1
|
Yadollahikhales G, Mandelli ML, Ezzes Z, Pillai J, Ratnasiri B, Baquirin DP, Miller Z, de Leon J, Tee BL, Seeley W, Rosen H, Miller B, Kramer J, Sturm V, Gorno-Tempini ML, Montembeault M. Perceptual and semantic deficits in face recognition in semantic dementia. Neuropsychologia 2024; 205:109020. [PMID: 39447739 DOI: 10.1016/j.neuropsychologia.2024.109020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
STATE OF THE ART Semantic dementia (SD) patients including semantic variant primary progressive aphasia (svPPA) and semantic behavioral variant frontotemporal dementia (sbvFTD) patients show semantic difficulties identifying faces and known people related to right anterior temporal lobe (ATL) atrophy. However, it remains unclear whether they also have perceptual deficits in face recognition. METHODOLOGY We selected 74 SD patients (54 with svPPA and predominant left ATL atrophy and 20 with sbvFTD and predominant right ATL atrophy) and 36 cognitively healthy controls (HC) from UCSF Memory and Aging Center. They underwent a perceptual face processing test (Benton facial recognition test-short version; BFRT-S), and semantic face processing tests (UCSF Famous people battery - Recognition, Naming, Semantic associations - pictures and words subtests), as well as structural magnetic resonance imaging (MRI). Neural correlates with the task's performance were conducted with a Voxel-based morphometry approach using CAT12. RESULTS svPPA and sbvFTD patients were impaired on all semantic face processing tests, with sbvFTD patients performing significantly lower on the famous faces' recognition task in comparison to svPPA, and svPPA performing significantly lower on the naming task in comparison to sbvFTD. These tasks predominantly correlated with grey matter (GM) volumes in the right and left ATL, respectively. Compared to HC, both svPPA and sbvFTD patients showed preserved performance on the perceptual face processing test (BFRT-S), and performance on the BFRT-S negatively correlated with GM volume in the right posterior superior temporal sulcus (pSTS). CONCLUSION Our results suggest that early in the disease, with the atrophy mostly restricted to the anterior temporal regions, SD patients do not present with perceptual deficits. However, more severe SD cases with atrophy in right posterior temporal regions might show lower performance on face perception tests, in addition to the semantic face processing deficits. Early sparing of face perceptual deficits in SD patients, regardless of hemispheric lateralization, furthers our understanding of clinical phenomenology and therapeutical approaches of this complex disease.
Collapse
Affiliation(s)
- Golnaz Yadollahikhales
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States; Jona Goldrich center for Alzheimer's and Memory disorders, Department of Neurology, Cedars Sinai Medical Center, 127 S. San Vicente Blvd, Suite A 6600, Los Angeles, CA, 90048, United States.
| | - Maria Luisa Mandelli
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - Zoe Ezzes
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - Janhavi Pillai
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - Buddhika Ratnasiri
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - David Paul Baquirin
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - Zachary Miller
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - Jessica de Leon
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - Boon Lead Tee
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - William Seeley
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - Howard Rosen
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - Bruce Miller
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - Joel Kramer
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - Virginia Sturm
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - Maria Luisa Gorno-Tempini
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States.
| | - Maxime Montembeault
- Memory & Aging Center, Department of Neurology, University of California in San Francisco, 1651 4th St, San Francisco, CA, 94158, United States; Douglas Research Centre & Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montréal, QC, Canada, H4H 1R3.
| |
Collapse
|
2
|
Kleinerova J, McKenna MC, Finnegan M, Tacheva A, Garcia-Gallardo A, Mohammed R, Tan EL, Christidi F, Hardiman O, Hutchinson S, Bede P. Clinical, Cortical, Subcortical, and White Matter Features of Right Temporal Variant FTD. Brain Sci 2024; 14:806. [PMID: 39199498 PMCID: PMC11352857 DOI: 10.3390/brainsci14080806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
The distinct clinical and radiological characteristics of right temporal variant FTD have only been recently recognized. METHODS Eight patients with right temporal variant FTD were prospectively recruited and underwent a standardised neuropsychological assessment, clinical MRI, and quantitative neuroimaging. RESULTS Our voxelwise grey analyses captured bilateral anterior and mesial temporal grey matter atrophy with a clear right-sided predominance. Bilateral hippocampal involvement was also observed, as well as disease burden in the right insular and opercula regions. White matter integrity alterations were also bilateral in anterior temporal and sub-insular regions with a clear right-hemispheric predominance. Extra-temporal white matter alterations have also been observed in orbitofrontal and parietal regions. Significant bilateral but right-predominant thalamus, putamen, hippocampus, and amygdala atrophy was identified based on subcortical segmentation. The clinical profile of our patients was dominated by progressive indifference, decline in motivation, loss of interest in previously cherished activities, incremental social withdrawal, difficulty recognising people, progressive language deficits, increasingly rigid routines, and repetitive behaviours. CONCLUSIONS Right temporal variant FTD has an insidious onset and may be mistaken for depression at symptom onset. It manifests in a combination of apathy, language, and behavioural features. Quantitative MR imaging captures a characteristic bilateral but right-predominant temporal imaging signature with extra-temporal frontal and parietal involvement.
Collapse
Affiliation(s)
- Jana Kleinerova
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Martha Finnegan
- Department of Psychiatry, Tallaght University Hospital, D24 NR0A Dublin, Ireland
| | - Asya Tacheva
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | | | - Rayan Mohammed
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Foteini Christidi
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Neurology, St James’s Hospital, D08 KC95 Dublin, Ireland
| |
Collapse
|
3
|
Ding J, Yang Q, Drossinos N, Guo Q. Advances in semantic dementia: Neuropsychology, pathology & neuroimaging. Ageing Res Rev 2024; 99:102375. [PMID: 38866186 DOI: 10.1016/j.arr.2024.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Semantic dementia is a kind of neurodegenerative disorder, characterized by prominent semantic impairments and anterior temporal lobe atrophy. Since 2010, more studies have devoted to this rare disorder, revealing that it is more complex than we think. Clinical advances include more specific findings of semantic impairments and other higher order cognitive deficits. Neuroimaging techniques can help revealing the different brain networks affected (both structurally and functionally) in this condition. Pathological and genetic studies have also found more complex situations of semantic dementia, which might explain the huge variance existing in semantic dementia. Moreover, the current diagnosis criteria mainly focus on semantic dementia's classical prototype. We further delineated the features of three subtypes of semantic dementia based on atrophy lateralization with three severity stages. In a broader background, as a part of the continuum of neurodegenerative disorders, semantic dementia is commonly compared with other resembling conditions. Therefore, we summarized the differential diagnosis between semantic dementia and them. Finally, we introduced the challenges and achievements of its diagnosis, treatment, care and cross cultural comparison. By providing a comprehensive picture of semantic dementia on different aspects of advances, we hope to deepen the understanding of semantic dementia and promote more inspirations on both clinical and theoretical studies about it.
