mechanisms of symptoms and monitor treatment progress and may predict future risk of developing schizophrenia. Despite the existence of various promising biomarkers that relate to symptoms across the schizophrenia spectrum, and despite published recommendations encouraging multivariate metrics, they are rarely investigated simultaneously within the same individuals. In those with schizophrenia, the magnitude of purported biomarkers is complicated by comorbid diagnoses, medications and other treatments. Here, we argue three points. First, we reiterate the importance of assessing multiple biomarkers simultaneously. Second, we argue that investigating biomarkers in those with schizophrenia-related traits (schizotypy) in the general population can accelerate progress in understanding the mechanisms of schizophrenia. We focus on biomarkers of sensory and working memory in schizophrenia and their smaller effects in individuals with nonclinical schizotypy. Third, we note irregularities across research domains leading to the current situation in which there is a preponderance of data on auditory sensory memory and visual working memory, but markedly less in visual (iconic) memory and auditory working memory, particularly when focusing on schizotypy where data are either scarce or inconsistent. Together, this review highlights opportunities for researchers without access to clinical populations to address gaps in knowledge. We conclude by highlighting the theory that early sensory memory deficits contribute negatively to working memory and vice versa. This presents a mechanistic perspective where biomarkers may interact with one another and impact schizophrenia-related symptoms.
Collapse
Affiliation(s)
- Sarah M. Haigh
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Marian E. Berryhill
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Alexandrea Kilgore-Gomez
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Michael Dodd
- Department of Psychology, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
2
|
Bi H, Abrham Y, Butler PD, Hu B, Keane BP. When do contrast sensitivity deficits (or enhancements) depend on spatial frequency? Two ways to avoid spurious interactions. Eur J Neurosci 2023; 57:351-359. [PMID: 36504242 DOI: 10.1111/ejn.15887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Studies across a broad range of disciplines-from psychiatry to cognitive science to behavioural neuroscience-have reported on whether the magnitude of contrast sensitivity alterations in one group or condition varies with spatial frequency. Significant interactions have often gone unexplained or have been used to argue for impairments in specific processing streams. Here, we show that interactions with spatial frequency may need to be re-evaluated if the inherent skew/heteroscedasticity was not taken into account or if visual acuity could plausibly differ across groups or conditions. By re-analysing a publicly available data set, we show that-when using raw contrast sensitivity data-schizophrenia patients exhibit an apparent contrast sensitivity impairment that lessens with spatial frequency, but that when using log-transformed data or when using generalized estimating equations, this interaction reversed. The reversed interaction, but not the overall contrast sensitivity deficit, disappeared when groups were matched on visual acuity. An analysis of the contrast threshold data yielded similar results. A caveat is that matching groups on acuity is probably only defensible if acuity differences arise from non-neural factors such as optical blur. Taken together, these analyses reconcile seemingly discrepant findings in the literature and demonstrate that reporting contrast sensitivity interactions with spatial frequency requires properly accounting for visual acuity and skew/heteroscedasticity.
Collapse
Affiliation(s)
- Howard Bi
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, USA
| | - Yonatan Abrham
- Center for Visual Science, University of Rochester, Rochester, New York, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, USA
| | - Pamela D Butler
- Clinical Science Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Boyang Hu
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, USA
| | - Brian P Keane
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, USA
- Center for Visual Science, University of Rochester, Rochester, New York, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
3
|
Kody E, Diwadkar VA. Magnocellular and parvocellular contributions to brain network dysfunction during learning and memory: Implications for schizophrenia. J Psychiatr Res 2022; 156:520-531. [PMID: 36351307 DOI: 10.1016/j.jpsychires.2022.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Memory deficits are core features of schizophrenia, and a central aim in biological psychiatry is to identify the etiology of these deficits. Scrutiny is naturally focused on the dorsolateral prefrontal cortex and the hippocampal cortices, given these structures' roles in memory and learning. The fronto-hippocampal framework is valuable but restrictive. Network-based underpinnings of learning and memory are substantially diverse and include interactions between hetero-modal and early sensory networks. Thus, a loss of fidelity in sensory information may impact memorial and cognitive processing in higher-order brain sub-networks, becoming a sensory source for learning and memory deficits. In this overview, we suggest that impairments in magno- and parvo-cellular visual pathways result in degraded inputs to core learning and memory networks. The ascending cascade of aberrant neural events significantly contributes to learning and memory deficits in schizophrenia. We outline the network bases of these effects, and suggest that any network perspectives of dysfunction in schizophrenia must assess the impact of impaired perceptual contributions. Finally, we speculate on how this framework enriches the space of biomarkers and expands intervention strategies to ameliorate this prototypical disconnection syndrome.
