1
|
Ferrari PF. Understanding empathy and De Waal's contribution within the fields of social neurosciences. Neurosci Biobehav Rev 2024; 167:105870. [PMID: 39277024 DOI: 10.1016/j.neubiorev.2024.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
This review delves into the remarkable career and scientific contributions of Frans de Waal, a renowned figure in the field of ethology, primatology with important implications for the field of social neurosciences. Rooted in the Dutch tradition of ethology, influenced by luminaries like Niko Tinbergen and Jan Van Hooff, De Waal's career began with groundbreaking research on chimpanzees, which questioned long-held beliefs about dominance and aggression in animal behavior. His work, epitomized in his influential books, such as "Chimpanzee Politics", "The ape and the sushi master", "The age of empathy", not only revolutionized scientific thinking but also ignited discussions about empathy, morality, and complex cognitive functions in animals. De Waal's interdisciplinary approach extended to neuroscience, particularly in understanding empathy, contributing to the development of an original model: the Perception-Action Model (PAM). The fundamental concept of PAM is that even the most intricate forms of empathy stem from basic neural mechanisms of action-perception, such as mirror neurons. Some behavioral phenomena like motor mimicry and emotional contagion arise from a direct neuroanatomical network activity where sensory information about others' emotional states triggers corresponding behavioral responses. Intriguingly, even the most intricate forms of empathy such as concern, consolation and targeted helping, may have evolved from basic neural mechanisms of action-perception.Through these investigations and theoretical explorations, he advocated for a bottom-up approach to comprehending the cognitive abilities of animals. This approach challenged conventional anthropocentric perspectives and underscored the interconnected emotional and cognitive terrain shared among humans and other species. Beyond academia, De Waal's work has profound implications for how we perceive and interact with animals. By debunking notions of human exceptionalism, he highlights the rich tapestry of emotions that bind all living beings. Through his efforts, De Waal has not only advanced our scientific understanding of animal minds but also fostered a more profound appreciation for the depth of emotional connections across species.
Collapse
Affiliation(s)
- Pier Francesco Ferrari
- Institut des Sciences Cognitives Marc Jeannerod, Unit 5229, CNRS / Université Claude Bernard Lyon, 67 Bd Pinel, Bron 69675, France; Dipartimento di Medicina e Chirurgia, Università di Parma, Via Volturno 39, 43125, Parma, Italy.
| |
Collapse
|
2
|
Del Vecchio M, Avanzini P, Gerbella M, Costa S, Zauli FM, d'Orio P, Focacci E, Sartori I, Caruana F. Anatomo-functional basis of emotional and motor resonance elicited by facial expressions. Brain 2024; 147:3018-3031. [PMID: 38365267 DOI: 10.1093/brain/awae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024] Open
Abstract
Simulation theories predict that the observation of other's expressions modulates neural activity in the same centres controlling their production. This hypothesis has been developed by two models, postulating that the visual input is directly projected either to the motor system for action recognition (motor resonance) or to emotional/interoceptive regions for emotional contagion and social synchronization (emotional resonance). Here we investigated the role of frontal/insular regions in the processing of observed emotional expressions by combining intracranial recording, electrical stimulation and effective connectivity. First, we intracranially recorded from prefrontal, premotor or anterior insular regions of 44 patients during the passive observation of emotional expressions, finding widespread modulations in prefrontal/insular regions (anterior cingulate cortex, anterior insula, orbitofrontal cortex and inferior frontal gyrus) and motor territories (Rolandic operculum and inferior frontal junction). Subsequently, we electrically stimulated the activated sites, finding that (i) in the anterior cingulate cortex and anterior insula, the stimulation elicited emotional/interoceptive responses, as predicted by the 'emotional resonance model'; (ii) in the Rolandic operculum it evoked face/mouth sensorimotor responses, in line with the 'motor resonance' model; and (iii) all other regions were unresponsive or revealed functions unrelated to the processing of facial expressions. Finally, we traced the effective connectivity to sketch a network-level description of these regions, finding that the anterior cingulate cortex and the anterior insula are reciprocally interconnected while the Rolandic operculum is part of the parieto-frontal circuits and poorly connected with the former. These results support the hypothesis that the pathways hypothesized by the 'emotional resonance' and the 'motor resonance' models work in parallel, differing in terms of spatio-temporal fingerprints, reactivity to electrical stimulation and connectivity patterns.