Collapse
Affiliation(s)
- Junhua Ding
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Qing Yang
- Department of Rehabilitation, Hushan Hospital, Fudan University, Shanghai, China
| | - Niki Drossinos
- Division of Psychology, Communication and Human Neuroscience, University of Manchester, Manchester, UK
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Yadollahikhales G, Mandelli ML, Ezzes Z, Pillai J, Ratnasiri B, Baquirin DP, Miller Z, de Leon J, Tee BL, Seeley W, Rosen H, Miller B, Kramer J, Sturm V, Gorno-Tempini ML, Montembeault M. Perceptual and semantic deficits in face recognition in semantic dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.10.24310157. [PMID: 39040182 PMCID: PMC11261910 DOI: 10.1101/2024.07.10.24310157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
State of the art Semantic dementia (SD) patients including semantic variant primary progressive aphasia (svPPA) and semantic behavioral variant frontotemporal dementia (sbvFTD) patients show semantic difficulties identifying faces and known people related to right anterior temporal lobe (ATL) atrophy. However, it remains unclear whether they also have perceptual deficits in face recognition. Methodology We selected 74 SD patients (54 with svPPA and predominant left ATL atrophy and 20 with sbvFTD and predominant right ATL atrophy) and 36 cognitively healthy controls (HC) from UCSF Memory and Aging Center. They underwent a perceptual face processing test (Benton facial recognition test-short version; BFRT-S), and semantic face processing tests (UCSF Famous people battery - Recognition, Naming, Semantic associations - pictures and words subtests), as well as structural magnetic resonance imaging (MRI). Neural correlates with the task's performance were conducted with a Voxel-based morphometry approach using CAT12. Results svPPA and sbvFTD patients were impaired on all semantic face processing tests, with sbvFTD patients performing significantly lower on the famous faces' recognition task in comparison to svPPA, and svPPA performing significantly lower on the naming task in comparison to sbvFTD. These tasks predominantly correlated with gray matter (GM) volumes in the right and left ATL, respectively. Compared to HC, both svPPA and sbvFTD patients showed preserved performance on the perceptual face processing test (BFRT-S), and performance on the BFRT-S negatively correlated with GM volume in the right posterior superior temporal sulcus (pSTS). Conclusion Our results suggest that early in the disease, with the atrophy mostly restricted to the anterior temporal regions, SD patients do not present with perceptual deficits. However, more severe SD cases with atrophy in right posterior temporal regions might show lower performance on face perception tests, in addition to the semantic face processing deficits. Early sparing of face perceptual deficits in SD patients, regardless of hemispheric lateralization, furthers our understanding of clinical phenomenology and therapeutical approaches of this complex disease.
Collapse
|
5
|
Holiday KA, Sheppard A, Khattab YI, Chavez D, Melrose RJ, Mendez MF. Socioemotional Dysfunction From Temporal Lobe Involvement in Frontotemporal Dementia: A Preliminary Report. J Neuropsychiatry Clin Neurosci 2024; 36:344-349. [PMID: 38988189 DOI: 10.1176/appi.neuropsych.20230175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Socioemotional changes, rather than cognitive impairments, are the feature that defines behavioral variant frontotemporal dementia (bvFTD). Investigators have attributed the socioemotional changes in bvFTD and other dementias to frontal lobe dysfunction; however, recent work implies a further contribution from right anterior temporal disease. The authors evaluated relationships between regional brain atrophy and socioemotional changes in both bvFTD and early-onset Alzheimer's disease (EOAD). METHODS This study explored the neuroanatomical correlations of performance on the Socioemotional Dysfunction Scale (SDS), an instrument previously shown to document socioemotional changes in bvFTD, among 13 patients with bvFTD not preselected for anterior temporal involvement and 16 age-matched patients with early-onset Alzheimer's disease (EOAD). SDS scores were correlated with volumes of regions of interest assessed with tensor-based morphometric analysis of MRI images. RESULTS As expected, the bvFTD group had significantly higher SDS scores overall and smaller frontal regions compared with the EOAD group, which in turn had smaller volumes in temporoparietal regions. SDS scores significantly correlated with lateral anterior temporal lobe (ATL) atrophy, and a regression analysis that controlled for diagnosis indicated that SDS scores predicted lateral ATL volume. Within the bvFTD group, higher SDS scores were associated with smaller lateral and right ATL regions, as well as a smaller orbitofrontal cortex. Within the EOAD group, higher SDS scores were associated with a smaller right parietal cortex. CONCLUSIONS This study confirms that, in addition to orbitofrontal disease, there is a prominent right and lateral ATL origin of socioemotional changes in bvFTD and further suggests that right parietal involvement contributes to socioemotional changes in EOAD.
Collapse
Affiliation(s)
- Kelsey A Holiday
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles (Holiday, Khattab, Chavez, Melrose, Mendez); Department of Neurology, University of California, Los Angeles (UCLA) (Holiday, Sheppard, Khattab, Chavez, Mendez); Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA (Melrose, Mendez)
| | - Alexander Sheppard
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles (Holiday, Khattab, Chavez, Melrose, Mendez); Department of Neurology, University of California, Los Angeles (UCLA) (Holiday, Sheppard, Khattab, Chavez, Mendez); Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA (Melrose, Mendez)
| | - Youssef I Khattab
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles (Holiday, Khattab, Chavez, Melrose, Mendez); Department of Neurology, University of California, Los Angeles (UCLA) (Holiday, Sheppard, Khattab, Chavez, Mendez); Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA (Melrose, Mendez)
| | - Diana Chavez
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles (Holiday, Khattab, Chavez, Melrose, Mendez); Department of Neurology, University of California, Los Angeles (UCLA) (Holiday, Sheppard, Khattab, Chavez, Mendez); Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA (Melrose, Mendez)
| | - Rebecca J Melrose
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles (Holiday, Khattab, Chavez, Melrose, Mendez); Department of Neurology, University of California, Los Angeles (UCLA) (Holiday, Sheppard, Khattab, Chavez, Mendez); Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA (Melrose, Mendez)
| | - Mario F Mendez
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles (Holiday, Khattab, Chavez, Melrose, Mendez); Department of Neurology, University of California, Los Angeles (UCLA) (Holiday, Sheppard, Khattab, Chavez, Mendez); Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA (Melrose, Mendez)
| |
Collapse
|
6
|
Volfart A, Rossion B. The neuropsychological evaluation of face identity recognition. Neuropsychologia 2024; 198:108865. [PMID: 38522782 DOI: 10.1016/j.neuropsychologia.2024.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Facial identity recognition (FIR) is arguably the ultimate form of recognition for the adult human brain. Even if the term prosopagnosia is reserved for exceptionally rare brain-damaged cases with a category-specific abrupt loss of FIR at adulthood, subjective and objective impairments or difficulties of FIR are common in the neuropsychological population. Here we provide a critical overview of the evaluation of FIR both for clinicians and researchers in neuropsychology. FIR impairments occur following many causes that should be identified objectively by both general and specific, behavioral and neural examinations. We refute the commonly used dissociation between perceptual and memory deficits/tests for FIR, since even a task involving the discrimination of unfamiliar face images presented side-by-side relies on cortical memories of faces in the right-lateralized ventral occipito-temporal cortex. Another frequently encountered confusion is between specific deficits of the FIR function and a more general impairment of semantic memory (of people), the latter being most often encountered following anterior temporal lobe damage. Many computerized tests aimed at evaluating FIR have appeared over the last two decades, as reviewed here. However, despite undeniable strengths, they often suffer from ecological limitations, difficulties of instruction, as well as a lack of consideration for processing speed and qualitative information. Taking into account these issues, a recently developed behavioral test with natural images manipulating face familiarity, stimulus inversion, and correct response times as a key variable appears promising. The measurement of electroencephalographic (EEG) activity in the frequency domain from fast periodic visual stimulation also appears as a particularly promising tool to complete and enhance the neuropsychological assessment of FIR.