Collapse
Affiliation(s)
- Elizabeth Kody
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA.
| |
Collapse
|
4
|
Frattaroli N, Geljic M, Runkowska D, Darke H, Reddyhough C, Mills T, Mitchell M, Hill R, Carter O, Sundram S. Cognitive and perceptual impairments in schizophrenia extend to other psychotic disorders but not schizotypy. Schizophr Res Cogn 2022; 30:100266. [PMID: 35959485 PMCID: PMC9361330 DOI: 10.1016/j.scog.2022.100266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Natalie Frattaroli
- Department of Psychiatry, School of Clinical Sciences, Monash University. Level 3 P-Block, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Mia Geljic
- Department of Psychiatry, School of Clinical Sciences, Monash University. Level 3 P-Block, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Dominika Runkowska
- Department of Psychiatry, School of Clinical Sciences, Monash University. Level 3 P-Block, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Hayley Darke
- Department of Psychiatry, School of Clinical Sciences, Monash University. Level 3 P-Block, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Caitlin Reddyhough
- Melbourne School of Psychological Sciences, Redmond Barry Building, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC 3010, Australia
| | - Taylor Mills
- Department of Psychiatry, School of Clinical Sciences, Monash University. Level 3 P-Block, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
- Melbourne School of Psychological Sciences, Redmond Barry Building, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC 3010, Australia
| | - Matthew Mitchell
- Melbourne School of Psychological Sciences, Redmond Barry Building, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC 3010, Australia
| | - Rachel Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University. Level 3 P-Block, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Olivia Carter
- Melbourne School of Psychological Sciences, Redmond Barry Building, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC 3010, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University. Level 3 P-Block, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
- Mental Health Program, Monash Health, Level 3 P-Block, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
- Corresponding author at: Department of Psychiatry, School of Clinical Sciences, Monash University, Level 3 P-Block, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, Australia.
| |
Collapse
|
5
|
Herrera SN, Zemon V, Revheim N, Silipo G, Gordon J, Butler PD. Cognitive function mediates the relationship between visual contrast sensitivity and functional outcome in schizophrenia. J Psychiatr Res 2021; 144:138-145. [PMID: 34624619 PMCID: PMC8665016 DOI: 10.1016/j.jpsychires.2021.09.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Individuals with schizophrenia exhibit deficits in visual contrast processing, though less is known about how these deficits impact neurocognition and functional outcomes. This study investigated effects of contrast sensitivity (CS) on cognition and capacity for independent living in schizophrenia. METHODS Participants were 58 patients with schizophrenia (n = 49) and schizoaffective disorder (n = 9). Patients completed a psychophysical paradigm to obtain CS with stimuli consisting of grating patterns of low (0.5 and 1 cycles/degree) and high spatial frequencies (4, 7, 21 cycles/degree). Patients completed the MATRICS Consensus Cognitive Battery and Wechsler Adult Intelligence Scales, Third Edition to assess cognition, and the problem-solving factor of the Independent Living Scales to assess functional capacity. We computed bivariate correlation coefficients for all pairs of variables and tested mediation models with CS to low (CS-LSF) and high spatial frequencies (CS-HSF) as predictors, cognitive measures as mediators, and capacity for independent living as an outcome. RESULTS Cognition mediated the relationship between CS and independent living with CS-LSF a stronger predictor than CS-HSF. Mediation effects were strongest for perceptual organization and memory-related domains. In an expanded moderated mediation model, CS-HSF was found to be a significant predictor of independent living through perceptual organization as a mediator and CS-LSF as a moderator of this relationship. CONCLUSION CS relates to functional capacity in schizophrenia through neurocognition. These relationships may inform novel visual remediation interventions.