Collapse
Affiliation(s)
- Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Sara Costa
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Flavia Maria Zauli
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Piergiorgio d'Orio
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Elena Focacci
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ivana Sartori
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| |
Collapse
|
3
|
Hagiwara K. [Insular lobe epilepsy. Part 1: semiology]. Rinsho Shinkeigaku 2024; 64:527-539. [PMID: 39069491 DOI: 10.5692/clinicalneurol.cn-001930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The insula is often referred to as "the fifth lobe" of the brain, and its accessibility used to be very limited due to the deep location under the opercula as well as the sylvian vasculature. It was not until the availability of modern stereo-electroencephalography (SEEG) technique that the intracranial electrodes could be safely and chronically implanted within the insula, thereby enabling anatomo-electro-clinical correlations in seizures of this deep origin. Since the first report of SEEG-recorded insular seizures in late 1990s, the knowledge of insular lobe epilepsy (ILE) has rapidly expanded. Being on the frontline for the diagnosis and management of epilepsy, neurologists should have a precise understanding of ILE to differentiate it from epilepsies of other lobes or non-epileptic conditions. Owing to the multimodal nature and rich anatomo-functional connections of the insula, ILE has a wide range of clinical presentations. The following symptoms should heighten the suspicion of ILE: somatosensory symptoms involving a large/bilateral cutaneous territory or taking on thermal/painful character, and cervico-laryngeal discomfort. The latter ranges from slight dyspnea to a strong sensation of strangulation (laryngeal constriction). Other symptoms include epigastric discomfort/nausea, hypersalivation, auditory, vestibular, gustatory, and aphasic symptoms. However, most of these insulo-opercular symptoms can easily be masked by those of extra-insular seizure propagation. Indeed, sleep-related hyperkinetic (hypermotor) epilepsy (SHE) is a common clinical presentation of ILE, which shows predominant hyperkinetic and/or tonic-dystonic features that are often indistinguishable from those of fronto-mesial seizures. Subtle objective signs, such as constrictive throat noise (i.e., laryngeal constriction) or aversive behavior (e.g., facial grimacing suggesting pain), are often the sole clue in diagnosing insular SHE. Insular-origin seizures should also be considered in temporal-like seizures without frank anatomo-electro-clinical correlations. All in all, ILE is not the epilepsy of an isolated island but rather of a crucial hub involved in the multifaceted roles of the brain.
Collapse
|
4
|
Bress KS, Cascio CJ. Sensorimotor regulation of facial expression - An untouched frontier. Neurosci Biobehav Rev 2024; 162:105684. [PMID: 38710425 DOI: 10.1016/j.neubiorev.2024.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Facial expression is a critical form of nonverbal social communication which promotes emotional exchange and affiliation among humans. Facial expressions are generated via precise contraction of the facial muscles, guided by sensory feedback. While the neural pathways underlying facial motor control are well characterized in humans and primates, it remains unknown how tactile and proprioceptive information reaches these pathways to guide facial muscle contraction. Thus, despite the importance of facial expressions for social functioning, little is known about how they are generated as a unique sensorimotor behavior. In this review, we highlight current knowledge about sensory feedback from the face and how it is distinct from other body regions. We describe connectivity between the facial sensory and motor brain systems, and call attention to the other brain systems which influence facial expression behavior, including vision, gustation, emotion, and interoception. Finally, we petition for more research on the sensory basis of facial expressions, asserting that incomplete understanding of sensorimotor mechanisms is a barrier to addressing atypical facial expressivity in clinical populations.
Collapse
Affiliation(s)
- Kimberly S Bress
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Carissa J Cascio
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Caruana F. Positive emotions elicited by cortical and subcortical electrical stimulation: A commentary on Villard et al. (2023). Cortex 2024; 174:234-237. [PMID: 37659914 DOI: 10.1016/j.cortex.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 09/04/2023]
Affiliation(s)
- Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Via Volturno 39/E, 43125 Parma, Italy.
| |
Collapse
|
6
|
Mirandola L, Cantalupo G, d'Orsi G, Meletti S, Vaudano AE, Di Vito L, Vignoli A, Tassi L, Pelliccia V. Ictal semiology of gelastic seizures. Epilepsy Behav 2023; 140:109025. [PMID: 36780776 DOI: 10.1016/j.yebeh.2022.109025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 02/13/2023]
Abstract
Gelastic seizures are rare epileptic manifestations characterized by laughter or a smile. The main etiology is represented by hypothalamic hamartoma, but also focal localization of the epileptogenic zone is described. We reviewed a group of patients with gelastic seizures to describe the semiology and to establish any difference related to diverse epilepsy etiologies. Thirty-five seizures from 16 patients (6 females) were reviewed. The study confirms that hypothalamic hamartoma is the more frequent etiology associated with gelastic seizures. Laughter represented the majority of gelastic ictal signs, while the ictal smile was less frequent. In 87.5% of patients, the manifestation of laughter or smile was the only ictal phenomenon, or the first and the most important clinical sign. Interestingly, it has been observed that patients with a lesion localized in the hypothalamic region had more frequently laughter with emotional involvement and that laughter was the only manifestation of the seizure. On the contrary, patients with lesions localized outside the hypothalamic region had more often seizures with laugh without emotional involvement, resembling a more mechanical action, and associated with other semeiological signs. It, therefore, seems possible to assume that the emotional involvement and the expression of mirth during the seizure, especially in children, are more frequently associated with hypothalamic hamartoma. On the contrary, when the semiology includes less conveyed emotion similar to a mechanical action and other symptoms, an extra hypothalamic localization should be considered.