Collapse
Affiliation(s)
- Angélique Volfart
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Australia.
| | - Bruno Rossion
- Centre for Biomedical Technologies, Queensland University of Technology, Australia; Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France.
| |
Collapse
|
7
|
Carlos AF, Weigand SD, Duffy JR, Clark HM, Utianski RL, Machulda MM, Botha H, Thu Pham NT, Lowe VJ, Schwarz CG, Whitwell JL, Josephs KA. Volumetric analysis of hippocampal subregions and subfields in left and right semantic dementia. Brain Commun 2024; 6:fcae097. [PMID: 38572268 PMCID: PMC10988847 DOI: 10.1093/braincomms/fcae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/20/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Two variants of semantic dementia are recognized based on the laterality of temporal lobe involvement: a left-predominant variant associated with verbal knowledge impairment and a right-predominant variant associated with behavioural changes and non-verbal knowledge loss. This cross-sectional clinicoradiologic study aimed to assess whole hippocampal, subregion, and/or subfield volume loss in semantic dementia versus controls and across its variants. Thirty-five semantic dementia participants and 15 controls from the Neurodegenerative Research Group at Mayo Clinic who had completed 3.0-T volumetric magnetic resonance imaging and 18F-fluorodeoxyglucose-positron emission tomography were included. Classification as left-predominant (n = 25) or right-predominant (n = 10) variant was based on temporal lobe hypometabolism. Volumes of hippocampal subregions (head, body, and tail) and subfields (parasubiculum, presubiculum, subiculum, cornu ammonis 1, cornu ammonis 3, cornu ammonis 4, dentate gyrus, molecular layer, hippocampal-amygdaloid transition area, and fimbria) were obtained using FreeSurfer 7. Subfield volumes were measured separately from head and body subregions. We fit linear mixed-effects models using log-transformed whole hippocampal/subregion/subfield volumes as dependent variables; age, sex, total intracranial volume, hemisphere and a group-by-hemisphere interaction as fixed effects; and subregion/subfield nested within hemisphere as a random effect. Significant results (P < 0.05) are hereby reported. At the whole hippocampal level, the dominant (predominantly involved) hemisphere of both variants showed 23-27% smaller volumes than controls. The non-dominant (less involved) hemisphere of the right-predominant variant also showed volume loss versus controls and the left-predominant variant. At the subregional level, both variants showed 17-28% smaller dominant hemisphere head, body, and tail than controls, with the right-predominant variant also showing 8-12% smaller non-dominant hemisphere head than controls and left-predominant variant. At the subfield level, the left-predominant variant showed 12-36% smaller volumes across all dominant hemisphere subfields and 14-15% smaller non-dominant hemisphere parasubiculum, presubiculum (head and body), subiculum (head) and hippocampal-amygdaloid transition area than controls. The right-predominant variant showed 16-49% smaller volumes across all dominant hemisphere subfields and 14-22% smaller parasubiculum, presubiculum, subiculum, cornu ammonis 3, hippocampal-amygdaloid transition area (all from the head) and fimbria of non-dominant hemisphere versus controls. Comparison of dominant hemispheres showed 16-29% smaller volumes of the parasubiculum, presubiculum (head) and fimbria in the right-predominant than left-predominant variant; comparison of non-dominant hemispheres showed 12-15% smaller cornu ammonis 3, cornu ammonis 4, dentate gyrus, hippocampal-amygdaloid transition area (all from the head) and cornu ammonis 1, cornu ammonis 3 and cornu ammonis 4 (all from the body) in the right-predominant variant. All hippocampal subregion/subfield volumes are affected in semantic dementia, although some are more affected in both dominant and non-dominant hemispheres of the right-predominant than the left-predominant variant by the time of presentation. Involvement of hippocampal structures is apparently more subregion dependent than subfield dependent, indicating possible superiority of subregion volumes as disease biomarkers.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Stephen D Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Heather M Clark
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Rene L Utianski
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
8
|
Volfart A, Rossion B, Brissart H, Busigny T, Colnat-Coulbois S, Maillard L, Jonas J. Stability of face recognition abilities after left or right anterior temporal lobectomy. J Neuropsychol 2024; 18 Suppl 1:115-133. [PMID: 37391874 DOI: 10.1111/jnp.12337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Patients with anterior temporal lobe (ATL) resection due to mesial temporal lobe epilepsy (MTLE) have difficulties at identifying familiar faces and explicitly remembering newly learned faces but their ability to individuate unfamiliar faces remains largely unknown. Moreover, the extent to which their difficulties with familiar face identity recognition and learning is truly due to the ATL resection remains unknown. Here, we report a study of 24 MTLE patients and matched healthy controls tested with an extensive set of seven face and visual object recognition tasks (including three tasks evaluating unfamiliar face individuation) before and about 6 months after unilateral (nine left, 15 right) ATL resection. We found that ATL resection has little or no effect on the patients' preserved pre-surgical ability to perform unfamiliar face individuation, both at the group and individual levels. More surprisingly, ATL resection also has little effect on the patients' performance at recognizing and naming famous faces as well as at learning new faces. A substantial proportion of right MTLE patients (33%) even improved their response times on several tasks, which may indicate a functional release of visuo-spatial processing after resection in the right ATL. Altogether this study shows that face recognition abilities are mainly unaffected by ATL resection in MTLE, either because the critical regions for face recognition are spared or because performance at some tasks is already lower than normal preoperatively. Overall, these findings urge caution when interpreting the causal effect of brain lesions on face recognition ability in patients with ATL resection due to MTLE. They also illustrate the complexity of predicting cognitive outcomes after epilepsy surgery because of the influence of many different intertwined factors.
Collapse
Affiliation(s)
- Angélique Volfart
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- Institute of Research in Psychological Science, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bruno Rossion
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- Institute of Research in Psychological Science, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
- CHRU-Nancy, Service de Neurologie, Université de Lorraine, Nancy, France
| | - Hélène Brissart
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- CHRU-Nancy, Service de Neurologie, Université de Lorraine, Nancy, France
| | - Thomas Busigny
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
| | - Sophie Colnat-Coulbois
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- CHRU-Nancy, Service de Neurochirurgie, Université de Lorraine, Nancy, France
| | - Louis Maillard
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- CHRU-Nancy, Service de Neurologie, Université de Lorraine, Nancy, France
| | - Jacques Jonas
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- CHRU-Nancy, Service de Neurologie, Université de Lorraine, Nancy, France
| |
Collapse
|
9
|
Norata D, Motolese F, Magliozzi A, Pilato F, Di Lazzaro V, Luzzi S, Capone F. Transcranial direct current stimulation in semantic variant of primary progressive aphasia: a state-of-the-art review. Front Hum Neurosci 2023; 17:1219737. [PMID: 38021245 PMCID: PMC10663282 DOI: 10.3389/fnhum.2023.1219737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
The semantic variant of primary progressive aphasia (svPPA), known also as "semantic dementia (SD)," is a neurodegenerative disorder that pertains to the frontotemporal lobar degeneration clinical syndromes. There is currently no approved pharmacological therapy for all frontotemporal dementia variants. Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation technique capable of modulating cortical excitability through a sub-threshold shift in neuronal resting potential. This technique has previously been applied as adjunct treatment in Alzheimer's disease, while data for frontotemporal dementia are controversial. In this scoped review, we summarize and critically appraise the currently available evidence regarding the use of tDCS for improving performance in naming and/or matching tasks in patients with svPPA. Clinical trials addressing this topic were identified through MEDLINE (accessed by PubMed) and Web of Science, as of November 2022, week 3. Clinical trials have been unable to show a significant benefit of tDCS in enhancing semantic performance in svPPA patients. The heterogeneity of the studies available in the literature might be a possible explanation. Nevertheless, the results of these studies are promising and may offer valuable insights into methodological differences and overlaps, raising interest among researchers in identifying new non-pharmacological strategies for treating svPPA patients. Further studies are therefore warranted to investigate the potential therapeutic role of tDCS in svPPA.
Collapse
Affiliation(s)
- Davide Norata
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Neurological Clinic, Department of Experimental and Clinical Medicine (DIMSC), Marche Polytechnic University, Ancona, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Alessandro Magliozzi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Simona Luzzi
- Neurological Clinic, Department of Experimental and Clinical Medicine (DIMSC), Marche Polytechnic University, Ancona, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
10
|
Mendez MF, Nasir I. Distinguishing Semantic Variant Primary Progressive Aphasia from Alzheimer’s Disease. J Alzheimers Dis Rep 2023; 7:227-234. [PMID: 37090957 PMCID: PMC10116168 DOI: 10.3233/adr-230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The differentiation of semantic variant primary progressive aphasia from dementia and Alzheimer’s disease can be difficult, particularly when the semantic anomia is pronounced. This report describes a patient who presented with complaints of memory loss and proved to have prominent semantic loss of all types of nouns, common and proper, concrete and abstract, yet continued to live independently and maintain his activities of daily living. The evaluation was consistent for semantic variant primary progressive aphasia with degradation of semantic knowledge and focal anterior temporal atrophy and hypometabolism. This report summarizes the literature and discusses the differential diagnosis of this disorder from Alzheimer’s disease and related dementias.