Collapse
Affiliation(s)
- Shaynna N Herrera
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA.
| | - Vance Zemon
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Nadine Revheim
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Gail Silipo
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - James Gordon
- Hunter College of the City University of New York, New York, NY, USA
| | - Pamela D Butler
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Keane BP, Paterno D, Crespo L, Kastner S, Silverstein SM. Smaller visual arrays are harder to integrate in schizophrenia: Evidence for impaired lateral connections in early vision. Psychiatry Res 2019; 282:112636. [PMID: 31740209 PMCID: PMC8750297 DOI: 10.1016/j.psychres.2019.112636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
Abstract
Long-range horizontal connections in early vision undergird a well-studied "collinear facilitation" effect, wherein a central low-contrast target becomes more detectable when flanked by collinear elements. Collinear facilitation is weaker in schizophrenia. Might lateral connections be responsible? To consider the possibility, we had 38 schizophrenia patients and 49 well-matched healthy controls judge the presence of a central low-contrast element flanked by collinear or orthogonal high-contrast elements. The display (target+flankers) was scaled in size to produce a lower and higher spatial frequency ("SF") condition (4 and 10 cycles/deg, respectively). Larger stimulus arrays bias processing towards feedback connections from higher-order visual areas; smaller arrays bias processing toward lateral connections. Patients had impaired facilitation relative to controls at higher but not lower SFs. Combining data from a past study on "contour integration" (in which subjects sought to detect chains of co-circular elements), we found correlated integration and facilitation performance at the higher SF and a similar effect of spatial scaling across SF, suggesting a common mechanism. In an exploratory analysis, worse contrast thresholds (without facilitation) correlated strongly with more premorbid dysfunction. In schizophrenia, inter-element filling-in worsens at smaller spatial scales potentially because of its increased reliance on impaired lateral connections in early vision.
Collapse
Affiliation(s)
- Brian P. Keane
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA,University Behavioral Health Care, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ 08854, USA,Center for Cognitive Science, Rutgers University, Piscataway, NJ 08854, USA,Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Danielle Paterno
- University Behavioral Health Care, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Laura Crespo
- University Behavioral Health Care, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA,Department of Psychology, Peretsman Scully Hall, Princeton University, Princeton, NJ 08540, USA
| | - Steven M. Silverstein
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA,University Behavioral Health Care, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ 08854, USA,Center for Cognitive Science, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Thakkar KN, Silverstein SM, Brascamp JW. A review of visual aftereffects in schizophrenia. Neurosci Biobehav Rev 2019; 101:68-77. [PMID: 30940436 DOI: 10.1016/j.neubiorev.2019.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/13/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022]
Abstract
Psychosis-a cardinal symptom of schizophrenia-has been associated with a failure to appropriately create or use stored regularities about past states of the world to guide the interpretation of incoming information, which leads to abnormal perceptions and beliefs. The visual system provides a test bed for investigating the role of prior experience and prediction, as accumulated knowledge of the world informs our current perception. More specifically, the strength of visual aftereffects, illusory percepts that arise after prolonged viewing of a visual stimulus, can serve as a valuable measure of the influence of prior experience on current visual processing. In this paper, we review findings from a largely older body of work on visual aftereffects in schizophrenia, attempt to reconcile discrepant findings, highlight the role of antipsychotic medication, consider mechanistic interpretations for behavioral effects, and propose directions for future research.
Collapse
Affiliation(s)
- Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States; Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, MI, United States.