Collapse
Affiliation(s)
| | - Gaetano Cantalupo
- Child Neuropsychiatry Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy; Research Center for Pediatric Epilepsies Verona, Italy
| | - Giuseppe d'Orsi
- Neurology Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Fg), Italy; Epilepsy Center - Clinic of Nervous System Disease, Policlinico Riuniti, Foggia, Italy
| | - Stefano Meletti
- Division of Neurology, University Hospital of Modena, Modena, Italy; Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Elisabetta Vaudano
- Division of Neurology, University Hospital of Modena, Modena, Italy; Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Lidia Di Vito
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Aglaia Vignoli
- Childhood and Adolescence Neurology and Psychiatry Unit, Niguarda Hospital Department of Health Sciences, University of Milan, Milan, Italy; Epilepsy Center-Child Neuropsychiatric Unit, ASST Santi Paolo e Carlo, Milan, Italy
| | - Laura Tassi
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Veronica Pelliccia
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| |
Collapse
|
7
|
Belyk M, McGettigan C. Real-time magnetic resonance imaging reveals distinct vocal tract configurations during spontaneous and volitional laughter. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210511. [PMID: 36126659 PMCID: PMC9489295 DOI: 10.1098/rstb.2021.0511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 12/22/2022] Open
Abstract
A substantial body of acoustic and behavioural evidence points to the existence of two broad categories of laughter in humans: spontaneous laughter that is emotionally genuine and somewhat involuntary, and volitional laughter that is produced on demand. In this study, we tested the hypothesis that these are also physiologically distinct vocalizations, by measuring and comparing them using real-time magnetic resonance imaging (rtMRI) of the vocal tract. Following Ruch and Ekman (Ruch and Ekman 2001 In Emotions, qualia, and consciousness (ed. A Kaszniak), pp. 426-443), we further predicted that spontaneous laughter should be relatively less speech-like (i.e. less articulate) than volitional laughter. We collected rtMRI data from five adult human participants during spontaneous laughter, volitional laughter and spoken vowels. We report distinguishable vocal tract shapes during the vocalic portions of these three vocalization types, where volitional laughs were intermediate between spontaneous laughs and vowels. Inspection of local features within the vocal tract across the different vocalization types offers some additional support for Ruch and Ekman's predictions. We discuss our findings in light of a dual pathway hypothesis for the neural control of human volitional and spontaneous vocal behaviours, identifying tongue shape and velum lowering as potential biomarkers of spontaneous laughter to be investigated in future research. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.
Collapse
Affiliation(s)
- Michel Belyk
- Department of Psychology, Edge Hill University, Ormskirk L39 4QP, UK
- Department of Speech, Hearing and Phonetic Sciences, University College London, London WC1N 1PF, UK
| | - Carolyn McGettigan
- Department of Speech, Hearing and Phonetic Sciences, University College London, London WC1N 1PF, UK
| |
Collapse
|
8
|
Palagi E, Caruana F, de Waal FBM. The naturalistic approach to laughter in humans and other animals: towards a unified theory. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210175. [PMID: 36126670 PMCID: PMC9489289 DOI: 10.1098/rstb.2021.0175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 12/18/2022] Open
Abstract
This opinion piece aims to tackle the biological, psychological, neural and cultural underpinnings of laughter from a naturalistic and evolutionary perspective. A naturalistic account of laughter requires the revaluation of two dogmas of a longstanding philosophical tradition, that is, the quintessential link between laughter and humour, and the uniquely human nature of this behaviour. In the spirit of Provine's and Panksepp's seminal studies, who firstly argued against the anti-naturalistic dogmas, here we review compelling evidence that (i) laughter is first and foremost a social behaviour aimed at regulating social relationships, easing social tensions and establishing social bonds, and that (ii) homologue and homoplasic behaviours of laughter exist in primates and rodents, who also share with humans the same underpinning neural circuitry. We make a case for the hypothesis that the contagiousness of laughter and its pervasive social infectiousness in everyday social interactions is mediated by a specific mirror mechanism. Finally, we argue that a naturalistic account of laughter should not be intended as an outright rejection of classic theories; rather, in the last part of the piece we argue that our perspective is potentially able to integrate previous viewpoints-including classic philosophical theories-ultimately providing a unified evolutionary explanation of laughter. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.