Collapse
Affiliation(s)
- Mario F. Mendez
- Department of Neurology, Department of Psychiatry and Behavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Neurology Service, Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Correspondence to: Mario F. Mendez, MD, PhD, Neurobehavior Unit, V.A. Greater Los Angeles Healthcare Center, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA. Tel.: +1 310 478 3711/Ext. 42696; Fax: +1 310 268 4181; E-mail:
| | - Imaad Nasir
- Department of Neurology, Department of Psychiatry and Behavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Neurology Service, Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
11
|
Which components of famous people recognition are lateralized? A study of face, voice and name recognition disorders in patients with neoplastic or degenerative damage of the right or left anterior temporal lobes. Neuropsychologia 2023; 181:108490. [PMID: 36693520 DOI: 10.1016/j.neuropsychologia.2023.108490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
We administered to large groups of patients with neoplastic or degenerative damage affecting the right or left ATL, the 'Famous People Recognition Battery' (FPRB), in which subjects are required to recognize the same 40 famous people through their faces, voices and names, to clarify which components of famous people recognition are lateralized. At the familiarity level, we found, as expected, a dissociation between a greater impairment of patients with right ATL lesions on the non-verbal (face and voice) recognition modalities and of those with left ATL lesions on name familiarity. Equally expected were results obtained at the naming level, because the worse naming scores for faces and voices were observed in left-sided patients. Less foregone were, for two reasons, results obtained at the semantic level. First, no difference was found between the two hemispheric groups when scores obtained on the verbal (name) and non-verbal (face and voice) recognition modalities were account for. Second, the face and voice recognition modalities showed a different degree of right lateralization. All groups of patients showed, indeed, both at the familiarity and at the semantic level, a greater difficulty in the recognition of voices regarding faces, but this difference reached significance only in patients with right ATL lesions, suggesting a greater right lateralization of the more complex task of voice recognition. A model aiming to explain the greater right lateralization of the more perceptually demanding voice modality of person recognition is proposed.
Collapse
|
12
|
Younes K, Borghesani V, Montembeault M, Spina S, Mandelli ML, Welch AE, Weis E, Callahan P, Elahi FM, Hua AY, Perry DC, Karydas A, Geschwind D, Huang E, Grinberg LT, Kramer JH, Boxer AL, Rabinovici GD, Rosen HJ, Seeley WW, Miller ZA, Miller BL, Sturm VE, Rankin KP, Gorno-Tempini ML. Right temporal degeneration and socioemotional semantics: semantic behavioural variant frontotemporal dementia. Brain 2022; 145:4080-4096. [PMID: 35731122 PMCID: PMC10200288 DOI: 10.1093/brain/awac217] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Focal anterior temporal lobe degeneration often preferentially affects the left or right hemisphere. While patients with left-predominant anterior temporal lobe atrophy show severe anomia and verbal semantic deficits and meet criteria for semantic variant primary progressive aphasia and semantic dementia, patients with early right anterior temporal lobe atrophy are more difficult to diagnose as their symptoms are less well understood. Focal right anterior temporal lobe atrophy is associated with prominent emotional and behavioural changes, and patients often meet, or go on to meet, criteria for behavioural variant frontotemporal dementia. Uncertainty around early symptoms and absence of an overarching clinico-anatomical framework continue to hinder proper diagnosis and care of patients with right anterior temporal lobe disease. Here, we examine a large, well-characterized, longitudinal cohort of patients with right anterior temporal lobe-predominant degeneration and propose new criteria and nosology. We identified individuals from our database with a clinical diagnosis of behavioural variant frontotemporal dementia or semantic variant primary progressive aphasia and a structural MRI (n = 478). On the basis of neuroimaging criteria, we defined three patient groups: right anterior temporal lobe-predominant atrophy with relative sparing of the frontal lobes (n = 46), frontal-predominant atrophy with relative sparing of the right anterior temporal lobe (n = 79) and left-predominant anterior temporal lobe-predominant atrophy with relative sparing of the frontal lobes (n = 75). We compared the clinical, neuropsychological, genetic and pathological profiles of these groups. In the right anterior temporal lobe-predominant group, the earliest symptoms were loss of empathy (27%), person-specific semantic impairment (23%) and complex compulsions and rigid thought process (18%). On testing, this group exhibited greater impairments in Emotional Theory of Mind, recognition of famous people (from names and faces) and facial affect naming (despite preserved face perception) than the frontal- and left-predominant anterior temporal lobe-predominant groups. The clinical symptoms in the first 3 years of the disease alone were highly sensitive (81%) and specific (84%) differentiating right anterior temporal lobe-predominant from frontal-predominant groups. Frontotemporal lobar degeneration-transactive response DNA binding protein (84%) was the most common pathology of the right anterior temporal lobe-predominant group. Right anterior temporal lobe-predominant degeneration is characterized by early loss of empathy and person-specific knowledge, deficits that are caused by progressive decline in semantic memory for concepts of socioemotional relevance. Guided by our results, we outline new diagnostic criteria and propose the name, 'semantic behavioural variant frontotemporal dementia', which highlights the underlying cognitive mechanism and the predominant symptomatology. These diagnostic criteria will facilitate early identification and care of patients with early, focal right anterior temporal lobe degeneration as well as in vivo prediction of frontotemporal lobar degeneration-transactive response DNA binding protein pathology.
Collapse
Affiliation(s)
- Kyan Younes
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304, USA
| | - Valentina Borghesani
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Maxime Montembeault
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Ariane E Welch
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Elizabeth Weis
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Patrick Callahan
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Fanny M Elahi
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Alice Y Hua
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - David C Perry
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Anna Karydas
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Daniel Geschwind
- Neurogenetics Program, Department of Neurology and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Eric Huang
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Virginia E Sturm
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
13
|
González R, Rojas M, Rosselli M, Ardila A. Linguistic profiles of variants of primary progressive aphasia. JOURNAL OF COMMUNICATION DISORDERS 2022; 97:106202. [PMID: 35255297 DOI: 10.1016/j.jcomdis.2022.106202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Several subtypes of primary progressive aphasia (PPA) have been proposed. Most reports use small samples, and few have included Spanish-speaking participants. AIM To analyze the language profile and nonlinguistic deficits in a large sample of PPA Spanish monolingual participants. METHOD 177 individuals were diagnosed with PPA in a sample consisting of 69 men and 108 women (Mage = 66.40 years, SD = 9.30). The participants were assessed using the Spanish versions of the Western Aphasia Battery Revised (SWAB-R) and the Boston Diagnostic Aphasia Examination (SBDAE). Non-verbal reasoning was evaluated with the Raven's Colored Progressive Matrices. RESULTS 41.8% of the sample met the criteria for the logopenic variant (lvPPA), while 28.2% met the criteria for semantic (svPPA), 15.3% for lexical (lxvPPA), and 14.7% for nonfluent/agrammatic (nfvPPA) variants. Language difficulties were similar in all variants except for lxvPPA. Scores on Spontaneous Language, Auditory Comprehension, Repetition, and Naming were significantly higher for the lxvPPA group. Raven's Colored Progressive Matrices scores were significantly lower in lvPPA. Years of education correlated with all test scores, while age was negatively associated with naming. When the PPA variants were classified according to the traditional aphasia classification, discrepancies were evident. Furthermore, the most frequent type of aphasia was Amnesic, while the least frequent was Wernicke's aphasia. CONCLUSION The SWAB-R is useful in describing the clinical characteristics of aphasia for each variant of PPA, but quantitative scores from this battery are not capable of distinguishing between variants of PPA, with the exception of lxvPPA.