| | - Steven M Silverstein
- Departments of Psychiatry and Ophthalmology, Rutgers University, Piscataway, NJ, United States
| | - Jan W Brascamp
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Keane BP, Paterno D, Kastner S, Krekelberg B, Silverstein SM. Intact illusory contour formation but equivalently impaired visual shape completion in first- and later-episode schizophrenia. JOURNAL OF ABNORMAL PSYCHOLOGY 2018; 128:57-68. [PMID: 30346202 DOI: 10.1037/abn0000384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visual shape completion is a fundamental process that constructs contours and shapes on the basis of the geometric relations between spatially separated edge elements. People with schizophrenia are impaired at distinguishing visually completed shapes, but when does the impairment emerge and how does it evolve with illness duration? The question bears on the debate as to whether cognition declines after illness onset. To address the issue, we tested healthy controls (n = 48), first-episode psychosis patients (n = 23), and chronic schizophrenia patients (n = 49) on a classic psychophysical task in which subjects discriminated the relative orientations of four sectored circles that either formed or did not form visually completed shapes (illusory and fragmented conditions, respectively). Visual shape completion was quantified as the extent to which performance in the illusory condition exceeded that of the fragmented. Half of the trials incorporated wire edge elements, which augment contour salience and improve shape completion. Each patient group exhibited large visual shape completion deficits that could not be explained by differences in age, motivation, or orientation tuning. Patients responded normally to changes in illusory contour salience, indicating that they were forming but not adequately employing such contours for discriminating shapes. Shape completion deficits were most apparent for patients with cognitive disorganization, poor premorbid early adolescent functioning, and normal orientation discrimination. Visual shape completion deficits emerge maximally by the first psychotic episode and arise from higher-level disturbances that are related to premorbid functioning and disorganization. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Brian P Keane
- Department of Psychiatry, Robert Wood Johnson Medical School, University Behavioral Health Care, Rutgers Biomedical and Health Sciences, Rutgers University
| | | | | | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University
| | - Steven M Silverstein
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University
| |
Collapse
|
9
|
Intact perception of coherent motion, dynamic rigid form, and biological motion in chronic schizophrenia. Psychiatry Res 2018; 268:53-59. [PMID: 29990720 PMCID: PMC6178929 DOI: 10.1016/j.psychres.2018.06.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/17/2018] [Accepted: 06/21/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prior studies have documented biological motion perception deficits in schizophrenia, but it remains unclear whether the impairments arise from poor social cognition, perceptual organization, basic motion processing, or sustained attention/motivation. To address the issue, we had 24 chronic schizophrenia patients and 27 healthy controls perform three tasks: coherent motion, where subjects indicated whether a cloud of dots drifted leftward or rightward; dynamic rigid form, where subjects determined the tilt direction of a translating, point-light rectangle; and biological motion, where subjects judged whether a human point-light figure walked leftward or rightward. Task difficulty was staircase controlled and depended on the directional variability of the background dot motion. Catch trials were added to verify task attentiveness and engagement. RESULTS Patients and controls demonstrated similar performance thresholds and near-ceiling catch trial accuracy for each task (uncorrected ps > 0.1; ds < 0.35). In all but the coherent motion task, higher IQ correlated with better performance (ps < 0.001). CONCLUSION Schizophrenia patients have intact perception of motion coherence, dynamic rigid form, and biological motion at least for our sample and set-up. We speculate that previously documented biological motion perception deficits arose from task or stimulus differences or from group differences in IQ, attention, or motivation.
Collapse
|
10
|
Contour interpolation: A case study in Modularity of Mind. Cognition 2018; 174:1-18. [PMID: 29407601 DOI: 10.1016/j.cognition.2018.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 01/29/2023]
Abstract
In his monograph Modularity of Mind (1983), philosopher Jerry Fodor argued that mental architecture can be partly decomposed into computational organs termed modules, which were characterized as having nine co-occurring features such as automaticity, domain specificity, and informational encapsulation. Do modules exist? Debates thus far have been framed very generally with few, if any, detailed case studies. The topic is important because it has direct implications on current debates in cognitive science and because it potentially provides a viable framework from which to further understand and make hypotheses about the mind's structure and function. Here, the case is made for the modularity of contour interpolation, which is a perceptual process that represents non-visible edges on the basis of how surrounding visible edges are spatiotemporally configured. There is substantial evidence that interpolation is domain specific, mandatory, fast, and developmentally well-sequenced; that it produces representationally impoverished outputs; that it relies upon a relatively fixed neural architecture that can be selectively impaired; that it is encapsulated from belief and expectation; and that its inner workings cannot be fathomed through conscious introspection. Upon differentiating contour interpolation from a higher-order contour representational ability ("contour abstraction") and upon accommodating seemingly inconsistent experimental results, it is argued that interpolation is modular to the extent that the initiating conditions for interpolation are strong. As interpolated contours become more salient, the modularity features emerge. The empirical data, taken as a whole, show that at least certain parts of the mind are modularly organized.