Collapse
Affiliation(s)
- Elisabetta Palagi
- Unit of Ethology, Department of Biology, University of Pisa, via A. Volta 6, Pisa 56126, Italy
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Via Volturno 39/E, Parma 43125, Italy
| | | |
Collapse
|
9
|
Zauli FM, Del Vecchio M, Russo S, Mariani V, Pelliccia V, d'Orio P, Sartori I, Avanzini P, Caruana F. The web of laughter: frontal and limbic projections of the anterior cingulate cortex revealed by cortico-cortical evoked potential from sites eliciting laughter. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210180. [PMID: 36126672 PMCID: PMC9489285 DOI: 10.1098/rstb.2021.0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 12/20/2022] Open
Abstract
According to an evolutionist approach, laughter is a multifaceted behaviour affecting social, emotional, motor and speech functions. Albeit previous studies have suggested that high-frequency electrical stimulation (HF-ES) of the pregenual anterior cingulate cortex (pACC) may induce bursts of laughter-suggesting a crucial contribution of this region to the cortical control of this behaviour-the complex nature of laughter implies that outward connections from the pACC may reach and affect a complex network of frontal and limbic regions. Here, we studied the effective connectivity of the pACC by analysing the cortico-cortical evoked potentials elicited by single-pulse electrical stimulation of pACC sites whose HF-ES elicited laughter in 12 patients. Once these regions were identified, we studied their clinical response to HF-ES, to reveal the specific functional target of pACC representation of laughter. Results reveal that the neural representation of laughter in the pACC interacts with several frontal and limbic regions, including cingulate, orbitofrontal, medial prefrontal and anterior insular regions-involved in interoception, emotion, social reward and motor behaviour. These results offer neuroscientific support to the evolutionist approach to laughter, providing a possible mechanistic explanation of the interplay between this behaviour and emotion regulation, speech production and social interactions. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.
Collapse
Affiliation(s)
- F M Zauli
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
- Department of Philosophy 'Piero Martinetti', University of Milan, Milan, Italy
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, Milan, Italy
| | - M Del Vecchio
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - S Russo
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
- Department of Philosophy 'Piero Martinetti', University of Milan, Milan, Italy
- Allen Institute, Seattle, WA
| | - V Mariani
- Neurology and Stroke Unit Division, Circolo Hospital ASST Settelaghi University of Insubria, Varese, Italy
| | - V Pelliccia
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, Milan, Italy
| | - P d'Orio
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, Milan, Italy
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma
| | - I Sartori
- 'Claudio Munari' Epilepsy Surgery Center, ASST GOM Niguarda, Milan, Italy
| | - P Avanzini
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - F Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| |
Collapse
|
10
|
Mercier MR, Dubarry AS, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Smith SE, Stolk A, Swann NC, Vansteensel MJ, Voytek B, Wang L, Lachaux JP, Oostenveld R. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 2022; 260:119438. [PMID: 35792291 PMCID: PMC10190110 DOI: 10.1016/j.neuroimage.2022.119438] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.
Collapse
Affiliation(s)
- Manuel R Mercier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| | | | - François Tadel
- Signal & Image Processing Institute, University of Southern California, Los Angeles, CA United States of America
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Outer St, Beijing 100875, China
| | - Dillan Cellier
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Liberty S Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States of America; Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States of America
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Anais Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
| | - Pierre Megevand
- Department of Clinical neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany; Department of Neurology, NYU Grossman School of Medicine, 145 East 32nd Street, Room 828, New York, NY 10016, United States of America
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, the Netherlands
| | - Aina Puce
- Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN, United States of America
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sydney E Smith
- Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Nicole C Swann
- University of Oregon in the Department of Human Physiology, United States of America
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Bradley Voytek
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America; Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America; Halıcıoğlu Data Science Institute, University of California, La Jolla, San Diego, United States of America; Kavli Institute for Brain and Mind, University of California, La Jolla, San Diego, United States of America
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Possible limitations of perceptual studies for informing production networks - the case of laughter. Cortex 2022; 148:218-221. [DOI: 10.1016/j.cortex.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
|
12
|
Hu L, Ding F, Wang S, Wang S. MRI-Negative Occipital Lobe Epilepsy Presenting as Gelastic Seizures. Neurol India 2022; 69:1813-1816. [PMID: 34979696 DOI: 10.4103/0028-3886.333525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although gelastic seizures (GSs) with extrahypothalamic epileptogenic zones such as the frontal, temporal, or parietal lobes have been previously reported, reports of GSs arising from the occipital region are rare. Herein, we describe the seizure propagation pattern of mirthless GSs confirmed by intracranial EEG in a case of MRI-negative occipital lobe epilepsy. In this patient, EEG onset was localized to the right occipital lobe while the onset of laughter coincided with seizure propagation to the right basal temporal region. This finding suggested that the symptomatogenic area for GSs in the occipital lobe may reside in the basal temporal region, and the basal temporal region may play a role in laughing behaviors. This case demonstrated that an elaborate analysis of electroclinical features combined with imaging findings may lead to successful seizure localization.