Collapse
Affiliation(s)
- Rafael González
- Departamento de Neurología y Neurocirugía, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Macarena Rojas
- Departamento de Neurología y Neurocirugía, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Mónica Rosselli
- Department of Psychology, Charles E. Schmidt College of Science, Florida Atlantic University, Davie, Florida, USA.
| | - Alfredo Ardila
- Institute of Linguistics and Intercultural Communication, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Psychology Doctoral Program, Albizu University, Miami, Florida, USA
| |
Collapse
|
14
|
Borghesani V, DeLeon J, Gorno-Tempini ML. Frontotemporal dementia: A unique window on the functional role of the temporal lobes. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:429-448. [PMID: 35964986 PMCID: PMC9793689 DOI: 10.1016/b978-0-12-823493-8.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Frontotemporal dementia (FTD) is an umbrella term covering a plethora of progressive changes in executive functions, motor abilities, behavior, and/or language. Different clinical syndromes have been described in relation to localized atrophy, informing on the functional networks that underlie these specific cognitive, emotional, and behavioral processes. These functional declines are linked with the underlying neurodegeneration of frontal and/or temporal lobes due to diverse molecular pathologies. Initially, the accumulation of misfolded proteins targets specifically susceptible cell assemblies, leading to relatively focal neurodegeneration that later spreads throughout large-scale cortical networks. Here, we discuss the most recent clinical, neuropathological, imaging, and genetics findings in FTD-spectrum syndromes affecting the temporal lobe. We focus on the semantic variant of primary progressive aphasia and its mirror image, the right temporal variant of FTD. Incipient focal atrophy of the left anterior temporal lobe (ATL) manifests with predominant naming, word comprehension, reading, and object semantic deficits, while cases of predominantly right ATL atrophy present with impairments of socioemotional, nonverbal semantic, and person-specific knowledge. Overall, the observations in FTD allow for crucial clinical-anatomic inferences, shedding light on the role of the temporal lobes in both cognition and complex behaviors. The concerted activity of both ATLs is critical to ensure that percepts are translated into concepts, yet important hemispheric differences should be acknowledged. On one hand, the left ATL attributes meaning to linguistic, external stimuli, thus supporting goal-oriented, action-related behaviors (e.g., integrating sounds and letters into words). On the other hand, the right ATL assigns meaning to emotional, visceral stimuli, thus guiding socially relevant behaviors (e.g., integrating body sensations into feelings of familiarity).
Collapse
Affiliation(s)
- Valentina Borghesani
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada; Department of Psychology, Université de Montréal, Montréal, QC, Canada.
| | - Jessica DeLeon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| |
Collapse
|
15
|
Papagno C, Pisoni A, Gainotti G. False alarms during recognition of famous people from faces and voices in patients with unilateral temporal lobe resection and normal participants tested after anodal tDCS over the left or right ATL. Neuropsychologia 2021; 159:107926. [PMID: 34216595 DOI: 10.1016/j.neuropsychologia.2021.107926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Data gathered in the field of the experimental social psychology have shown that it is more difficult to recognize a person through his/her voice than through his/her face and that false alarms (FA) are produced more in voice than in face recognition. Furthermore, some neuropsychological investigations have suggested that in patients with damage to the right anterior temporal lobe (ATL) the number of FA could be higher for voice than for face recognition. In the present study we assessed FA during recognition of famous people from faces and voices in patients with unilateral ATL tumours and in normal participants tested after anodal transcranial direct current stimulation (tCDS), over the left or right ATL. The number of FA was significantly higher in patients with right than in those with left temporal tumours on both face and voice familiarity. Furthermore, lesion side did not differentially affect patient's sensitivity or response criterion when recognizing famous faces, but influenced both these measures on a voice recognition task. In fact, in this condition patients with right temporal tumours showed a lower sensitivity index and a lower response criterion than those with left-sided lesions. In normal subjects, the greater right sided involvement in voice than in face processing was confirmed by the observation that right ATL anodal stimulation significantly increased voice but only marginally influenced face sensitivity. This asymmetry between face and voice processing in the right hemisphere could be due to the greater complexity of voice processing and to the difficulty of forming stable and well-structured representations, allowing to evaluate if a presented voice matches or not with an already known voice.
Collapse
Affiliation(s)
- C Papagno
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy; Department of Psychology, University of Milano-Bicocca, Milano, Italy.
| | - A Pisoni
- Department of Psychology, University of Milano-Bicocca, Milano, Italy
| | - G Gainotti
- Catholic University, Policlinico Gemelli, Roma, Italy
| |
Collapse
|
16
|
Measuring Behavior and Social Cognition in FTLD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:51-65. [PMID: 33433868 DOI: 10.1007/978-3-030-51140-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because changes to socioemotional cognition and behavior are an early and central symptom in many of the FTLD syndromes, an objective and standardized approach to patient identification and staging relies on availability of validated socioemotional measures. Such tests should reflect functioning in key selectively vulnerable brain networks central to socioemotional behavior, specifically the intrinsically connected networks underpinning salience (SN) and semantic appraisal (SAN). There have been many challenges to the development of appropriate tests for patients with the FTLD syndromes, including the difficulty of creating standardized evaluations for the highly idiosyncratic deficits caused by salience-driven attention impairments, the trade-off between behaviorally or psychophysiologically precise measures versus the need for easily administered measures that can scale to broader clinical contexts, and the complexities of measuring socioemotional behavior across linguistically and culturally diverse samples. A subset of available socioemotional tests are reviewed with respect to evidence for their ability to reflect structural and functional changes to the FTLD-specific SN and SAN networks, and their differential diagnostic utility in the neurodegenerative disease syndromes is discussed.
Collapse
|
17
|
Höbler F, McGilton KS, Wittich W, Dupuis K, Reed M, Dumassais S, Mick P, Pichora-Fuller MK. Hearing Screening for Residents in Long-Term Care Homes Who Live with Dementia: A Scoping Review. J Alzheimers Dis 2021; 84:1115-1138. [PMID: 34633326 PMCID: PMC8673512 DOI: 10.3233/jad-215087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hearing loss is highly prevalent in older adults, particularly among those living with dementia and residing in long-term care homes (LTCHs). Sensory declines can have deleterious effects on functioning and contribute to frailty, but the hearing needs of residents are often unrecognized or unaddressed. OBJECTIVE To identify valid and reliable screening measures that are effective for the identification of hearing loss and are suitable for use by nursing staff providing care to residents with dementia in LTCHs. METHODS Electronic databases (Embase, Medline, PsycINFO, CENTRAL, and CINAHL) were searched using comprehensive search strategies, and a stepwise approach based on Arksey & O'Malley's scoping review and appraisal process was followed. RESULTS There were 193 scientific papers included in the review. Pure-tone audiometry was the most frequently reported measure to test hearing in older adults living with dementia. However, measures including self- or other-reports and questionnaires, review of medical records, otoscopy, and the whisper test were found to be most suitable for use by nurses working with older adults living with dementia in LTCHs. CONCLUSION Although frequently used, the suitability of pure-tone audiometry for use by nursing staff in LTCHs is limited, as standardized audiometry presents challenges for many residents, and specific training is needed to successfully adapt test administration procedures and interpret results. The whisper test was considered to be more suitable for use by staff in LTCH; however, it yields a limited characterization of hearing loss. There remains an urgent need to develop new approaches to screen hearing in LTCHs.