Collapse
|
11
|
Fernandes TMP, Andrade SM, de Andrade MJO, Nogueira RMTBL, Santos NA. Colour discrimination thresholds in type 1 Bipolar Disorder: a pilot study. Sci Rep 2017; 7:16405. [PMID: 29180712 PMCID: PMC5703961 DOI: 10.1038/s41598-017-16752-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
Although some studies have reported perceptual changes in psychosis, no definitive conclusions have been drawn about visual disturbances that are related to bipolar disorder (BPD). The purpose of the present study was to evaluate colour vision in BPD patients. Data were recorded from 24 participants: healthy control group (n = 12) and type 1 BPD group (n = 12). The participants were 20-45 years old and they were free from neurological disorders and identifiable ocular disease and had normal or corrected-to-normal visual acuity. Colour discrimination was evaluated using the Lanthony D-15d, Trivector and Ellipse tests, using a psychophysical forced-choice method. The relationship of visual measures to mood state and cognitive function was also investigated. The results showed that BPD patients had higher colour discrimination thresholds in the D15d (p < 0.001), Trivector (p < 0.001) and Ellipse (p < 0.01) tests compared with healthy controls. Linear regression analysis showed that mood state was related to colour discrimination. BPD individuals were not impaired in cognitive tasks. The present study provided new evidence of potential links between type 1 BPD and visual processing impairments. This research suggests a new direction for studies and the need for research in this field of study.
Collapse
Affiliation(s)
- Thiago Monteiro Paiva Fernandes
- Cognitive Neuroscience and Behaviour Program, Federal University of Paraiba, Joao Pessoa, Brazil.
- Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil.
| | - Suellen Marinho Andrade
- Cognitive Neuroscience and Behaviour Program, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | - Natanael Antonio Santos
- Cognitive Neuroscience and Behaviour Program, Federal University of Paraiba, Joao Pessoa, Brazil
- Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
12
|
Butler PD, Thompson JL, Seitz AR, Deveau J, Silverstein SM. Visual perceptual remediation for individuals with schizophrenia: Rationale, method, and three case studies. Psychiatr Rehabil J 2017; 40:43-52. [PMID: 27547852 PMCID: PMC5322250 DOI: 10.1037/prj0000212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Few studies have evaluated the effects of visual remediation strategies in schizophrenia despite abundant evidence of visual-processing alterations in this condition. We report preliminary, case-study-based evidence regarding the effects of visual remediation in this population. METHOD We describe implementation of a visual-perceptual training program called ULTIMEYES (UE) and initial results through 3 brief case studies of individuals with schizophrenia. UE targets broad-based visual function, including low-level processes (e.g., acuity, contrast sensitivity) as well as higher level visual functions. Three inpatients, recruited from a research unit, participated in at least 38 sessions 3 to 4 times per week for approximately 25 min per session. Contrast sensitivity (a trained task), as well as acuity and perceptual organization (untrained tasks), were assessed before and after the intervention. Levels of progression through the task are also reported. RESULTS UE was well tolerated by the participants and led to improvements in contrast sensitivity, as well as more generalized gains in visual acuity in all 3 participants and perceptual organization in 2 participants. Symptom profiles were somewhat different for each participant, but all were symptomatic during the intervention. Despite this, they were able to focus on and benefit from training. The adaptive nature of the training was well suited to the slower progression of 2 participants. CONCLUSIONS AND IMPLICATIONS FOR PRACTICE These case studies set the stage for further research, such as larger, randomized controlled trials of the intervention that include additional assessments of perceptual function and measures of cognition, social cognition, and functional outcomes. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - Judy L Thompson
- Department of Psychiatric Rehabilitation and Counseling Professions, Rutgers University
| | | | - Jenni Deveau
- Department of Psychology, University of California
| | - Steven M Silverstein
- University Behavioral Health Care, Rutgers Biomedical and Health Sciences, Rutgers University
| |
Collapse
|
13
|
Keane BP, Paterno D, Kastner S, Silverstein SM. Visual integration dysfunction in schizophrenia arises by the first psychotic episode and worsens with illness duration. JOURNAL OF ABNORMAL PSYCHOLOGY 2016; 125:543-9. [PMID: 27030995 DOI: 10.1037/abn0000157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Visual integration dysfunction characterizes schizophrenia, but prior studies have not yet established whether the problem arises by the first psychotic episode or worsens with illness duration. To investigate the issue, we compared chronic schizophrenia patients (SZs), first episode psychosis patients (FEs), and well-matched healthy controls on a brief but sensitive psychophysical task in which subjects attempted to locate an integrated shape embedded in noise. Task difficulty depended on the number of noise elements co-presented with the shape. For half of the experiment, the entire display was scaled down in size to produce a high spatial frequency (HSF) condition, which has been shown to worsen patient integration deficits. Catch trials-in which the circular target appeared without noise-were also added so as to confirm that subjects were paying adequate attention. We found that controls integrated contours under noisier conditions than FEs, who, in turn, integrated better than SZs. These differences, which were at times large in magnitude (d = 1.7), clearly emerged only for HSF displays. Catch trial accuracy was above 95% for each group and could not explain the foregoing differences. Prolonged illness duration predicted poorer HSF integration across patients, but age had little effect on controls, indicating that the former factor was driving the effect in patients. Taken together, a brief psychophysical task efficiently demonstrates large visual integration impairments in schizophrenia. The deficit arises by the first psychotic episode, worsens with illness duration, and may serve as a biomarker of illness progression. (PsycINFO Database Record