Collapse
Affiliation(s)
- Lingli Hu
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fang Ding
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shan Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Bartolo A, Ballotta D, Nocetti L, Baraldi P, Nichelli PF, Benuzzi F. Uncover the Offensive Side of Disparagement Humor: An fMRI Study. Front Psychol 2021; 12:750597. [PMID: 34880811 PMCID: PMC8645564 DOI: 10.3389/fpsyg.2021.750597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Disparagement humor is a kind of humor that denigrates, belittles an individual or a social group. In the aim to unveil the offensive side of these kinds of jokes, we have run an event-related fMRI study asking 30 healthy volunteers to judge the level of fun of a series of verbal stimuli that ended with a sentence that was socially inappropriate but funny (disparagement joke -DJ), socially inappropriate but not funny (SI) or neutral (N). Behavioral results showed disparagement jokes are perceived as funny and at the same time offensive. However, the level of offense in DJ is lower than that registered in SI stimuli. Functional data showed that DJ activated the insula, the SMA, the precuneus, the ACC, the dorsal striatum (the caudate nucleus), and the thalamus. These activations suggest that in DJ a feeling of mirth (and/or a desire to laugh) derived from the joke (e.g., SMA and precuneus) and the perception of the jokes’ social inappropriateness (e.g., ACC and insula) coexist. Furthermore, DJ and SI share a common network related to mentalizing and to the processing of negative feelings, namely the medial prefrontal cortex, the putamen and the right thalamus.
Collapse
Affiliation(s)
- Angela Bartolo
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, Lille, France.,Institut Universitaire de France (IUF), Paris, France
| | - Daniela Ballotta
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Luca Nocetti
- Fisica Medica, Azienda Ospedaliera Universitaria di Modena, Modena, Italy
| | - Patrizia Baraldi
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Paolo Frigio Nichelli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Francesca Benuzzi
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
14
|
Caruana F. Two simulation systems in the human frontal cortex? Disentangling between motor simulation and emotional mirroring using laughter. Cortex 2021; 148:215-217. [PMID: 34696898 DOI: 10.1016/j.cortex.2021.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Via Volturno 39/E, 43125 Parma, Italy.
| |
Collapse
|
15
|
A New Neurorehabilitative Postsurgery Intervention for Facial Palsy Based on Smile Observation and Hand-Mouth Motor Synergies. Neural Plast 2021; 2021:8890541. [PMID: 33833792 PMCID: PMC8016575 DOI: 10.1155/2021/8890541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To perform a preliminary test of a new rehabilitation treatment (FIT-SAT), based on mirror mechanisms, for gracile muscles after smile surgery. Method A pre- and postsurgery longitudinal design was adopted to study the efficacy of FIT-SAT. Four patients with bilateral facial nerve paralysis (Moebius syndrome) were included. They underwent two surgeries with free muscle transfers, one year apart from each other. The side of the face first operated on was rehabilitated with the traditional treatment, while the second side was rehabilitated with FIT-SAT. The FIT-SAT treatment includes video clips of an actor performing a unilateral or a bilateral smile to be imitated (FIT condition). In addition to this, while smiling, the participants close their hand in order to exploit the overlapped cortical motor representation of the hand and the mouth, which may facilitate the synergistic activity of the two effectors during the early phases of recruitment of the transplanted muscles (SAT). The treatment was also aimed at avoiding undesired movements such as teeth grinding. Discussion. Results support FIT-SAT as a viable alternative for smile rehabilitation after free muscle transfer. We propose that the treatment potentiates the effect of smile observation by activating the same neural structures responsible for the execution of the smile and therefore by facilitating its production. Closing of the hand induces cortical recruitment of hand motor neurons, recruiting the transplanted muscles, and reducing the risk of associating other unwanted movements such as teeth clenching to the smile movements.
Collapse
|
16
|
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng 2020; 17:051001. [PMID: 32916678 PMCID: PMC7731730 DOI: 10.1088/1741-2552/abb7a5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, United States of America
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Canada
| | - Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Institute for Computer Science, University of Bern, Switzerland
- Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|
17
|
Gerbella M, Pinardi C, Di Cesare G, Rizzolatti G, Caruana F. Two Neural Networks for Laughter: A Tractography Study. Cereb Cortex 2020; 31:899-916. [DOI: 10.1093/cercor/bhaa264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract
Laughter is a complex motor behavior occurring in both emotional and nonemotional contexts. Here, we investigated whether the different functions of laughter are mediated by distinct networks and, if this is the case, which are the white matter tracts sustaining them. We performed a multifiber tractography investigation placing seeds in regions involved in laughter production, as identified by previous intracerebral electrical stimulation studies in humans: the pregenual anterior cingulate (pACC), ventral temporal pole (TPv), frontal operculum (FO), presupplementary motor cortex, and ventral striatum/nucleus accumbens (VS/NAcc). The primary motor cortex (M1) and two subcortical territories were also studied to trace the descending projections. Results provided evidence for the existence of two relatively distinct networks. A first network, including pACC, TPv, and VS/NAcc, is interconnected through the anterior cingulate bundle, the accumbofrontal tract, and the uncinate fasciculus, reaching the brainstem throughout the mamillo-tegmental tract. This network is likely involved in the production of emotional laughter. A second network, anchored to FO and M1, projects to the brainstem motor nuclei through the internal capsule. It is most likely the neural basis of nonemotional and conversational laughter. The two networks interact throughout the pre-SMA that is connected to both pACC and FO.