Collapse
Affiliation(s)
- Fiona Höbler
- KITE – Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katherine S. McGilton
- KITE – Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, ON, Canada
| | - Walter Wittich
- École d’optométrie, Université de Montréal, Montréal, QC, Canada
- Institut Nazareth et Louis-Braille du CISSS de la Montérégie-Centre, Longueuil, QC, Canada
- Centre de réadaptation Lethbridge-Layton-Mackay du CIUSSS du Centre-Ouest-de-l’Île-de-Montréal, Montréal, QC, Canada
| | - Kate Dupuis
- Sheridan Centre for Elder Research, Sheridan College, Oakville, ON, Canada
| | - Marilyn Reed
- Audiology, Baycrest Health Sciences, Toronto, ON, Canada
| | - Shirley Dumassais
- École d’optométrie, Université de Montréal, Montréal, QC, Canada
- Institut Nazareth et Louis-Braille du CISSS de la Montérégie-Centre, Longueuil, QC, Canada
| | - Paul Mick
- Department of Surgery, Faculty of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
18
|
Foley JA, Hyare H, Rees JH, Caine D. A case study investigating the role of the anterior temporal lobes in general semantics and semantics specific to persons, emotions and social conceptual knowledge. J Neuropsychol 2020; 15:428-447. [PMID: 33253487 DOI: 10.1111/jnp.12236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 11/11/2020] [Indexed: 11/28/2022]
Abstract
The role of the anterior temporal lobes (ATLs) in semantic representation remains still much debated. Long thought to support domain-general semantic processing, recent accounts have alternatively suggested that they may be preferentially involved in the processing of person-related semantic knowledge. Several studies have supported such a distinction, but few have either examined both types of semantic processing together, or considered the role of potentially important confounding variables. Here, we address these issues by investigating both domain-general and person-specific semantic processing in a patient with focal ATL damage. The patient presents with dense anterograde and retrograde amnesia. Performance was impaired on tests of general semantic knowledge, but most striking deficits were for person-related semantics, including recognition and identification, knowledge of emotions and social conceptual knowledge. This unique case provides compelling evidence that, in addition to the role in general semantic knowledge, the ATLs are critical for person-related semantics.
Collapse
Affiliation(s)
- Jennifer A Foley
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK.,Institute of Neurology, Queen Square, London, UK
| | - Harpreet Hyare
- Department of Neuro-radiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Jeremy H Rees
- Institute of Neurology, Queen Square, London, UK.,Department of Neuro-oncology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Diana Caine
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
19
|
Intrinsic connectivity of anterior temporal lobe relates to individual differences in semantic retrieval for landmarks. Cortex 2020; 134:76-91. [PMID: 33259970 DOI: 10.1016/j.cortex.2020.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023]
Abstract
Contemporary neuroscientific accounts suggest that ventral anterior temporal lobe (ATL) acts as a bilateral heteromodal semantic hub, which is particularly critical for the specific-level knowledge needed to recognise unique entities, such as familiar landmarks and faces. There may also be graded functional differences between left and right ATL, relating to effects of modality (linguistic versus non-linguistic) and category (e.g., knowledge of people and places). Individual differences in intrinsic connectivity from left and right ATL might be associated with variation in semantic categorisation performance across these categories and modalities. We recorded resting-state fMRI in 74 individuals and, in a separate session, examined semantic categorisation. People with greater connectivity between left and right ATL were more efficient at categorising landmarks (e.g., Eiffel Tower), especially when these were presented visually. In addition, participants who showed stronger connectivity from right than left ATL to medial occipital cortex showed more efficient semantic categorisation of landmarks regardless of modality of presentation. These results can be interpreted in terms of graded differences in the patterns of connectivity across left and right ATL, which give rise to a bilateral yet partially segregated semantic 'hub'. More specifically, right ATL connectivity supports the efficient semantic categorisation of landmarks.
Collapse
|
20
|
Rao SP, Nandi R, Dutt A, Kapur N, Harris JM, Thompson JC, Snowden JS. Distinct performance profiles on the Brixton test in frontotemporal dementia. J Neuropsychol 2020; 15:162-185. [PMID: 33058472 DOI: 10.1111/jnp.12228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/18/2020] [Indexed: 11/27/2022]
Abstract
The Brixton Spatial Anticipation Test is a well-established test of executive function that evaluates the capacity to abstract, follow, and switch rules. There has been remarkably little systematic analysis of Brixton test performance in the prototypical neurodegenerative disorder of the frontal lobes: behavioural variant frontotemporal dementia (bvFTD) or evaluation of the test's ability to distinguish frontal from temporal lobe degenerative disease. We carried out a quantitative and qualitative analysis of Brixton performance in 76 patients with bvFTD and 34 with semantic dementia (SD) associated with temporal lobe degeneration. The groups were matched for demographic variables and illness duration. The bvFTD group performed significantly more poorly (U = 348, p < .0001, r = .58), 53% of patients scoring in the poor-impaired range compared with 6% of SD patients. Whereas bvFTD patients showed problems in rule acquisition and switching, SD patients did not, despite their impaired conceptual knowledge. Error analysis revealed more frequent perseverative errors in bvFTD, particularly responses unconnected to the stimulus, as well as random responses. Stimulus-bound errors were rare. Within the bvFTD group, there was variation in performance profile, which could not be explained by demographic, neurological, or genetic factors. The findings demonstrate sensitivity and specificity of the Brixton test in identifying frontal lobe degenerative disease and highlight the clinical value of qualitative analysis of test performance. From a theoretical perspective, the findings provide evidence that semantic knowledge and the capacity to acquire rules are dissociable. Moreover, they exemplify the separable functional contributions to executive performance.
Collapse
Affiliation(s)
- Sulakshana P Rao
- Neuropsychology and Clinical Psychology Unit, Duttanagar Mental Health Centre, Kolkata, India
| | - Ranita Nandi
- Neuropsychology and Clinical Psychology Unit, Duttanagar Mental Health Centre, Kolkata, India
| | - Aparna Dutt
- Neuropsychology and Clinical Psychology Unit, Duttanagar Mental Health Centre, Kolkata, India
| | - Narinder Kapur
- Research Department of Clinical, Educational and Health Psychology, University College London, UK
| | - Jennifer M Harris
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, UK.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK
| | - Jennifer C Thompson
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, UK.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK
| | - Julie S Snowden
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, UK.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK
| |
Collapse
|
21
|
Abstract
BACKGROUND Semantic dementia (SD) is characterized by progressive semantic anomia extending to a multimodal loss of semantic knowledge. Although often considered an early-onset dementia, SD also occurs in later life, when it may be misdiagnosed as Alzheimer disease (AD). OBJECTIVE To evaluate late-onset SD in comparison to early-onset SD and to AD. METHODS We identified 74 individuals with SD and then compared those with late-onset SD (≥65 years of age) to those with early-onset SD (<65) on demographic and clinical features. We also compared a subgroup of 23 of the late-onset SD individuals with an equal number of individuals with clinically probable AD. RESULTS Twenty-six (35.1%) of the SD individuals were late onset, and 48 (64.9%) were early onset. There were no differences between the two groups on clinical measures, although greater asymmetry of temporal involvement trended to significance in the late-onset SD group. Compared to the 23 AD individuals, the subgroup of 23 late-onset SD individuals had worse performance on confrontational naming, irregular word reading, and face recognition; however, this subgroup displayed better verbal delayed recall and constructions. The late-onset SD individuals also experienced early personality changes at a time when most individuals with AD had not yet developed behavioral changes. CONCLUSIONS Approximately one-third of SD individuals may be late onset, and the differentiation of late-onset SD from AD can lead to better disease management, education, and prognosis. SD may be distinguished by screening for disproportionate changes in reading, face recognition, and personality.