Collapse
Affiliation(s)
- Brian P Keane
- University Behavioral Health Care, Rutgers University, Department of Psychiatry, Rutgers-Robert Wood Johnson Medical School
| | | | - Sabine Kastner
- Princeton Neuroscience Institute, and Department of Psychology, Princeton University
| | | |
Collapse
|
14
|
Silverstein SM. Visual Perception Disturbances in Schizophrenia: A Unified Model. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2016; 63:77-132. [PMID: 27627825 DOI: 10.1007/978-3-319-30596-7_4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Costa TL, Zaninotto ALC, Benute GG, De Lúcia MCS, Paiva WS, Wagemans J, Boggio PS. Perceptual organization deficits in traumatic brain injury patients. Neuropsychologia 2015; 78:142-52. [PMID: 26455804 DOI: 10.1016/j.neuropsychologia.2015.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/26/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
Abstract
Traumatic brain injury (TBI) is a prevalent condition and there is limited visual perception research with this population. Here, we investigated perceptual organization changes in a rather homogeneous sample of closed head TBI outpatients with diffuse axonal injury only and no other known comorbidities. Patients had normal or corrected visual acuity. Perceptual organization was measured with the Leuven Perceptual Organization Screening Test (L-POST), a coherent motion task (CM) and the Leuven Embedded Figures Test (L-EFT). These tests were chosen to screen for deficits in different aspects of perceptual organization (L-POST), to evaluate local and global processing (L-EFT) and grouping in a dynamic set of stimuli (CM). TBI patients were significantly impaired compared to controls in all measures for both response time and accuracy, except for CM thresholds and object recognition subtests. The TBI group was similarly affected in all aspects of the L-EFT. TBI was also similarly affected in all perceptual factors of the L-POST. No significant correlations were found between scores and time post-injury, except for CM thresholds (rs=-0.74), which might explain the lack of group-level differences. The only score significantly correlated to IQ was L-EFT response time (rs=-0.67). These findings demonstrate that perceptual organization is diffusely affected in TBI and this effect has no substantial correlations with IQ. As many of the neuropsychological tests used to measure different cognitive functions involve some level of visual discrimination and perceptual organization demands, these results must be taken into account in the general neuropsychological evaluation of TBI patients.
Collapse
Affiliation(s)
- Thiago L Costa
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Mackenzie Presbyterian University, São Paulo, Brazil; Division of Psychology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil.
| | - Ana Luiza C Zaninotto
- Division of Psychology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Gláucia G Benute
- Division of Psychology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Mara C S De Lúcia
- Division of Psychology, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Wellingson S Paiva
- Division of Neurosurgery, University of São Paulo Medical School, São Paulo, Brazil
| | - Johan Wagemans
- Department of Brain and Cognition, Laboratory of Experimental Psychology, University of Leuven, Belgium
| | - Paulo S Boggio
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Mackenzie Presbyterian University, São Paulo, Brazil
| |
Collapse
|
16
|
Silverstein SM, Elliott CM, Feusner JD, Keane BP, Mikkilineni D, Hansen N, Hartmann A, Wilhelm S. Comparison of visual perceptual organization in schizophrenia and body dysmorphic disorder. Psychiatry Res 2015; 229:426-33. [PMID: 26184989 PMCID: PMC4546849 DOI: 10.1016/j.psychres.2015.05.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 05/05/2015] [Accepted: 05/17/2015] [Indexed: 02/04/2023]
Abstract
People with schizophrenia are impaired at organizing potentially ambiguous visual information into well-formed shape and object representations. This perceptual organization (PO) impairment has not been found in other psychiatric disorders. However, recent data on body dysmorphic disorder (BDD), suggest that BDD may also be characterized by reduced PO. Similarities between these groups could have implications for understanding the RDoC dimension of visual perception in psychopathology, and for modeling symptom formation across these two conditions. We compared patients with SCZ (n=24) to those with BDD (n=20), as well as control groups of obsessive-compulsive disorder (OCD) patients (n=20) and healthy controls (n=20), on two measures of PO that have been reliably associated with schizophrenia-related performance impairment. On both the contour integration and Ebbinghaus illusion tests, only the SCZ group demonstrated abnormal performance relative to controls; the BDD group performed similarly to the OCD and CON groups. In addition, on both tasks, the SCZ group performed more abnormally than the BDD group. Overall, these data suggest that PO reductions observed in SCZ are not present in BDD. Visual processing impairments in BDD may arise instead from other perceptual disturbances or attentional biases related to emotional factors.