Collapse
Affiliation(s)
- M Gerbella
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
| | - C Pinardi
- Neuroradiology Department, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - G Di Cesare
- Cognitive Architecture for Collaborative Technologies Unit, Italian Institute of Technology, Genova 16163, Italy
| | - G Rizzolatti
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
- Institute of Neuroscience, Italian National Research Council (CNR), Parma 43125, Italy
| | - F Caruana
- Institute of Neuroscience, Italian National Research Council (CNR), Parma 43125, Italy
| |
Collapse
|
18
|
Caruana F, Avanzini P, Pelliccia V, Mariani V, Zauli F, Sartori I, Del Vecchio M, Lo Russo G, Rizzolatti G. Mirroring other's laughter. Cingulate, opercular and temporal contributions to laughter expression and observation. Cortex 2020; 128:35-48. [DOI: 10.1016/j.cortex.2020.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 01/19/2023]
|
19
|
George DD, Ojemann SG, Drees C, Thompson JA. Stimulation Mapping Using Stereoelectroencephalography: Current and Future Directions. Front Neurol 2020; 11:320. [PMID: 32477236 PMCID: PMC7238877 DOI: 10.3389/fneur.2020.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Electrical stimulation mapping (ESM) using stereoelectroencephalography (SEEG) is an essential component in the workup of surgical epilepsy. Since the initial application of ESM in the mid-1960s, it remains unparalleled in defining eloquent brain areas and delimiting seizure foci for the purposes of surgical planning. Here, we briefly review the current state of SEEG stimulation, with a focus on the techniques used for identifying the epileptogenic zone and eloquent cortex. We also summarize clinical data on the efficacy of SEEG stimulation in surgical outcomes and functional mapping. Finally, we briefly highlight future applications of SEEG ESM, including novel functional mapping approaches, identifying rare seizure semiologies, neurophysiologic investigations for understanding cognitive function, and its role in SEEG-guided radiofrequency thermal coagulation.
Collapse
Affiliation(s)
- Derek D George
- School of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Cornelia Drees
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
20
|
Gonzalez-Martinez J. Epilepsy: Invasive Monitoring. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Talami F, Vaudano AE, Meletti S. Motor and Limbic System Contribution to Emotional Laughter across the Lifespan. Cereb Cortex 2019; 30:3381-3391. [PMID: 31848572 DOI: 10.1093/cercor/bhz316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Laughter is a universal human behavior generated by the cooperation of different systems toward the construction of an expressive vocal pattern. Given the sensitivity of neuroimaging techniques to movements, the neural mechanisms underlying laughter expression remain unclear. Herein, we characterized the neural correlates of emotional laughter using the onsets and the duration of laughter bursts to inform functional magnetic resonance imaging. Laughter-related blood oxygen level-dependent (BOLD) increases involved both the motor (motor cortex, supplementary motor area, frontal operculum) and the emotional/limbic (anterior cingulate cortex, amygdala, n. accumbens, hippocampus) systems, as well as modulatory circuitries encompassing the basal ganglia, thalamus, and cerebellum. BOLD changes related to the 2 s preceding the laughter outbreak were selectively observed at the temporo-occipital junction and the periaqueductal gray matter, supporting the role of the former in the detection of incongruity and the gating role of the latter in the initiation of spontaneous laughter. Moreover, developmental changes were identified in laughter processing, consisting in a greater engagement of the reward circuitry in younger subjects; conversely, the default mode network appears more activated in older participants. Our findings contribute valuable information about the processing of real-life humorous materials and suggest a close link between laughter-related motor, affective, and cognitive elements, confirming its complex and multi-faceted nature.