Collapse
|
22
|
Typical visual unfamiliar face individuation in left and right mesial temporal epilepsy. Neuropsychologia 2020; 147:107583. [PMID: 32771474 DOI: 10.1016/j.neuropsychologia.2020.107583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Patients with chronic mesial temporal lobe epilepsy have difficulties at identifying familiar faces as well as at explicit old/new face recognition tasks. However, the extent to which these difficulties can be attributed to visual individuation of faces, independently of general explicit learning and semantic memory processes, is unknown. We tested 42 mesial temporal lobe epilepsy patients divided into two groups according to the side of epilepsy (left and right) and 42 matched controls on an extensive series of individuation tasks of unfamiliar faces and control visual stimuli, as well as on face detection, famous face recognition and naming, and face and non-face learning. Overall, both patient groups had difficulties at identifying and naming famous faces, and at explicitly learning face and non-face images. However, there was no group difference in accuracy between patients and controls at the two most widely used neuropsychological tests assessing visual individuation of unfamiliar faces (Benton Facial Recognition Test and Cambridge Face Memory Test). While patients with right mesial temporal lobe epilepsy were slowed down at all tasks, this effect was not specific to faces or even high-level stimuli. Importantly, both groups showed the same profile of response as typical participants across various stimulus manipulations, showing no evidence of qualitative processing impairments. Overall, these results point to largely preserved visual face individuation processes in patients with mesial temporal lobe epilepsy, with semantic and episodic memory difficulties being consistent with the localization of the neural structures involved in their epilepsy (anterior temporal cortex and hippocampus). These observations have implications for the prediction of neuropsychological outcomes in the case of surgery and support the validity of intracranial electroencephalographic recordings performed in this population to understand neural mechanisms of human face individuation, notably through intracranial electrophysiological recordings and stimulations.
Collapse
|
23
|
Ding J, Chen K, Liu H, Huang L, Chen Y, Lv Y, Yang Q, Guo Q, Han Z, Lambon Ralph MA. A unified neurocognitive model of semantics language social behaviour and face recognition in semantic dementia. Nat Commun 2020; 11:2595. [PMID: 32444620 PMCID: PMC7244491 DOI: 10.1038/s41467-020-16089-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
The anterior temporal lobes (ATL) have become a key brain region of interest in cognitive neuroscience founded upon neuropsychological investigations of semantic dementia (SD). The purposes of this investigation are to generate a single unified model that captures the known cognitive-behavioural variations in SD and map these to the patients' distribution of frontotemporal atrophy. Here we show that the degree of generalised semantic impairment is related to the patients' total, bilateral ATL atrophy. Verbal production ability is related to total ATL atrophy as well as to the balance of left > right ATL atrophy. Apathy is found to relate positively to the degree of orbitofrontal atrophy. Disinhibition is related to right ATL and orbitofrontal atrophy, and face recognition to right ATL volumes. Rather than positing mutually-exclusive sub-categories, the data-driven model repositions semantics, language, social behaviour and face recognition into a continuous frontotemporal neurocognitive space.
Collapse
Affiliation(s)
- Junhua Ding
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Keliang Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoming Liu
- Department of Asian and North African Studies, Ca' Foscari University of Venice, Venice, Italy
| | - Lin Huang
- Department of gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China
| | - Yingru Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Yang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | | |
Collapse
|
24
|
Gainotti G. Representional and connectivity-based accounts of the cognitive consequences of atrophy of the right and left anterior temporal lobes. Cogn Neuropsychol 2020; 37:466-481. [PMID: 32174279 DOI: 10.1080/02643294.2020.1739011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
According to the original "hub-and-spoke" model of conceptual representations, the neural network for semantic memory requires a single convergence zone located in the anterior temporal lobes (ATLs). However, a more recent version of this model acknowledges that a graded specialization of the left and right ATLs might emerge as a consequence of their differential connectivity with language and sensory-motor regions. A recent influential paper maintained that both the format of semantic representations (representational account) and their differential connectivity (connectivity account) could contribute to the cognitive consequences of atrophy to the left versus the right ATL atrophy. That paper, however, also raised questions as to whether the distinction between representational and connectivity accounts is a meaningful question. I argue that an important theoretical difference exists between the representational and the connectivity-based models and that investigations, based on this difference, should allow to choose between these alternative accounts.
Collapse
Affiliation(s)
- Guido Gainotti
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
25
|
Catricalà E, Conca F, Fertonani A, Miniussi C, Cappa SF. State-dependent TMS reveals the differential contribution of ATL and IPS to the representation of abstract concepts related to social and quantity knowledge. Cortex 2020; 123:30-41. [DOI: 10.1016/j.cortex.2019.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/17/2019] [Accepted: 09/15/2019] [Indexed: 11/24/2022]
|
26
|
|
27
|
Abstract
PURPOSE OF REVIEW Knowledge on primary progressive aphasia (PPA) has expanded rapidly in the past few decades. Clinical characteristics, neuroimaging correlates, and neuropathological features of PPA are better delineated. This facilitates scientific studies on the disease pathophysiology and allows speech and language therapy to be more precisely targeted. This review article begins with a summary of the current understanding of PPA and discusses how PPA can serve as a model to promote scientific discovery in neurodegenerative diseases. RECENT FINDINGS Studies on the different variants of PPA have demonstrated the high compatibility between clinical presentations and neuroimaging features, and in turn, enhances the understanding of speech and language neuroanatomy. In addition to the traditional approach of lesion-based or voxel-based mapping, scientists have also adopted functional connectivity and network topology approaches that permits a more multidimensional understanding of neuroanatomy. As a result, pharmacological and cognitive therapeutic strategies can now be better targeted towards specific pathological/molecular and cognitive subtypes. SUMMARY Recent scientific advancement in PPA potentiates it to be an optimal model for studying brain network vulnerability, neurodevelopment influences and the effects of nonpharmacological intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Boon Lead Tee
- Global Brain Health Institute, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Neurology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, Memory and Aging Center, University of California at San Francisco, San Francisco, California, USA
- Dyslexia Center, University of California at San Francisco, San Francisco, California, USA
- Global Brain Health Institute, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| |
Collapse
|
28
|
Platonov A, Avanzini P, Pelliccia V, LoRusso G, Sartori I, Orban GA. Rapid and specific processing of person-related information in human anterior temporal lobe. Commun Biol 2019; 2:5. [PMID: 30740541 PMCID: PMC6320334 DOI: 10.1038/s42003-018-0250-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/05/2018] [Indexed: 11/09/2022] Open
Abstract
The anterior temporal lobe (ATL), located at the tip of the human temporal lobes, has been heavily implicated in semantic processing by neuropsychological and functional imaging studies. These techniques have revealed a hemispheric specialization of ATL, but little about the time scale on which it operates. Here we show that ATL is specifically activated in intracerebral recordings when subjects discriminate the gender of an actor presented in a static frame followed by a video. ATL recording sites respond briefly (100 ms duration) to the visual static presentation of an actor in a task-, but not in a stimulus-duration-dependent way. Their response latencies correlate with subjects' reaction times, as do their activity levels, but oppositely in the two hemispheres operating in a push-pull fashion. Comparison of ATL time courses with those of more posterior, less specific regions emphasizes the role of inhibitory operations sculpting the fast ATL responses underlying semantic processing.