Collapse
Affiliation(s)
- Steven M. Silverstein
- Department of Psychiatry and University Behavioral Health Care, Rutgers University, Piscataway, New Jersey, USA,Corresponding author: Steven M. Silverstein, Ph.D. Rutgers University Behavioral Health Care, 151 Centennial Avenue, Piscataway, NJ 08854, USA. Tel.: +1-732-235-5149.
| | - Corinna M. Elliott
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Jamie D. Feusner
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Brian P. Keane
- Department of Psychiatry and University Behavioral Health Care, Rutgers University, Piscataway, New Jersey, USA
| | - Deepthi Mikkilineni
- Department of Psychiatry and University Behavioral Health Care, Rutgers University, Piscataway, New Jersey, USA
| | - Natasha Hansen
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Andrea Hartmann
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Sabine Wilhelm
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Silverstein SM, Harms MP, Carter CS, Gold JM, Keane BP, MacDonald A, Ragland JD, Barch DM. Cortical contributions to impaired contour integration in schizophrenia. Neuropsychologia 2015; 75:469-80. [PMID: 26160288 PMCID: PMC4546547 DOI: 10.1016/j.neuropsychologia.2015.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Visual perceptual organization impairments in schizophrenia (SCZ) are well established, but their neurobiological bases are not. The current study used the previously validated Jittered Orientation Visual Integration (JOVI) task, along with fMRI, to examine the neural basis of contour integration (CI), and its impairment in SCZ. CI is an aspect of perceptual organization in which multiple distinct oriented elements are grouped into a single continuous boundary or shape. METHODS On the JOVI, five levels of orientational jitter were added to non-contiguous closed contour elements embedded in background noise to progressively increase the difficulty in perceiving contour elements as left- or right-pointing ovals. Multi-site fMRI data were analyzed for 56 healthy control subjects and 47 people with SCZ. RESULTS SCZ patients demonstrated poorer CI, and this was associated with increased activation in regions involved in global shape processing and visual attention, namely the lateral occipital complex and superior parietal lobules. There were no brain regions where controls demonstrated more activation than patients. CONCLUSIONS CI impairment in this sample of outpatients with SCZ was related to excessive activation in regions associated with object processing and allocation of visual-spatial attention. There was no evidence for basic impairments in contour element linking in the fMRI data. The latter may be limited to poor outcome patients, where more extensive structural and functional changes in the occipital lobe have been observed.
Collapse
Affiliation(s)
| | | | | | - James M Gold
- University of Maryland, Maryland Psychiatric Research Center, United States
| | - Brian P Keane
- Rutgers, The State University of New Jersey, United States
| | | | | | | |
Collapse
|
18
|
Abstract
Although visual processing impairments are common in schizophrenia, it is not clear to what extent these originate in the eye vs. the brain. This review highlights potential contributions, from the retina and other structures of the eye, to visual processing impairments in schizophrenia and high-risk states. A second goal is to evaluate the status of retinal abnormalities as biomarkers for schizophrenia. The review was motivated by known retinal changes in other disorders (e.g., Parkinson’s disease, multiple sclerosis), and their relationships to perceptual and cognitive impairments, and disease progression therein. The evidence reviewed suggests two major conclusions. One is that there are multiple structural and functional disturbances of the eye in schizophrenia, all of which could be factors in the visual disturbances of patients. These include retinal venule widening, retinal nerve fiber layer thinning, dopaminergic abnormalities, abnormal ouput of retinal cells as measured by electroretinography (ERG), maculopathies and retinopathies, cataracts, poor acuity, and strabismus. Some of these are likely to be illness-related, whereas others may be due to medication or comorbid conditions. The second conclusion is that certain retinal findings can serve as biomarkers of neural pathology, and disease progression, in schizophrenia. The strongest evidence for this to date involves findings of widened retinal venules, thinning of the retinal nerve fiber layer, and abnormal ERG amplitudes. These data suggest that a greater understanding of the contribution of retinal and other ocular pathology to the visual and cognitive disturbances of schizophrenia is warranted, and that retinal changes have untapped clinical utility.