Collapse
Affiliation(s)
- Francesca Talami
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy.,Neurology Unit, OCB Hospital, Azienda Ospedaliera Universitaria di Modena, 41100 Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy.,Neurology Unit, OCB Hospital, Azienda Ospedaliera Universitaria di Modena, 41100 Modena, Italy
| |
Collapse
|
22
|
Pathways for smiling, disgust and fear recognition in blindsight patients. Neuropsychologia 2019; 128:6-13. [DOI: 10.1016/j.neuropsychologia.2017.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/03/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023]
|
23
|
Bijanki KR, Manns JR, Inman CS, Choi KS, Harati S, Pedersen NP, Drane DL, Waters AC, Fasano RE, Mayberg HS, Willie JT. Cingulum stimulation enhances positive affect and anxiolysis to facilitate awake craniotomy. J Clin Invest 2019; 129:1152-1166. [PMID: 30589643 DOI: 10.1172/jci120110] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Awake neurosurgery requires patients to converse and respond to visual or verbal prompts to identify and protect brain tissue supporting essential functions such as language, primary sensory modalities, and motor function. These procedures can be poorly tolerated because of patient anxiety, yet acute anxiolytic medications typically cause sedation and impair cortical function. METHODS In this study, direct electrical stimulation of the left dorsal anterior cingulum bundle was discovered to reliably evoke positive affect and anxiolysis without sedation in a patient with epilepsy undergoing research testing during standard inpatient intracranial electrode monitoring. These effects were quantified using subjective and objective behavioral measures, and stimulation was found to evoke robust changes in local and distant neural activity. RESULTS The index patient ultimately required an awake craniotomy procedure to confirm safe resection margins in the treatment of her epilepsy. During the procedure, cingulum bundle stimulation enhanced positive affect and reduced the patient's anxiety to the point that intravenous anesthetic/anxiolytic medications were discontinued and cognitive testing was completed. Behavioral responses were subsequently replicated in 2 patients with anatomically similar electrode placements localized to an approximately 1-cm span along the anterior dorsal cingulum bundle above genu of the corpus callosum. CONCLUSIONS The current study demonstrates a robust anxiolytic response to cingulum bundle stimulation in 3 patients with epilepsy. TRIAL REGISTRATION The current study was not affiliated with any formal clinical trial. FUNDING This project was supported by the American Foundation for Suicide Prevention and the NIH.
Collapse
Affiliation(s)
- Kelly R Bijanki
- Department of Neurosurgery, and.,Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joseph R Manns
- Department of Psychology, Emory University College of Arts and Sciences, Atlanta, Georgia, USA
| | | | - Ki Sueng Choi
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Nigel P Pedersen
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel L Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Allison C Waters
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rebecca E Fasano
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Helen S Mayberg
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jon T Willie
- Department of Neurosurgery, and.,Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Vaudano AE, Pizza F, Talami F, Plazzi G, Meletti S. The neuronal network of laughing in young patients with untreated narcolepsy. Neurology 2019; 92:e504-e515. [PMID: 30635496 DOI: 10.1212/wnl.0000000000006853] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate the neuronal correlates of spontaneous laughter in drug-naive pediatric patients with narcolepsy type I (NT1) compared to healthy controls by means of blood oxygen level-dependent (BOLD) MRI. METHODS Twenty-one children/adolescents with recent onset of NT1 and 21 age- and sex-matched healthy controls were studied with fMRI while viewing funny videos using a naturalistic paradigm. Whole-brain hemodynamic correlates of spontaneous laughter were investigated in each group and compared by use of appropriate second-level general linear model analyses. If recorded, cataplexy events were treated as the effect of no interest at the single-participant level. Correlations analyses between these contrasts and behavioral findings were performed. RESULTS Emotion-induced laughter occurred in 16 patients (294 events) and 21 controls (357 events). In controls, laughter-related BOLD increases involved a widespread cortical and subcortical network including the bilateral motor and premotor areas, cingulated cortex, insula, and amygdala. In NT1, laughter induced BOLD signal increments in the motor cortex, right thalamus, and left subthalamic nucleus/zona incerta (STN/ZI). STN/ZI and thalamic changes were significantly higher during fMRI sessions with laughter without cataplexy compared to sessions in which laughter was associated with cataplexy. CONCLUSION Laughter expression in individuals with NT1 involves different brain circuits compared to controls by means of overactivation of cortical and subcortical regions belonging to the volitional control of laughter. The activation of the STN/ZI region observed predominantly in patients with NT1 during laugh episodes without cataplexy suggests that the ZI could act to prevent cataplexy.
Collapse
Affiliation(s)
- Anna Elisabetta Vaudano
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy.