Collapse
Affiliation(s)
- Artem Platonov
- Department of Medicine and Surgery, University of Parma, via Volturno 39E, 43125 Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, CNR, via Volturno 39E, 43125 Parma, Italy
| | - Veronica Pelliccia
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Ospedale Ca’Granda Niguarda, Piazza dell’Ospedale Maggiore, 3, 20162 Milan, Italy
| | - Giorgio LoRusso
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Ospedale Ca’Granda Niguarda, Piazza dell’Ospedale Maggiore, 3, 20162 Milan, Italy
| | - Ivana Sartori
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Ospedale Ca’Granda Niguarda, Piazza dell’Ospedale Maggiore, 3, 20162 Milan, Italy
| | - Guy A. Orban
- Department of Medicine and Surgery, University of Parma, via Volturno 39E, 43125 Parma, Italy
| |
Collapse
|
29
|
Snowden JS, Harris JM, Thompson JC, Kobylecki C, Jones M, Richardson AM, Neary D. Semantic dementia and the left and right temporal lobes. Cortex 2018; 107:188-203. [DOI: 10.1016/j.cortex.2017.08.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/19/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022]
|
30
|
Gainotti G. How can familiar voice recognition be intact if unfamiliar voice discrimination is impaired? An introduction to this special section on familiar voice recognition. Neuropsychologia 2018; 116:151-153. [PMID: 29627274 DOI: 10.1016/j.neuropsychologia.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Guido Gainotti
- Institute of Neurology of the Policlinico Gemelli/ Catholic University of Rome, Italy; IRCCS Fondazione Santa Lucia, Department of Clinical and Behavioral Neurology, Rome, Italy.
| |
Collapse
|
31
|
Luzzi S, Coccia M, Polonara G, Reverberi C, Ceravolo G, Silvestrini M, Fringuelli F, Baldinelli S, Provinciali L, Gainotti G. Selective associative phonagnosia after right anterior temporal stroke. Neuropsychologia 2018; 116:154-161. [DOI: 10.1016/j.neuropsychologia.2017.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 11/30/2022]
|
32
|
The neuropsychological profiles and semantic-critical regions of right semantic dementia. NEUROIMAGE-CLINICAL 2018; 19:767-774. [PMID: 30009130 PMCID: PMC6041419 DOI: 10.1016/j.nicl.2018.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
Abstract
Introduction Previous literature has revealed that the anterior temporal lobe (ATL) is the semantic hub of left-sided or mixed semantic dementia (SD), whilst the semantic hub of right-sided SD has not been examined. Methods Seventeen patients with right-sided SD, 18 patients with left-sided SD and 20 normal controls (NC) underwent neuropsychological assessments and magnetic resonance imaging scans. We investigated the relationship between the degree of cerebral atrophy in the whole brain and the severity of semantic deficits in left and right-sided SD samples, respectively. Results We found the semantic deficits of right-sided SD patients were related to bilateral fusiform gyri and left temporal pole, whilst the left fusiform gyrus correlated with the semantic performance of left-sided SD patients. Moreover, all the findings couldn't be accounted for by total gray matter volume (GMV) or general cognitive degradation of patients. Discussion These results provide novel evidence for the current semantic theory, that the important regions for semantic processing include both anterior and posterior temporal lobes. Left SD presented more impairment on the naming, reading and Stroop tests. Right SD exhibited more deficits on the symbol digit modalities task. Left fusiform gyrus correlated with the semantic performance of left SD. The semantic hubs of right SD were bilateral fusiform gyri and left temporal pole.
Collapse
|
33
|
Rice GE, Caswell H, Moore P, Hoffman P, Lambon Ralph MA. The Roles of Left Versus Right Anterior Temporal Lobes in Semantic Memory: A Neuropsychological Comparison of Postsurgical Temporal Lobe Epilepsy Patients. Cereb Cortex 2018; 28:1487-1501. [PMID: 29351584 PMCID: PMC6093325 DOI: 10.1093/cercor/bhx362] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/20/2017] [Indexed: 12/23/2022] Open
Abstract
The presence and degree of specialization between the anterior temporal lobes (ATLs) is a key issue in debates about the neural architecture of semantic memory. Here, we comprehensively assessed multiple aspects of semantic cognition in a large group of postsurgical temporal lobe epilepsy (TLE) patients with left versus right anterior temporal lobectomy (n = 40). Both subgroups showed deficits in expressive and receptive verbal semantic tasks, word and object recognition, naming and recognition of famous faces and perception of faces and emotions. Graded differences in performance between the left and right groups were secondary to the overall mild semantic impairment; primarily, left resected TLE patients showed weaker performance on tasks that required naming or accessing semantic information from a written word. Right resected TLE patients were relatively more impaired at recognizing famous faces as familiar, although this effect was observed less consistently. These findings unify previous partial, inconsistent results and also align directly with fMRI and transcranial magnetic stimulation results in neurologically intact participants. Taken together, these data support a model in which the 2 ATLs act as a coupled bilateral system for the representation of semantic knowledge, and in which graded hemispheric specializations emerge as a consequence of differential connectivity to lateralized speech production and face perception regions.
Collapse
Affiliation(s)
- Grace E Rice
- Neuroscience and Aphasia Research Unit (NARU), University of Manchester, Manchester, UK
| | - Helen Caswell
- Department of Clinical Neuropsychology, Salford Royal Hospital, Manchester, UK
| | - Perry Moore
- Department of Clinical Neuropsychology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Paul Hoffman
- Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
34
|
Famous people recognition through personal name: a normative study. Neurol Sci 2018; 39:663-669. [PMID: 29383617 DOI: 10.1007/s10072-018-3251-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
In this normative study, we investigated famous people recognition through personal name, using as stimuli the names of the same 40 Italian famous persons whose faces and voices had been utilized for the normative study of the Famous People Recognition Battery. For each famous people, we assessed name familiarity, person identification (when the name had been considered as familiar), and false alarms. The investigation was carried out on 143 normal subjects who varied in age and education. Name familiarity and semantic scores were affected by educational level, whereas age influenced false alarms. A comparison between results obtained with names in this research and with faces and voices of the same famous people in our previous study showed that familiarity scores were higher for personal names than those for faces and voices, which obtained the worst scores. Person identification scores were not significantly different from names and from faces, but both these scores were significantly higher than the semantic scores obtained by voices. Taken together, these results are inconsistent with the influential interactive activation and competition model of person recognition.
Collapse
|
35
|
Roswandowitz C, Kappes C, Obrig H, von Kriegstein K. Obligatory and facultative brain regions for voice-identity recognition. Brain 2018; 141:234-247. [PMID: 29228111 PMCID: PMC5837691 DOI: 10.1093/brain/awx313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/31/2017] [Accepted: 10/11/2017] [Indexed: 11/26/2022] Open
Abstract
Recognizing the identity of others by their voice is an important skill for social interactions. To date, it remains controversial which parts of the brain are critical structures for this skill. Based on neuroimaging findings, standard models of person-identity recognition suggest that the right temporal lobe is the hub for voice-identity recognition. Neuropsychological case studies, however, reported selective deficits of voice-identity recognition in patients predominantly with right inferior parietal lobe lesions. Here, our aim was to work towards resolving the discrepancy between neuroimaging studies and neuropsychological case studies to find out which brain structures are critical for voice-identity recognition in humans. We performed a voxel-based lesion-behaviour mapping study in a cohort of patients (n = 58) with unilateral focal brain lesions. The study included a comprehensive behavioural test battery on voice-identity recognition of newly learned (voice-name, voice-face association learning) and familiar voices (famous voice recognition) as well as visual (face-identity recognition) and acoustic control tests (vocal-pitch and vocal-timbre discrimination). The study also comprised clinically established tests (neuropsychological assessment, audiometry) and high-resolution structural brain images. The three key findings were: (i) a strong association between voice-identity recognition performance and right posterior/mid temporal and right inferior parietal lobe lesions; (ii) a selective association between right posterior/mid temporal lobe lesions and voice-identity recognition performance when face-identity recognition performance was factored out; and (iii) an association of right inferior parietal lobe lesions with tasks requiring the association between voices and faces but not voices and names. The results imply that the right posterior/mid temporal lobe is an obligatory structure for voice-identity recognition, while the inferior parietal lobe is only a facultative component of voice-identity recognition in situations where additional face-identity processing is required.
Collapse
Affiliation(s)
- Claudia Roswandowitz
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Claudia Kappes
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Hellmuth Obrig
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- Clinic for Cognitive Neurology, University Hospital Leipzig, Germany
| | - Katharina von Kriegstein
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- Humboldt University zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
- Technische Universität Dresden, Faculty of Psychology, Bamberger Str. 7, 01187 Dresden, Germany
| |
Collapse
|