Collapse
|
19
|
Wynn JK, Roach BJ, Lee J, Horan WP, Ford JM, Jimenez AM, Green MF. EEG findings of reduced neural synchronization during visual integration in schizophrenia. PLoS One 2015; 10:e0119849. [PMID: 25785939 PMCID: PMC4364708 DOI: 10.1371/journal.pone.0119849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/17/2015] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia patients exhibit well-documented visual processing deficits. One area of disruption is visual integration, the ability to form global objects from local elements. However, most studies of visual integration in schizophrenia have been conducted in the context of an active attention task, which may influence the findings. In this study we examined visual integration using electroencephalography (EEG) in a passive task to elucidate neural mechanisms associated with poor visual integration. Forty-six schizophrenia patients and 30 healthy controls had EEG recorded while passively viewing figures comprised of real, illusory, or no contours. We examined visual P100, N100, and P200 event-related potential (ERP) components, as well as neural synchronization in the gamma (30-60 Hz) band assessed by the EEG phase locking factor (PLF). The N100 was significantly larger to illusory vs. no contour, and illusory vs. real contour stimuli while the P200 was larger only to real vs. illusory stimuli; there were no significant interactions with group. Compared to controls, patients failed to show increased phase locking to illusory versus no contours between 40-60 Hz. Also, controls, but not patients, had larger PLF between 30-40 Hz when viewing real vs. illusory contours. Finally, the positive symptom factor of the BPRS was negatively correlated with PLF values between 40-60 Hz to illusory stimuli, and with PLF between 30-40 Hz to real contour stimuli. These results suggest that the pattern of results across visual processing conditions is similar in patients and controls. However, patients have deficits in neural synchronization in the gamma range during basic processing of illusory contours when attentional demand is limited.
Collapse
Affiliation(s)
- Jonathan K. Wynn
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States of America
- Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Brian J. Roach
- Veterans Affairs San Francisco Medical Center, San Francisco, CA, United States of America
| | - Junghee Lee
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States of America
- Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States of America
| | - William P. Horan
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States of America
- Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Judith M. Ford
- Veterans Affairs San Francisco Medical Center, San Francisco, CA, United States of America
- University of California San Francisco, San Francisco, CA, United States of America
| | - Amy M. Jimenez
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States of America
| | - Michael F. Green
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States of America
- Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
20
|
Local and global limits on visual processing in schizophrenia. PLoS One 2015; 10:e0117951. [PMID: 25689281 PMCID: PMC4331538 DOI: 10.1371/journal.pone.0117951] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022] Open
Abstract
Schizophrenia has been linked to impaired performance on a range of visual processing tasks (e.g. detection of coherent motion and contour detection). It has been proposed that this is due to a general inability to integrate visual information at a global level. To test this theory, we assessed the performance of people with schizophrenia on a battery of tasks designed to probe voluntary averaging in different visual domains. Twenty-three outpatients with schizophrenia (mean age: 40±8 years; 3 female) and 20 age-matched control participants (mean age 39±9 years; 3 female) performed a motion coherence task and three equivalent noise (averaging) tasks, the latter allowing independent quantification of local and global limits on visual processing of motion, orientation and size. All performance measures were indistinguishable between the two groups (ps>0.05, one-way ANCOVAs), with one exception: participants with schizophrenia pooled fewer estimates of local orientation than controls when estimating average orientation (p = 0.01, one-way ANCOVA). These data do not support the notion of a generalised visual integration deficit in schizophrenia. Instead, they suggest that distinct visual dimensions are differentially affected in schizophrenia, with a specific impairment in the integration of visual orientation information.
Collapse
|