| | - Fabio Pizza
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Francesca Talami
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Giuseppe Plazzi
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Stefano Meletti
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy
| |
Collapse
|
25
|
Laughter as a Neurochemical Mechanism Aimed at Reinforcing Social Bonds: Integrating Evidence from Opioidergic Activity and Brain Stimulation. J Neurosci 2019; 37:8581-8582. [PMID: 28878097 DOI: 10.1523/jneurosci.1589-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 11/21/2022] Open
|
26
|
Caruana F, Gerbella M, Avanzini P, Gozzo F, Pelliccia V, Mai R, Abdollahi RO, Cardinale F, Sartori I, Lo Russo G, Rizzolatti G. Motor and emotional behaviours elicited by electrical stimulation of the human cingulate cortex. Brain 2018; 141:3035-3051. [DOI: 10.1093/brain/awy219] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/08/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Fausto Caruana
- University of Parma, Department of Medicine and Surgery, Parma, Italy
| | - Marzio Gerbella
- Italian Institute of Technology (IIT), Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy
| | | | - Francesca Gozzo
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, Milan, Italy
| | - Veronica Pelliccia
- University of Parma, Department of Medicine and Surgery, Parma, Italy
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, Milan, Italy
| | - Roberto Mai
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, Milan, Italy
| | | | - Francesco Cardinale
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, Milan, Italy
| | - Ivana Sartori
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, Milan, Italy
| | - Giorgio Lo Russo
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, Milan, Italy
| | - Giacomo Rizzolatti
- University of Parma, Department of Medicine and Surgery, Parma, Italy
- CNR Institute of Neuroscience, Parma, Italy
| |
Collapse
|
27
|
Fausto C. The Integration of Emotional Expression and Experience: A Pragmatist Review of Recent Evidence From Brain Stimulation. EMOTION REVIEW 2017. [DOI: 10.1177/1754073917723461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A common view in affective neuroscience considers emotions as a multifaceted phenomenon constituted by independent affective and motor components. Such dualistic connotation, obtained by rephrasing the classic Darwin and James’s theories of emotion, leads to the assumption that emotional expression is controlled by motor centers in the anterior cingulate, frontal operculum, and supplementary motor area, whereas emotional experience depends on interoceptive centers in the insula. Recent stimulation studies provide a different perspective. I will outline two sets of findings. First, affective experiences can be elicited also following the stimulation of motor centers. Second, emotional expressions can be elicited by stimulating interoceptive regions. Echoing the original pragmatist theories of emotion, I will make a case for the notion that emotional experience emerges from the integration of sensory and motor signals, encoded in the same functional network.
Collapse
Affiliation(s)
- Caruana Fausto
- Unit of Neuroscience, University of Parma, Italy
- Unit of Philosophy, University of Parma, Italy
| |
Collapse
|
28
|
Gelastic seizures caused by subtle focal cortical dysplasia in the inferior frontal gyrus: Three case reports. J Neurol Sci 2017; 376:140-142. [DOI: 10.1016/j.jns.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/12/2017] [Accepted: 03/07/2017] [Indexed: 11/22/2022]
|
29
|
Li J, Wang Z, Hwang J, Zhao B, Yang X, Xin S, Wang Y, Jiang H, Shi P, Zhang Y, Wang X, Lang C, Park J, Bao T, Kong J. Anatomical brain difference of subthreshold depression in young and middle-aged individuals. Neuroimage Clin 2017; 14:546-551. [PMID: 28331801 PMCID: PMC5345971 DOI: 10.1016/j.nicl.2017.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Subthreshold depression (StD) is associated with substantial functional impairments due to depressive symptoms that do not fully meet the diagnosis of major depressive disorder (MDD). Its high incidence in the general population and debilitating symptoms has recently put it at the forefront of mood disorder research. AIM In this study we investigated common volumetric brain changes in both young and middle-aged StD patients. METHODS Two cohorts of StD patients, young and middle-aged, (n = 57) and matched controls (n = 76) underwent voxel-based morphometry (VBM). RESULTS VBM analysis found that: 1) compared with healthy controls, StD patients showed decreased gray matter volume (GMV) in the bilateral globus pallidus and precentral gyrus, as well as increased GMV in the left thalamus and right rostral anterior cingulate cortex/medial prefrontal cortex; 2) there is a significant association between Center for Epidemiological Studies Depression Scale scores and the bilateral globus pallidus (negative) and left thalamus (positive); 3) there is no interaction between age (young vs. middle-age) and group (StD vs. controls). CONCLUSIONS Our findings indicate significant VBM brain changes in both young and middle-aged individuals with StD. Individuals with StD, regardless of age, may share common neural characteristics.
Collapse
Affiliation(s)
- Jing Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijng, China
| | - Zengjian Wang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - JiWon Hwang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijng, China
| | - Bingcong Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijng, China
| | - Xinjing Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijng, China
| | - Suicheng Xin
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijng, China
| | - Yu Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijng, China
| | - Huili Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijng, China
| | - Peng Shi
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijng, China
| | - Ye Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijng, China
- Dongfang Hospital, The Second Clinic College of Beijing University of Chinese Medicine, Beijing, China
| | - Xu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Courtney Lang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Tuya Bao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijng, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, MA, USA
| |
Collapse
|
30
|
Ishiyama S, Brecht M. Neural correlates of ticklishness in the rat somatosensory cortex. Science 2016; 354:757-760. [DOI: 10.1126/science.aah5114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/21/2016] [Indexed: 11/02/2022]
|